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Motivation: Analyze a hand radiograph 
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Assume: we are 
looking for proximal 
phalanx 2 
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Motivation: Analyze a hand radiograph 
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We have a priori knowledge 
about the typical appearance:  
e.g. bone shapes and texture 

PP2 

How can we represent this knowledge? 
How can we exploit it? 

Motivation: Analyze a hand radiograph 
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On growth and form (1917) 

D’Arcy Thompson, “On Growth and Form” (1917) 
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Snakes-Active Contour Models (1987) 

M. Kass, A. Witkin and D. Terzopoulos, `Snakes’,  1987 
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Pattern theory  - Hands (1990) 

U. Grenander, Hands: a pattern theoretic study of biological shapes, 1990  

Samples from the 
prior distribution 
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Input           Samples from posterior 
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Deformable templates - 1989 

A.L. Yuille, D.S. Cohen and P.W. Hallinan. Feature extraction from faces using 
deformable templates. CVPR 1989. 
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Active Shape Models - 1992 

T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Training models of 
shape from sets of examples. BMVC 1992 
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Active Appearance Models - 1998 

T.F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models, 1998 
T. F. Cootes, G. V. Wheeler, K. N. Walker, C. J. Taylor: View-based active 
appearance models.2002, 
I. Matthews and S. Baker, "Active Appearance Models Revisited,” 2004. 
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Morphable Models - 1996 

T. Vetter, T. Poggio: Linear Object Classes and Image Synthesis From a Single Example 
Image., 1997. 
T. Vetter, M. J. Jones, T. Poggio: A bootstrapping algorithm for learning linear models of 
object classes. CVPR 1997 
M. J. Jones, Y. Poggio: Multidimensional Morphable Models: A Framework for 
Representing and Matching Object Classes. IJCV 1998 
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3D Morphable Models - 1999 

V. Blanz, T.  Vetter: A Morphable Model for the Synthesis of 3D Faces. SIGGRAPH 1999 
V. Blanz, T.  Vetter: Face Recognition Based on Fitting a 3D Morphable Model. IEEE 
PAMI, 2003 
T. J. Cashman, A. W. Fitzgibbon: What Shape Are Dolphins? Building 3D Morphable 
Models from 2D Images, 2013 
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Deformable Part Models (DPMs) 

M. Fischler and R. Erschlanger. The Representation and Matching of Pictorial Structures ‘73.  
M. Lades, et al: Distortion Invariant Object Recognition in the Dynamic Link Architecture. ‘93 
Y. Amit, A. Kong: Graphical Templates for Model Registration. ‘96   
A.  L. Yuille, J. M. Coughlan: An A* perspective on deterministic optimization for deformable  
templates. ‘00 
M. C. Burl, P. Perona: Recognition of Planar Object Classes.  ‘96 
M. C. Burl, M. Weber, P. Perona: A Probabilistic Approach to Object Recognition Using  
Local Photometry and Global Geometry. ‘98 
M. Weber, M. Welling, P. Perona: Unsupervised Learning of Models for Recognition.  ’00 
P. Felzenszwalb, and D. Huttenlocher, Pictorial Structures for Object Recognition, IJCV ‘05 
P. Felzenszwalb, et. al., Object Detection with Discriminatively Trained DPMs,‘10 
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Three classes of deformable models 

ASM AAM 3D Morphable 
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Analyzing a hand radiograph 

We have a priori knowledge 
about the typical appearance:  
e.g. bone shapes and texture 

PP2 

How can we represent this knowledge? 
How can we exploit it? 
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How to capture a priori knowledge? 

  

Goal: 
•  capture common properties of the bone 
•  find a representation that is restricted to 
plausible bones. 

Each example is represented by a 
vector containing the coordinates of 
the landmarks.  

Learning:    Model Acquisition 
Inference:  Model Fitting 
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•  Bone shapes: vectors in  

 
 
 
 
•  Goal: project data onto a low-dimensional linear subspace that best 

explains their variation. 

The space of all bone shapes 
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New subspace: `better’ coordinate system 

New coordinates reflect the 
distribution of the data. 
 
Few coordinates suffice to 
represent a high 
dimensional vector 
 
They can be viewed as 
parameters of a model 

Mean 



23 Statistical Shape Models 

Shape Eigenbasis 

+ + = + 
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Active shape models (ASM) 

•  A set of training examples (images) 
•  A set of landmarks, that are present on all images 
•  Build a statistical model of shape variation (PCA) 
•  Build a statistical model of the local texture (PCA) 
•  Use the model for the search in a new image 

T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Training models of 
shape from sets of examples. BMVC 1992 
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ASM search 

Adjust to texture Fit to shape model 

Initialize 
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ASM search 

26 
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ASM search 

27 
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Three classes of deformable models 

ASM AAM 3D Morphable 
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Eigenfaces (Sirovich & Kirby 87,  Turk & Pentland 91) 
•  Very few 100x100 vectors correspond to valid face images 

 

 

•  model the subspace (`manifold’) of face images 
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Eigenfaces 
•  Training images 
•  x1,…,xN 
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Eigenfaces  
Top eigenvectors: u1,…uk 

Mean: µ 
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Eigenfaces 
Principal component (eigenvector) uk 

µ + 3σkuk 

µ – 3σkuk 
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Eigenfaces example 

•  Face x in “face space” coordinates: 
 
 
 
 
 
 

•  Reconstruction: 

= + 

µ       +    w1u1+w2u2+w3u3+w4u4+ … 

= 

^ 
x = 
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Limitations 

•  Global appearance method: not robust to misalignment, background 
variation 
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Appearance and Shape interpolation 
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Active Appearance Models (AAMs) 

Shape: 

Appearance: 

Synthesis: 

X S(X) 
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First two modes of shape variation First two modes of gray-level variation 

First four 
modes of 
appearance 
variation 

Active Appearance Models (AAMs) 
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AAM Search  
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Active Appearance Model Search (Results) 
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Active Appearance Model  fitting 

•  Minimize reconstruction error 

–  Alternate between estimating  s and t  

•  For t: projection of deformed image                  onto PCA basis 
•  For s? 

Given:  
1)  an appearance model,  
2)  a new image,  
3)  a starting approximation 

Find:  
the best matching 
synthetic image 
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Reminder: Lucas-Kanade method 
Brightness constancy constraint 
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) = 0

I(xi + ui, y + vi, t) = I(xi, yi, t+ 1)

Linearization: 
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Reminder: Lucas-Kanade method 

I
x
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)v + I
t
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i

) = 0

Brightness constancy constraint 

Linearization: 

I(xi + u, y + v, t) = I(xi, yi, t+ 1)



43 Statistical Shape Models 

From Lucas-Kanade to AAMs 

Brightness constancy constraint 

I1(xi +
P

k akbk(xi)) = I2(xi)

I(xi + u · (1,0) + v · (0,1), t) = I(xi, t+ 1)
AAM synthesis equation: 

I(xi + u, y + v, t) = I(xi, yi, t+ 1)

I. Matthews and S. Baker, "Active Appearance Models Revisited,” 2004. 
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AAM parameter estimation: shape 

•  Iterative scheme 

44 
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Optical Flow: Iterative Estimation 

x x0 

Initial guess:  
Estimate: 

estimate 
update 

(using d for displacement here instead of u) 



46 Statistical Shape Models 

Optical Flow: Iterative Estimation 

x x0 

estimate 
update 

Initial guess:  
Estimate: 
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Optical Flow: Iterative Estimation 

x x0 

Initial guess:  
Estimate: 
Initial guess:  
Estimate: 

estimate 
update 
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Optical Flow: Iterative Estimation 

x x0 
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Coarse-to-fine Optical Flow Estimation 

49 

Image 2 Image 1 

Gaussian pyramid of image 1 Gaussian pyramid of image 2 

Image 2 Image 1 u=10 pixels 

u=5 pixels 

u=2.5 pixels 

u=1.25 pixels 
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Coarse-to-fine Optical Flow Estimation 

50 

Image 2 Image 1 

Gaussian pyramid of image 1 Gaussian pyramid of image 2 

Image 2 Image 1 

Run iterative OF 

Run iterative OF 

Warp & upsample 

. 

. 

. 
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AAM for face tracking 

CMU group: I. Matthews, S. Baker, R. Gross 
(230 Frames per second, 2004) 
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52 

AAM for face tracking 
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Three classes of deformable models 

ASM AAM 3D Morphable 
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Morphable Models: Blanz and Vetter 
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3-D Morphable Models 
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•  Rough manual initialization 
•  Gradient descent to minimize reconstruction error functional 

 
 
•  And then 

3-D Morphable Model fitting 
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3D Morphable models 

Recover Shape 

Synthesize new views 

Synthesize new expressions 
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Unsupervised learning of deformable models 
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•  Consider shift as a hidden variable, l 
•  Estimate model with EM 

Transformation-resilient image averaging  

Observed Image 

Deformation-free image  Shift 

Input Plain mean & std 

With transformation & EM 

Transformation-Invariant Clustering Using the EM Algorithm,  Frey &. Jojic, 2003 
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•  Latent variables for synthesis (continuous) 
•  Latent variables for shift       (discrete)   

•  Estimate mean basis using EM 

Transformed Components Analysis 

Plain mean & PCA 

With offset Input 

Samples of model 

Transformation-Invariant Clustering Using the EM Algorithm,  Frey &. Jojic, PAMI 2003 
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•  Latent variables for cluster (discrete) 
•  Latent variables for shift  (discrete) 

Transformed Mixture of Gaussians 

Input 
Plain Mixture-of-Gaussians 

With offset 

Transformation-Invariant Clustering Using the EM Algorithm,  Frey &. Jojic, PAMI 2003 
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Transformed Mixture of Gaussians 

Plain Mixture-of-Gaussians 

With offset 

Input 

Transformation-Invariant Clustering Using the EM Algorithm,  Frey &. Jojic, PAMI 2003 
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•  Latent variables for cluster 
•  Latent variables for components 
•  Latent variables for shift 

Mixture of Transformed Components 

 
  
 

Transformation-Invariant Clustering Using the EM Algorithm,  Frey &. Jojic, PAMI 2003 
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•  Active Appearance Models 

X S(X) 

Nonrigid deformations: AAMS  
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s 

S 

T 

M: Update E: Deform 

Edges & Ridges Input Images 

AAM Fit 

Training criterion: 

I. Kokkinos and A. Yuille, Unsupervised learning of object deformation models, ICCV 2007 

EM-based AAM learning 
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Bottle models 
Observations  

Template 1st basis element  2nd basis element  

I. Kokkinos and A. Yuille, Unsupervised learning of object deformation models, ICCV 2007 
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Recovering Object Contours (2007) 

 

I. Kokkinos and A. Yuille, Unsupervised learning of object deformation models, ICCV 2007 
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Hand, apple, giraffe, mug, swan models (2008) 

I. Kokkinos and A. Yuille,  Inference and Learning for Hierarchical Shape Models, IJCV 2011 
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Pascal Dataset 

`Bus’ 

`Car’ 

20 Categories, 25000 images 
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Multi-view models 
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Multi-view models + segmentation 
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Semi-automated learning of 3D morphable models 

T. J. Cashman, A. W. Fitzgibbon: What Shape Are Dolphins? Building 3D Morphable 
Models from 2D Images, 2013 
http://research.microsoft.com/en-us/um/people/awf/dolphins/ 
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Au = b

✏ = Au� b
✏T ✏ = bTb� 2uTATb+ uTATAu

ATAu = ATb

2
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Rewrite: 25 equations, 2 unknows  

Residuals: 

Cost: 

Minimization: 

B. Lucas and T. Kanade. An iterative image registration technique with an application to 
stereo vision. IJCAI, 1981. 
 

Reminder: Lucas-Kanade method 
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