Rapid Deformable Object Detection using Branch-and-Bound

IPAM -UCLA
7 Aug 2013
Iasonas Kokkinos
Center for Visual Computing
Ecole Centrale Paris / INRIA Saclay

Part-based object and action recognition
 Part-based object and action recognition Sliding window classifiers

[

$$
\square
$$

Sliding window classifiers

-0.2

Part-based object and action recognition

Sliding window classifiers

\cdots
1.5
...

Sliding window classifiers

Sliding window classifiers

0.3

Part-based object and action recognition

Sliding window classifiers

Search/Coarse-to-fine \& Object Recognition

E. Grimson. Object Recognition by Computer. MIT Press, 1991.
T. M. Breuel, "Fast recognition using adaptive subdivisions of transformation space," in CVPR, 1992.
D. P. Huttenlocher, G. A. Klanderman, and W. A. Rucklidge, "Comparing images using the Hausdorff distance," PAMI 1993
Y. Amit and D. Geman, "A computational model for visual selection," Neural Computation, 1999
Y. Amit, D. Geman and B. Jedynak, " Efficient focusing and face detection," 1999
F. Fleuret and D. Geman. Coarse-to-fine face detection. IJCV, 2001.
Y. Amit, D. Geman and X. Fan, A coarse-to-fine strategy for multi-class shape detection, PAMI, 2004
P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features," CVPR, 2001.
P. Moreels, M. Maire, and P. Perona. Recognition by probabilistic hypothesis construction. ECCV, 2004.
C. Lampert, M. Blaschko, and T. Hofmann. Beyond sliding windows: CVPR, 2008.
C. H. Lampert. An efficient divide-and-conquer cascade for nonlinear object detection. In CVPR, 2010.
A. Lehmann, B. Leibe, and L. V. Gool. Fast PRISM: Branch and Bound Hough Transform, IJCV, 2011.

BoW: Efficient Subwindow Search (ESS), 2008

- High localization quality: first place in 5 of 20 categories.
- High speed: $\approx 40 \mathrm{~ms}$ per image (excl. feature extraction)

Example detections on VOC 2007 dog.

Deformable Part Models (DPMs)

M. Fischler and R. Erschlanger. The Representation and Matching of Pictorial Structures '73. M. Lades, et al: Distortion Invariant Object Recognition in the Dynamic Link Architecture. '93 Y. Amit, A. Kong: Graphical Templates for Model Registration. '96
A. L. Yuille, J. M. Coughlan: An A* perspective on deterministic optimization for deformable templates. ‘00
M. C. Burl, P. Perona: Recognition of Planar Object Classes. '96
M. C. Burl, M. Weber, P. Perona: A Probabilistic Approach to Object Recognition Using Local Photometry and Global Geometry. '98
M. Weber, M. Welling, P. Perona: Unsupervised Learning of Models for Recognition. '00 P. Felzenszwalb, and D. Huttenlocher, Pictorial Structures for Object Recognition, IJCV ‘05
P. Felzenszwalb, et. al., Object Detection with Discriminatively Trained DPMs,‘10

Previous works on acceleration

Sparse image representations:
Y. Chen, L. Zhu, A. Yuille. Rapid inference on a novel and/or graph for object detection, NIPS 2007
I. Kokkinos and A. Yuille. HOP: Hierarchical Object Parsing, CVPR, 2009

Dense image representations:
B. Sapp, A. Toshev, and B. Taskar. Cascaded models for articulated pose estimation, ECCV, 2010
M.Pedersoli, A.Vedaldi, and J.Gonzalez. A coarse-to-fine approach for object detection, CVPR 2011

P F Felzenszwalb R B Girshick and D A McAllester Cascade object detection with DPMs CVPR 2010

Talk outline

Part 1: Branch and Bound for DPMs

Part 2: Bounds for part scores
I. K., Rapid DPM detection using Dual Tree Branch-and-Bound, NIPS, 2011/INRIA TR 2012
I. K., Bounding Part Scores for Rapid Object Detection with DPMs, PnA, 2012
http://vision.mas.ecp.fr/Personnel/iasonas/dpms.html

Deformable Part Models (DPMs)

Local appearance

$$
m_{i}\left(x_{i}\right)=\left\langle w_{i}, H\left(x_{i}\right)\right\rangle
$$

Pairwise compatibility

$$
\phi_{i, j}\left(x_{i}, x_{j}\right)=-\left(h_{i}-h_{j}-\hat{h}_{i, j}\right)^{2} \eta-\left(v_{i}-v_{j}-\hat{v}_{i, j}\right)^{2} \nu
$$

Part score computation

$$
E(x)=\sum_{i} m_{i}\left(x_{i}\right)+\sum_{i, j \in E} \phi_{i, j}\left(x_{i}, x_{j}\right)
$$

$\mathbf{w}[y]$

$\mathbf{h}[x+y]$

$$
s[x]=\sum\langle\mathbf{h}[x+y], \mathbf{w}[y]\rangle
$$

Part score $\quad \mathbf{h}[x] \quad s[x]=\sum_{y}\langle\mathbf{h}[x+y], \mathbf{w}[y]\rangle$

Object detection with DPMs

$$
U_{p}\left(x^{\prime}\right)=\left\langle\mathbf{w}_{p}, \mathbf{H}\left(x^{\prime}\right)\right\rangle
$$

$$
S(x)=\sum_{p=1} \max _{x^{\prime}}\left[U_{p}\left(x^{\prime}\right)+B_{p}\left(x, x^{\prime}\right)\right]
$$

I. K., Rapid DPM detection using Dual Tree Branch-and-Bound, NIPS, 2011/INRIA TR 2012
I. K., Bounding Part Scores for Rapid Object Detection with DPMs, PnA, 2012

Object detection complexity

Score for object hypothesis: $S(x)=\sum_{p=1}^{P} \max _{x^{\prime}}\left[U_{p}\left(x^{\prime}\right)+B_{p}\left(x, x^{\prime}\right)\right]$
Threshold-based detection: recover all locations above threshold

$$
M^{\theta}=\{x: S(x) \geq \theta\}
$$

1-best detection: recover top-scoring candidate

$$
M^{*}=\left\{\arg \max _{x} S(x)\right\}
$$

Naïve implementation (Dynamic Programming) : $O\left(P N^{2}\right) \quad N=|\{x\}|$ Generalized Distance Transforms (GDT): $O(P N)$ Our work (best-case): $\simeq|M| P \log _{2} N$

Key idea: avoid the exact evaluation of $S(x)$

Branch-and-Bound for Deformable Part Models

Input \& Detection result

Detector score $S(x)$

BB for $\arg \max _{x} S(x)$

BB for $S(x) \geq-1$

I. K., Rapid DPM detection using Dual Tree Branch-and-Bound, NIPS, 2011/INRIA TR 2012

Branch and bound technique

- Task:

$$
\max _{x \in X} f(x)
$$

- Bounding function: $\bar{f}(X) \geq \max _{x \in X} f(x), \quad \bar{f}(\{x\})=f(x)$

Branch-and-bound algorithm

Branch-and-Bound
$M^{*}=B B\left(X_{0}, \bar{S}\right)$
INITIALIZE: $\mathcal{Q}=\left\{\left(X_{0}, \bar{S}\left(X_{0}\right)\right\}\right.$
while 1 do
$X=\operatorname{Pop}[\mathcal{Q}]$
if Singleton $[X]$ then RETURN X \{First singleton: best X \}
end if
$\left[X_{1}, X_{2}\right]=\operatorname{Branch}[X]$
$\operatorname{Push}\left[\mathcal{Q},\left(X_{1}, \bar{S}\left(X_{1}\right)\right)\right], \operatorname{Push}\left[\mathcal{Q},\left(X_{2}, \bar{S}\left(X_{2}\right)\right)\right]$
end while

Bounding a mixture-of-gaussians

- Property: $\max _{x \in X} h(x)+g(x) \leq \max _{x \in X} h(x)+\max _{x \in X} g(x)$
- Function: $f(x)=\pi_{1} N\left(x ; \mu_{1}, \sigma_{1}\right)+\pi_{2} N\left(x ; \mu_{2}, \sigma_{2}\right)$

$$
\begin{aligned}
\max _{x \in X} f(x) & \leq \max _{x \in X}\left[\pi_{1} N\left(x ; \mu_{1}, \sigma_{1}\right)\right]+\max _{x \in X}\left[\pi_{2} N\left(x ; \mu_{2}, \sigma_{2}\right)\right] \\
& =\pi_{1} N\left(d\left(X, \mu_{1}, \sigma_{1}\right) ; 0,1\right)+\pi_{2} N\left(d\left(X, \mu_{2}, \sigma_{2}\right) ; 0,1\right) \\
& d(X, \mu, \sigma)=\left\{\begin{array}{cc}
0 & a \leq \mu \leq b \\
\frac{1}{\sigma^{2}}(\mu-a)^{2} & \mu \leq a \\
\frac{1}{\sigma^{2}}(\mu-b)^{2} & b<\mu \\
\hline
\end{array}\right.
\end{aligned}
$$

$$
a \quad X \quad b
$$

Bounding the DPM cost function

Goal: $\quad \bar{S}(X) \geq S(X)=\max _{x \in X} S(x) \quad \forall X, \quad \bar{S}(\{x\})=S(x)$
where $\quad S(x)=\sum_{p=1}^{P} \underbrace{\max _{x^{\prime}}\left[U_{p}\left(x^{\prime}\right)+B_{p}\left(x, x^{\prime}\right)\right]}_{m_{p}(x)}$

$$
\begin{aligned}
& \max _{x \in X} \sum_{p=1}^{P} m_{p}(x) \leq \sum_{p=1}^{P} \max _{x \in X} m_{p}(x) \\
& \max _{x \in X} S(x) \leq \sum_{p=1}^{P} \bar{m}_{p}(X)
\end{aligned}
$$

Focus on constructing $\quad \bar{m}_{p}(X)$

Breaking up the message bound

$$
m(X) \doteq \max _{x \in X} \max _{x^{\prime} \in X^{\prime}} U\left(x^{\prime}\right)+B\left(x^{\prime}, x\right)
$$

Partition domains: $\quad X=\cup_{d \in D} X_{d}, \quad X^{\prime}=\cup_{s \in S} X_{s}$

Define: $\quad \mu_{d}^{s} \doteq \max _{x \in X_{d} x^{\prime} \in X_{s}} U\left(x^{\prime}\right)+B\left(x^{\prime}, x\right)$

$$
m(X)=\max _{d} \max _{s} \mu_{d}^{s}
$$

Bounding the source-to-domain contributions

$$
\mu_{d}^{s} \doteq \max _{x \in X_{d}} \max _{x^{\prime} \in X_{s}} U\left(x^{\prime}\right)+B\left(x^{\prime}, x\right)
$$

Upper bound:

$$
\mu_{d}^{s} \leq \max _{x^{\prime} \in X_{s}} U\left(x^{\prime}\right)+\max _{x \in X_{d}} \max _{x^{\prime} \in X_{s}} B\left(x^{\prime}, x\right)
$$

Intuitively: take best source point, put it at best possible source location

Quantities involved: $\quad \bar{u}^{s} \doteq \max _{x^{\prime} \in X_{s}} U\left(x^{\prime}\right), \quad \bar{g}_{d}^{s} \doteq \max _{x \in X_{d}} \max _{x^{\prime} \in X_{s}} B\left(x^{\prime}, x\right)$

Bounding the binary term

$$
\begin{aligned}
& \mathcal{G}_{\bar{d}, \bar{s}} \doteq \max _{x \in X_{d}} \max _{x^{\prime} \in X_{s}} \mathcal{G}_{x, x^{\prime}} \quad \mathcal{G}_{x, x^{\prime}}=-H\left(h-h^{\prime}\right)^{2}-V\left(v-v^{\prime}\right)^{2} \\
& =-H h_{\underline{d, s},}^{2}-V v_{\underline{d}, \underline{s}}^{2} \\
& h_{\underline{d}, \underline{s}} \doteq \min _{h \in X_{d}^{h}} \min _{h^{\prime} \in X_{s}^{k}}\left|h-h^{\prime}\right| \quad v_{\underline{d}, \underline{s}} \doteq \min _{v \in X_{d}^{d}} \min _{v^{\prime} \in X_{s}^{c}}\left|v-v^{\prime}\right|
\end{aligned}
$$

Done so far

$$
\begin{gathered}
m(X) \doteq \max _{x \in X} \max _{x^{\prime} \in X^{\prime}} U\left(x^{\prime}\right)+B\left(x^{\prime}, x\right) \\
X=\cup_{d \in D} X_{d}, \quad X^{\prime}=\cup_{s \in S} X_{s} \\
\mu_{d}^{s} \doteq \max _{x \in X_{d} x^{\prime} \in X_{s}} U\left(x^{\prime}\right)+B\left(x^{\prime}, x\right) \\
m(X)=\operatorname{maxmax}_{d} \mu_{d}^{s} \\
\bar{m}(X)=\max _{d} \max _{s} \bar{\mu}_{d}^{s}
\end{gathered}
$$

$$
X=\cup_{d \in D} X_{d}, \quad X^{\prime}=\cup_{s \in S} X_{s}
$$

Large intervals: loose bounds
Small intervals: tight bounds, but maximization over multiple terms

$$
|S|=\frac{|X|}{\left|X_{s}\right|}
$$

Need to prune
A.G. Gray and A.W. Moore. Nonparametric density estimation: Toward computational tractability. ICDM 2003

Supporter pruning demonstration

Results on Pascal VOC

Threshold-based detection speedup

1200 images, 20 Categories per image

Results on Pascal VOC

1200 images, 20 Categories per image

	Our algorithm	$[4]$
Unary terms	13.20 ± 1.49	159.41 ± 15.82
KD-trees	1.72 ± 0.21	0.00 ± 0.00
Detection, $\theta=0.0$	0.25 ± 0.07	10.74 ± 1.02
Detection, $\theta=-.2$	0.47 ± 0.12	10.74 ± 1.02
Detection, $\theta=-.4$	0.93 ± 0.22	10.74 ± 1.02
Detection, $\theta=-.6$	1.95 ± 0.42	10.74 ± 1.02
Detection, $\theta=-.8$	4.17 ± 0.84	10.74 ± 1.02
Detection, $\theta=-1$	9.14 ± 1.79	10.74 ± 1.02
Detection, 1-best	0.41 ± 0.08	10.74 ± 1.02
Detection, 5-best	0.47 ± 0.09	10.74 ± 1.02
Detection, 10-best	0.48 ± 0.10	10.74 ± 1.02

[4] P.F. Felzenszwalb, R. Girshick, D. A. McAllester, and D. Ramanan, Object Detection with Discriminatively Trained Part-Based Models, 2010

Part-based object and action recognition

Talk outline

Part 1: B\&B for DPMs

Part 2: Bounds for part scores

$$
\epsilon=\boldsymbol{t a n}
$$

I. K., Rapid DPM detection using Dual Tree Branch-and-Bound, NIPS, 2011/INRIA TR 2012
I. K., Bounding Part Scores for Rapid Object Detection with DPMs, PnA, 2012
http://vision.mas.ecp.fr/Personnel/iasonas/dpms.html

Bounding the part scores

w_{1}

$w_{2} \ldots w_{P}$

$$
\mu_{p}(x)=\max _{x^{\prime}}\left[U_{p}\left(x^{\prime}\right)+B_{p}\left(x, x^{\prime}\right)\right]
$$

DTBB, NIPS 2011

$$
S(x)=\sum_{p=1}^{P} \mu_{p}(x)
$$

Accelerating detection with DPMs

Efficient detection with DPMs

P F Felzenszwalb R B Girshick and D A McAllester Cascade object detection with DPMs CVPR 2010
B. Sapp, A. Toshev, and B. Taskar. Cascaded models for articulated pose estimation, ECCV, 2010
M. Pedersoli, A.Vedaldi, and J.Gonzalez. A coarse-to-fine approach for object detection, CVPR 2011
I. Kokkinos, Rapid DPM Detection using Dual-Tree Branch-and-Bound, NIPS 2011

Efficient part score computation/approximation
H. Pirsiavash and D. Ramanan, Steerable Part Models, CVPR 2012
A. Vedaldi and A. Zisserman, Sparse Kernel Maps and Faster Product Quantization Learning, CVPR 2012
H.O. Song, S. Zickler, T. Althoff, R. Girschick, M. Fritz, C. Geyer, P. Felzenszwalb, T. Darrell, Sparselet Models for Efficient Multiclass Object Detection, ECCV 2012
C. Dubout and F. Fleuret. Exact Acceleration of Linear Object Detectors, ECCV 2012

Dean et al. Fast Accurate Detection of 100.000 object categories, CVPR 2013
I. K., Bounding Part Scores for Rapid Object Detection with DPMs, PnA, 2012

Part score computation

$\mathbf{W}[y]$

$\mathbf{h}[x+y]$

$$
s[x]=\sum_{y}\langle\mathbf{h}[x+y], \mathbf{w}[y]\rangle
$$

Part-based object and action recognition
Part scores $s[x]=\sum_{y}\langle\mathbf{h}[x+y], \mathbf{w}[y]\rangle$

HOG cell quantization: visual 'letters’

$$
\mathcal{C}=\left\{C_{1}, \ldots, C_{256}\right\}
$$

I. K., Bounding Part Scores for Rapid Object Detection with DPMs, PnA, 2012

HOG feature quantization

HOG detail

Codebook indices

60	199	39	199	25	62
121	143	132	45	129	85
209	70	64	129	129	117
210	210	200	85	129	118
3	210	210	20	185	115
63	63	186	242	199	155

Quantized HOG

$$
\mathbf{h}[x] \quad i[x]=\arg \min _{k} d\left(\mathbf{h}[x], C_{k}\right)
$$

$$
\hat{\mathbf{h}}[x]=C_{i[x]}
$$

Efficient inner product approximation

$$
\begin{aligned}
& s[x] \simeq \hat{s}[x] \\
& \sum\langle\mathbf{h}[x+y], \mathbf{w}[y]\rangle \simeq \sum\langle\hat{\mathbf{h}}[x+y], \mathbf{w}[y]\rangle
\end{aligned}
$$

Efficient inner product approximation

$$
\begin{aligned}
& \langle\mathbf{h}[x+y], \mathbf{w}[y]\rangle \simeq \hat{\mathbf{h}}[x+y], \mathbf{w}[y]\rangle \\
& =\left\langle C_{I[x+y]}, \mathbf{w}[y]\right\rangle \\
& =\Pi[I[x+y], y] \\
& \Pi[k, y]=\left\langle C_{k}, \mathbf{w}_{y}\right\rangle \\
& s[x] \simeq \hat{s}[x]=\sum_{y} \Pi[I[x+y], y]
\end{aligned}
$$

Lookup-based estimate demonstration: $s[x]$

Lookup-based estimate demonstration: $\hat{s}[x]$

Part-level approximation error

$$
\begin{aligned}
& =\sum_{y} \underbrace{\langle\mathbf{h}[y]-\hat{\mathbf{h}}[y], \mathbf{w}[y]\rangle}_{e[y]}
\end{aligned}
$$

Cell-level approximation error

$$
\begin{aligned}
e[y] & =\langle\mathbf{h}[y]-\hat{\mathbf{h}}[y], \mathbf{w}[y]\rangle=\langle\mathbf{(x)}-\mathbf{E} \mathbf{\mathbf { x }}\rangle \\
& =\langle\mathbf{e}[y], \mathbf{w}[y]\rangle \\
& =\sum_{f=1}^{32} \mathbf{e}_{y}[f] \mathbf{w}_{y}[f]
\end{aligned}
$$

Chebyshev inequality

For any zero-mean random variable, and any value of α :

$$
P(|X|>\alpha) \leq \frac{E\left\{X^{2}\right\}}{\alpha^{2}}
$$

Equivalently, with probability of error smaller than p_{e} :

$$
X \in\left[-\sqrt{\frac{E\left\{X^{2}\right\}}{p_{e}}}, \sqrt{\frac{E\left\{X^{2}\right\}}{p_{e}}}\right]
$$

Chebyshev-based bounds

Lookup-based approximation:

$$
s[x] \simeq \hat{s}[x]=\sum_{y} \Pi[I[x+y], y]
$$

With probability of error at most p_{e} :

$$
\begin{array}{r}
\underline{s}[x] \leq s[x] \leq \bar{s}[x] \\
\underline{s}[x]=\hat{s}[x]-\sqrt{\frac{\sum_{y}\|\mathbf{w}[y]\|^{2}\|\mathbf{e}[x+y]\|^{2}}{p_{e} F}} \\
\bar{s}[x]=\hat{s}[x]+\sqrt{\frac{\sum_{y}\|\mathbf{w}[y]\|^{2}\|\mathbf{e}[x+y]\|^{2}}{p_{e} F}} \\
\text { 1. K., Bounding Part Scores for Rapid Dbject Detection with DPMs, PnA, 2012 }
\end{array}
$$

Bound demonstration for varying confidence

Bound tightness

Bound demonstration: $s[x]$

Bound demonstration: $\hat{s}[x]$

Bound demonstration: $\underline{s}[x], p_{e}=.05$

Bound demonstration: $\bar{s}[x], p_{e}=.05$

DTBB results: exact part scores

DTBB results, part score bounds @ $p_{e}=0.2$

DTBB results, part score bounds @ $p_{e}=0.1$

DTBB results, part score bounds @ $p_{e}=0.05$

Impact on performance

DTBB-based bicycle detection for threshod $t=-1.1$

I. K., Bounding Part Scores for Rapid Object Detection with DPMs, PnA, 2012

Speedup results

	GDTs	DTBB	$p_{e}=0.05$	$p_{e}=0.01$
Part terms	8.35 ± 0.77	1.69 ± 0.18	0.69 ± 0.03	0.69 ± 0.06

Detection with Cascade DPMs (C-DPMs)

$$
\begin{aligned}
& S_{0}(x)=0, \mathcal{I}_{0}=[1, N] \times[1, M] \\
& S_{k}(x)=S_{k-1}(x)+\max _{x^{\prime}}\left(U_{p}\left(x^{\prime}\right)+B_{p}\left(x^{\prime}, x\right)\right) \\
& \mathcal{I}_{k}=\left\{x \in \mathcal{I}_{k-1}: S_{k-1}(x) \geq \theta_{k}\right\}
\end{aligned}
$$

Felzenszwalb, Girschick, et al: use PCA-projection of \mathbf{h}, \mathbf{w}
Our work: use quick upper bounds, thresholds for full HOG

$$
\begin{array}{|c|c|c|c|c|}
\hline & \text { GDTs } & \text { C-DPM } & p_{e}=0.05 & p_{e}=0.01 \\
\hline \theta=-0.5 & 8.95 \pm 0.82 & 0.56 \pm 0.07 & 0.19 \pm 0.03 & 0.23 \pm 0.04 \\
\hline \theta=-0.7 & 8.95 \pm 0.82 & 0.72 \pm 0.09 & 0.29 \pm 0.04 & 0.36 \pm 0.06 \\
\hline \theta=-1.0 & 8.95 \pm 0.82 & 1.04 \pm 0.16 & 0.51 \pm 0.10 & 1.07 \pm 0.29 \\
\hline
\end{array}
$$

Detecting and modeling deformable object categories

Future work

Deformable Models: fast and accurate
BB: theory-grounded blend of optimization and low-level processing

On-going work
Part sharing
Tighter bounds, cascades

Detecting and modeling deformable object categories

Beyond sliding windows

Problem: Exhaustive evaluation of $\operatorname{argmax}_{B \in \mathcal{B}} f_{l}(B)$ is too slow. Solution: Use the problem's geometric structure.

- Similar boxes have similar scores.
- Calculate scores for sets of boxes jointly (upper bound).
- If no element can contain the object, discard the set.
- Else, split the set into smaller parts and re-check, etc.
$\Rightarrow \quad$ efficient branch \& bound algorithm

Detecting and modeling deformable object categories

Chebyshev inequality-II

For a weighted sum of i.i.d. zero-mean random variables:

$$
X^{\prime}=\sum_{k=1}^{K} w_{k} X_{k}
$$

with probability of error smaller than p_{e} :

$$
X^{\prime} \in\left[-\sqrt{\frac{\left(\sum_{k} w_{k}^{2}\right) E\left\{X^{2}\right\}}{p_{e}}}, \sqrt{\frac{\left(\sum_{k} w_{k}^{2}\right) E\left\{X^{2}\right\}}{p_{e}}}\right]
$$

Detecting and modeling deformable object categories

Chebyshev inequality for cell-level error

$$
e[y]=\sum_{f=1}^{F} \mathbf{e}_{y}[f] \mathbf{w}_{y}[f]
$$

with probability of error smaller than p_{e} :
$e_{y} \in\left[-\sqrt{\frac{\|\mathbf{w}[y]\|^{2}\|\mathbf{e}[y]\|^{2}}{p_{e} F}}, \sqrt{\frac{\|\mathbf{w}[y]\|^{2}\|\mathbf{e}[y]\|^{2}}{p_{e} F}}\right]$

Detecting and modeling deformable object categories

Chebyshev inequality for part-level error

$$
\epsilon=\hat{s}-s=\sum_{y} e[y]
$$

with probability of error smaller than p_{e} :

$$
\epsilon \in\left[-\sqrt{\frac{\sum_{y}\|\mathbf{w}[y]\|^{2}\|\mathbf{e}[y]\|^{2}}{p_{e} F}}, \sqrt{\frac{\sum_{y}\|\mathbf{w}[y]\|^{2}\|\mathbf{e}[y]\|^{2}}{p_{e} F}}\right]
$$

with probability of error smaller than p_{e} :
$s \in\left[\hat{s}-\sqrt{\frac{\sum_{y}\|\mathbf{w}[y]\|^{2}\|\mathbf{e}[y]\|^{2}}{p_{e} F}}, \hat{s}+\sqrt{\frac{\sum_{y}\|\mathbf{w}[y]\|^{2}\|\mathbf{e}[y]\|^{2}}{p_{e} F}}\right]$

Bounding the DPM cost function

Goal: $\quad \bar{S}(X) \geq S(X)=\max _{x \in X} S(x) \quad \forall X, \quad \bar{S}(\{x\})=S(x)$
where $S(x)=\sum_{p=1}^{P} \underbrace{\max _{x^{\prime}}\left[U_{p}\left(x^{\prime}\right)+B_{p}\left(x, x^{\prime}\right)\right]}_{m_{p}(x)}$
Since

$$
\max _{x \in X} \sum_{p=1}^{P} m_{p}(x) \leq \sum_{p=1}^{P} \max _{x \in X} m_{p}(x)
$$

$\begin{aligned} \max _{x \in X} \max _{x^{\prime} \in X^{\prime}}\left[U_{p}\left(x^{\prime}\right)+B_{p}\left(x, x^{\prime}\right)\right] & \leq \underbrace{\max _{x^{\prime} \in X^{\prime}} U_{p}\left(x^{\prime}\right)+\max _{x \in X, x^{\prime} \in X^{\prime}} B_{p}\left(x, x^{\prime}\right)}_{\bar{m}_{p}(X)} \\ \max _{x \in X} S(x) & \leq \sum_{p=1}^{P} \bar{m}_{p}(X) \doteq \bar{S}(X)\end{aligned}$
I. K., Rapid DPM detection using Dual Tree Branch-and-Bound, NIPS, 2011/INRIA TR 2012

Object detection with DPMs

Score for object hypothesis: $S(x)=\sum_{p=1}^{P} \max _{x^{\prime}}\left[U_{p}\left(x^{\prime}\right)+B_{p}\left(x, x^{\prime}\right)\right]$

For any candidate object location, x, gather support from all parts, p
For every part p, maximize over all part locations, x '

Dual Recursion

Goal: keep the computation of

$$
\bar{m}(X)=\max _{d} \max _{s} \bar{\mu}_{d}^{s} \text { able }
$$

Source-/ Domain-tree: KD-trees for source/domain points, respectively.
Key idea: entertain list of s that can possibly contribute to any d

$$
\mathcal{S}_{d}=\left\{s_{i}\right\}
$$

Originally: d is Domain-tree root, its supporter is Source-tree root

$$
\mathcal{S}_{0}=\{0\}
$$

When splitting (branching) d, split also its supporters
Prune supporters based on upper and lower bounds

Supporter pruning

$$
\mathcal{S}_{l}=\{m, n, o\} \quad \text { source nodes } \quad m, n, o \text { aport' domain node } \quad l
$$

Recurse: $\quad \mathcal{S}_{\mathrm{ch}(l)} \subset\{\operatorname{ch}(m), \operatorname{ch}(n), \operatorname{ch}(o)\}$
Pruning criterion: $\quad \bar{\mu}_{d}^{l}<\max _{j \in \mathcal{S}_{d}} \underline{\lambda}_{d}^{j}$

Part-based models for objects and actions

Part-based object detection

Part-based action recognition

MRFs for Action Recognition (What, where, who)

Joint work with

Michalis Raptis
Disney Research @ CMU

Stefano Soatto
UCLA

Discovery of Salient Regions

Data-Driven Segmentation of Spatio-Temporal Regions

- Object Parts Segmentation:
- Motion as cue
- Long temporal relations of trajectories
(Brox and Malik, ECCV' 10)

Clustering of Trajectories

a
Affinity Matrix: $w(a, b)=\exp (-d(a, b))$
Greedy agglomerative clustering

Trajectory Groups:

$$
\downarrow{ }_{\left\{G_{k}\right\}, k=1, \ldots, N}
$$

Part-based models for objects and actions

Part-based object detection

Part-based action recognition

Trajectory Group Descriptor

Densely Sampled:

- Histogram of Gradients
- Histogram of Optical Flow
- Histogram of Oriented Edges of Motion Boundaries

Motion Boundaries

- Quantization step of all descriptors
- Bag of Features :
- Accumulate the labels of descriptors in the neighborhood of a trajectory of the group

Trajectory Group Descriptor

Pairwise Relationships

- Characterize the change of the relative position of two "average" trajectories

Converging in \mathbf{x} dimension

Slowing Converging in both dimensions

Converging and Diverging

Mid-level Representation

$\bullet G_{k}=\left\{h_{k}, g_{k}\right\}$

Action Model

- BoF Term

-Unary Terms

- Pairwise Terms
$\operatorname{score}(P, \sigma ; \mathbf{w})=\left\langle w_{0}, h_{\mathrm{BoF}}\right\rangle+\sum_{i=1}^{5}\left\langle w_{i}, h_{p_{i}}\right\rangle+\sum_{i=1}^{5} \sum_{j=i+1}^{5}\left\langle w_{i, j}, \psi\left(g_{p_{i}}, g_{p_{j}}, \sigma\right)\right\rangle=\langle\mathbf{w}, \Phi(x, P, \sigma)\rangle$
Latent Variables: $P=\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}, \sigma$
Cluster Associatio $\mathrm{P}_{0}=k \Rightarrow$ Part $i \rightarrow G_{k}=\left\{h_{k}, g_{k}\right\}$

$$
\sigma \in\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}\right\}
$$

Subgraph Matching

$$
P^{*}=\arg \max _{P} \operatorname{score}\left(P ; \mathbf{w}^{*}, \sigma_{j}\right)
$$

w
 class Wcation

Latent SVM (Felzenszwalb et al. 2008)

inate between estimating a $P \quad \mathbf{w}$

a. Given \mathbf{W} :

$$
P_{i}^{*}=\arg \max _{P_{i}}\left\langle\mathbf{w}, \Phi\left(x_{i}, P_{i}, \sigma_{j}\right)\right\rangle
$$

b. Given $P_{i \text { : }}^{*}$

$$
\min _{\mathbf{w}, \boldsymbol{\xi}} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i \nless j} \boldsymbol{\xi}_{i j}
$$

 $\xi_{i j} \geq 00 \forall i, j$

Ranking SVM

Initialization

Weights of pairwise terms set to zero
Unary terms weights:

- Set equal to the center of a cluster produced by K-means on the descriptors of the positive training videos
- Weak Annotations with Bounding Boxes
- Restrict the selections of parts to groups intersecting the bounding boxes

Our Structured Model Klaser et al. BMVC '08 (BoF)
Sun et al. CVPR'09
\square Raptis et al. ECCV' 10 (BOF) Laptev et al CVPR'08

Matikainen et al. ICCV'09 (BoF)
Yeffet et al. ICCV'09

UCF Sports Dataset
Per-class Classification Accuracy

HOHA dataset

- Part 1
- Part ?
- Part 3
- Not Selected

Action : Sit down

Colored Groups of Trajectories are associated with the mode White colored trajectories are not selected by the model

Localization Performance

Evaluation of Localization: HOHA

$$
\text { Localization score }=\frac{1}{|V| \cdot T} \sum_{i=1}^{|V|} \sum_{t=1}^{T}\left[\frac{\left|D_{i, t} \cap L_{t}\right|}{\left|D_{i, t}\right|} \geq \theta\right]
$$

