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Overview

e All about LeCun’s Convolutional Neural Networks
— LeCun et al. 1998

* Krizhevsky, Sutskever & Hinton NIPS 2012

* Stochastic Regularization methods

— DropOut [Hinton et al. 2012]
— Other related methods



Convolutional Neural Networks

* LeCun et al. 1998
* Very successful on MNIST digits

 But didn’t work so well on

Caltech 101 (why?)
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Recap of Convnets

[ Feature maps }

e Feed-forward:

— Convolve input

-

— Non-linearity (rectified linear) [ Pooling }

=

— Pooling (local max)

o Supervised [ Non-linearity }

-

* Train convolutional filters by
back-propagating classification error [ Convolution (Learned) J
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Krizhevsky et al. [NIPS2012]

* Same model as LeCun’98 but:
- bigger model
- more data
- GPU implementation
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7 hidden layers, 650,000 neurons, 60,000,000 parameters
e Trained on 2 GPUs for a week



IMAGENET Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)
Held in conjunction with PASCAL Visual Object Classes Challenge 2012 (VOC2012)

Back to Main page
All results

e Task 1 (classification)

e Task 2 (localization)

o Task 3 (fine-grained classification)
¢ Team information and abstracts

Task 1
Team name Filename Error (5 guesses) Description
Using extra training data
. test-preds-141-146.2009-131-
SuperVision 0.15315 from ImageNet Fall 2011
137-145-146.2011-145f.
release
test-preds-131-137-145-135- Usi | lied
SuperVision ek prace 0.16422 s.m.g oy St
145f.txt training data
Weighted sum of scores
from each classifier with
1SI pred_FVs_wLACs_weighted.txt 0.26172 SIFT+FV, LBP+FV,
GIST+FV, and
CSIFT+FV, respectively.
Weighted sum of scores
1SI pred_FVs_weighted.txt 0.26602 from classifiers using
each FV.
[ I I I
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Regularizing Neural Nets

Neural Networks are good at classifying large
labeled datasets

Large capacity is essential: more layers and more
units

But without regularization, model with millions
or billions of parameters can easily overt

Existing regularization methods:
— L1 or L2 penalty

— Bayesian methods

— Early stopping of training



Stochastic Regularization

* Deliberately add noise into network
* DropOut [Hinton et al. 2012]

* Recent follow-on work:
— DropConnect [ Wan et al. 2013
— Stochastic Pooling [Zeiler & Fergus 2013]
— MaxOut [ Goodfellow 2013 ]



Review of DropOut Network [Hinton et al. 2012]

@ Stochastic dropping of units

o Each element of a layer's output is kept with probability p, otherwise being set to 0
with probability (1 — p)

o Input v, weights W, activation function a(.), output r and DropOut mask m:
r=m.x a(Wv)

e For every training example at every epoch has different mask m

Normal Network DropOut Network
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What about Convolution Layers?

* DropOut/DropConnect hurts on these

e MaxOut [Goodfellow et al. 2013}

— Take max over group of feature maps

* Stochastic Pooling [Zeiler & Fergus 2013]



Stochastic Pooling: Training

Compute activations a;: (> 0)
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Stochastic Pooling: Inference

 Sampling adds noise at test time
* Could sample multiple locations ... too slow
* |nstead, scale activations by probabilities:

S = sz'&z'
i

Example:
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Convergence and Overfitting: CIFAR-10
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Effects of Pooling Size
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CIFAR-10 Results

Train Error % | Test Error %
Multi-Stage Conv. Net + 2-layer Classifier [12] - 5.03
Multi-Stage Conv. Net + 2-layer Classifer + padding [12] B 4.90
64-64-64 Avg Pooling 1.83 3.98
64-64-64 Max Pooling 0.38 3.65
64-64-64 Stochastic Pooling 1.72 3.13
64-64-128 Avg Pooling 1.65 3.72
64-64-128 Max Pooling 0.13 3.81
64-64-128 Stochastic Pooling 1.41 2.80




Train/Test combinations

Train Method Test Method Train Error % | Test Error %
Stochastic Pooling Probability Weighting 3.20 15.20
Stochastic Pooling Stochastic Pooling 3.20 17.49
Stochastic Pooling Stochastic-10 Pooling 3.20 15.51
Stochastic Pooling Stochastic-100 Pooling 3.20 15.12
Stochastic Pooling Max Pooling 3.20 17.66
Stochastic Pooling Avg Pooling 3.20 53.50
Probability Weighting | Probability Weighting 0.0 19.40
Probability Weighting Stochastic Pooling 0.0 24.00
Probability Weighting Max Pooling 0.0 22.45
Probability Weighting Avg Pooling 0.0 58.97
Max Pooling Max Pooling 0.0 19.40
Max Pooling Stochastic Pooling 0.0 32.75
Max Pooling Probability Weighting 0.0 30.00
Avg Pooling Avg Pooling 1.92 19.24
Avg Pooling Stochastic Pooling 1.92 44.25
Avg Pooling Probability Weighting 1.92 40.09




Conclusions

Big Convnets work really well for classification
Around half error of existing methods

Stochastic regularization important to achieve
these results

Future work: detection



