

Julien Carretero 'Mutating Bench'

IPAM - UCLA August 6, 2013

Iasonas Kokkinos Center for Visual Computing Ecole Centrale Paris / INRIA Saclay

Motivation: Analyze a hand radiograph

Motivation: Analyze a hand radiograph

Motivation: Analyze a hand radiograph

We have a priori knowledge about the typical appearance: e.g. bone shapes and texture

How can we represent this knowledge? How can we exploit it?

On growth and form (1917)

Skulls of a human, a chimpanzee and a baboon and transformations between them

D'Arcy Thompson, "On Growth and Form" (1917)

Snakes-Active Contour Models (1987)

$$E_{\text{snake}}^* = \int_0^1 E_{\text{snake}}(\mathbf{v}(s)) \, ds$$
$$= \int_0^1 E_{\text{int}}(\mathbf{v}(s)) + E_{\text{image}}(\mathbf{v}(s))$$
$$+ E_{\text{con}}(\mathbf{v}(s)) \, ds$$

M. Kass, A. Witkin and D. Terzopoulos, 'Snakes', 1987

Samples from the prior distribution

Input

Samples from posterior

Input

Samples from posterior

Input

Samples from posterior

Input

Samples from posterior

Deformable templates - 1989

A.L. Yuille, D.S. Cohen and P.W. Hallinan. Feature extraction from faces using deformable templates. CVPR 1989.

Active Shape Models - 1992

T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Training models of shape **from sets of examples.** BMVC 1992

Active Appearance Models - 1998

T.F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models, 1998 T. F. Cootes, G. V. Wheeler, K. N. Walker, C. J. Taylor: View-based active appearance models.2002,

I. Matthews and S. Baker, "Active Appearance Models Revisited," 2004.

Morphable Models - 1996

T. Vetter, T. Poggio: Linear Object Classes and Image Synthesis From a Single Example Image., 1997.

T. Vetter, M. J. Jones, T. Poggio: A bootstrapping algorithm for learning linear models of object classes. CVPR 1997

M. J. Jones, Y. Poggio: Multidimensional Morphable Models: A Framework for Representing and Matching Object Classes. IJCV 1998

3D Morphable Models - 1999

V. Blanz, T. Vetter: A Morphable Model for the Synthesis of 3D Faces. SIGGRAPH 1999
V. Blanz, T. Vetter: Face Recognition Based on Fitting a 3D Morphable Model. IEEE
PAMI, 2003

T. J. Cashman, A. W. Fitzgibbon: What Shape Are Dolphins? Building 3D Morphable Models from 2D Images, 2013

Deformable Part Models (DPMs)

M. Fischler and R. Erschlanger. The Representation and Matching of Pictorial Structures '73. M. Lades, et al: Distortion Invariant Object Recognition in the Dynamic Link Architecture. '93 Y. Amit, A. Kong: Graphical Templates for Model Registration. '96

A. L. Yuille, J. M. Coughlan: An A* perspective on deterministic optimization for deformable templates. '00

M. C. Burl, P. Perona: Recognition of Planar Object Classes. '96

M. C. Burl, M. Weber, P. Perona: A Probabilistic Approach to Object Recognition Using Local Photometry and Global Geometry. '98

M. Weber, M. Welling, P. Perona: Unsupervised Learning of Models for Recognition. '00 P. Felzenszwalb, and D. Huttenlocher, Pictorial Structures for Object Recognition, IJCV '05

P. Felzenszwalb, et. al., Object Detection with Discriminatively Trained DPMs, '10

Three classes of deformable models

ASM AAM 3D Morphable

Analyzing a hand radiograph

We have a priori knowledge about the typical appearance: e.g. bone shapes and texture

How can we represent this knowledge? How can we exploit it?

How to capture *a priori knowledge*?

 $\begin{array}{c|c} y_1 \\ x_2 \\ y_2 \\ y_2 \\ \vdots \\ the landmarks. \end{array}$ Each example is represented by a vector containing the coordinates of

_earning: Model AcquisitionInference: Model Fitting

- capture common properties of the bone
- find a representation that is restricted to plausible bones.

The space of all bone shapes

• Bone shapes: vectors in R^{2m}

 x_1

• Goal: project data onto a low-dimensional linear subspace that best explains their variation.

Statistical Shape Models New subspace: `better' coordinate system

New coordinates reflect the distribution of the data. Mean Few coordinates suffice to represent a bigh

Few coordinates suffice to represent a high dimensional vector

They can be viewed as parameters of a model

22

Shape Eigenbasis

Active shape models (ASM)

- A set of training examples (images)
- A set of landmarks, that are present on all images
- Build a statistical model of shape variation (PCA)
- Build a statistical model of the local texture (PCA)
- Use the model for the search in a new image

T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Training models of shape from sets of examples. BMVC 1992

ASM search

Adjust to texture

Fit to shape model

ASM search

26

ASM search

Three classes of deformable models

ASM AAM 3D Morphable

Eigenfaces (Sirovich & Kirby 87, Turk & Pentland 91

29

• Very few 100x100 vectors correspond to valid face images

• model the subspace (`manifold') of face images

Eigenfaces

- Training images
- x₁,...,x_N

日本	A CAL	100	16-26	159	Ral	16.31	15 36	18 31	51
家の	Ser.	Ser.	家の	100	Sec.	で	際の	See.	(750)
No.	10.0	S.	- Car	100	000	ES .	all a	6-31	P.J.
Pall Ball	(Prot	(18)	120	120	150	120	1:3	Rel	120
the second	63	63	69	ED	E	63	E	E	11.0
100,000	STR. STR.	an ste	1000.000	(35- (35-)	13. 180.	03. 155.	AND LODGE	Sa. 1833	125. 125.
It	A.	1	-	-te	4	AL.	16	12	all all
きに	E. C	(A) (A)	(1) (1)	31 KE	10 BE	山の間	2) (1)	11	AL COL
an an an	三日の	今日 (1) (1)		の時間での	0-0 00 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	と、「語いう	SI BEER	とうで、	1) 80 BO
きのの	金に見いる	2 (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	10 mg (10 mg (10	14 (4) (14) (14) (14)	169 0 0 1 2 3 1 C	きに聞いいい	16 (B B) (C	10-9 4-00 11-0 11-0	AL COLON BOD

Eigenfaces

Top eigenvectors: $u_1, \dots u_k$

Mean: µ

Eigenfaces

Principal component (eigenvector) uk

 μ + $3\sigma_k u_k$

 $\mu - 3\sigma_k u_k$

Eigenfaces example

• Face x in "face space" coordinates:

$$\mathbf{x} \to [\mathbf{u}_1^{\mathrm{T}}(\mathbf{x} - \mu), \dots, \mathbf{u}_k^{\mathrm{T}}(\mathbf{x} - \mu)] \\ = w_1, \dots, w_k$$

Reconstruction:

Limitations

Global appearance method: not robust to misalignment, background variation

Appearance and Shape interpolation

Active Appearance Models (AAMs)

Active Appearance Models (AAMs)

- 3 s.d. ----- + 3 s.d.

First two modes of shape variation

- 3 s.d. ----- + 3 s.d.

First two modes of gray-level variation

First four modes of appearance variation

AAM Search

Active Appearance Model Search (Results)

Active Appearance Model fitting

<u>Given:</u>

- 1) an appearance model,
- 2) a new image,
- 3) a starting approximation

Find: the best matching synthetic image

• Minimize reconstruction error

$$E(\mathbf{s}, \mathbf{t}) = \sum \left[I(\mathcal{S}(\mathbf{x}; \mathbf{s})) - \mathcal{T}(\mathbf{x}; \mathbf{t}) \right]^2$$

- Alternate between estimating s and t
- For t: projection of deformed image $I(S(\mathbf{x}; \mathbf{s}))$ onto PCA basis
- For s?

Reminder: Lucas-Kanade method

Brightness constancy constraint $I(x_i + u_i, y + v_i, t) = I(x_i, y_i, t + 1)$

Linearization:

 $I_x(p_i)u_i + I_y(p_i)v_i + I_t(p_i) = 0$

Reminder: Lucas-Kanade method

Brightness constancy constraint

$$I(x_i + u, y + v, t) = I(x_i, y_i, t + 1)$$

Linearization:

 $I_x(p_i)u + I_y(p_i)v + I_t(p_i) = 0$

42

From Lucas-Kanade to AAMs

Brightness constancy constraint

$$I(x_i + u, y + v, t) = I(x_i, y_i, t + 1)$$

 $I(\mathbf{x}_i + u \cdot (\mathbf{1}, \mathbf{0}) + v \cdot (\mathbf{0}, \mathbf{1}), t) = I(\mathbf{x}_i, t + 1)$
AAM synthesis equation:

$$I_1(\mathbf{x}_i + \sum_k a_k \mathbf{b}_k(\mathbf{x}_i)) = I_2(\mathbf{x}_i)$$

I. Matthews and S. Baker, "Active Appearance Models Revisited," 2004.

AAM parameter estimation: shape

• Iterative scheme

$$\begin{split} E(\mathbf{s}, \mathbf{t}) &= \sum_{\mathbf{x}} \left[I(\mathcal{S}(\mathbf{x}; \mathbf{s})) - \mathcal{T}(\mathbf{x}; \mathbf{t}) \right]^2 \\ E(\mathbf{s} + \Delta \mathbf{s}, \mathbf{t}) &= E(\mathbf{s}, \mathbf{t}) + \mathcal{J} \Delta \mathbf{s} + \frac{1}{2} \Delta \mathbf{s}^T \mathcal{H} \Delta \mathbf{s} \\ \Delta \mathbf{s}^* &= -\mathcal{J} \mathcal{H}^{-1} \qquad \mathbf{s}' = \mathbf{s} - \mathcal{J} \mathcal{H}^{-1} \\ I(S(\mathbf{x}; \mathbf{s} + \Delta \mathbf{s})) &\simeq I(S(\mathbf{x}; \mathbf{s})) + \sum_{i=1}^{N_{\mathcal{S}}} \frac{dI}{d\mathbf{s}_i}(\mathbf{x}; \mathbf{s}) \Delta \mathbf{s}_i \\ \frac{dI}{d\mathbf{s}_i}(\mathbf{x}; \mathbf{s}) &= \frac{\partial I(S(\mathbf{x}; \mathbf{s}))}{\partial x} \frac{\partial S_x}{\partial \mathbf{s}_i} + \frac{\partial I(S(\mathbf{x}; \mathbf{s}))}{\partial y} \frac{\partial S_y}{\partial \mathbf{s}_i}, \\ \mathcal{J}_i &= \sum_{x} \left[I(S(\mathbf{x}, \mathbf{s})) - \mathcal{T}(\mathbf{x}, \mathbf{t}) \right] \frac{d\mathbf{I}}{d\mathbf{s}_i}(x) \qquad \mathcal{H}_{i,j} = \sum_{x} \frac{d\mathbf{I}}{d\mathbf{s}_i}(x) \frac{d\mathbf{I}}{d\mathbf{s}_j}(x) \end{split}$$

(using *d* for *displacement* here instead of *u*)

Coarse-to-fine Optical Flow Estimation

Coarse-to-fine Optical Flow Estimation

AAM for face tracking

CMU group: I. Matthews, S. Baker, R. Gross (230 Frames per second, 2004)

AAM for face tracking

Three classes of deformable models

ASM AAM 3D Morphable

Morphable Models: Blanz and Vetter

3-D Morphable Models

3-D Morphable Model fitting

- Rough manual initialization ullet
- Gradient descent to minimize reconstruction error functional

And then

3D Reconstruction

3D Morphable models

Recover Shape

A Morphable Model for the Synthesis of 3D Faces

Volker Blanz & Thomas Vetter

MPI for Biological Cybernetics Tübingen, Germany

Unsupervised learning of deformable models

Transformation-resilient image averaging

Consider shift as a hidden variable, I Estimate model with EM

Deformation-free image

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}, \boldsymbol{\Phi}),$$

Observed Image

$$p(\mathbf{x}, \ell, \mathbf{z}) = \mathcal{N}(\mathbf{x}; \mathbf{G}_{\ell} \mathbf{z}, \boldsymbol{\Psi}) \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}, \boldsymbol{\Phi}) \rho_{\ell}$$

Input

Plain mean & std

With transformation & EM

Transformation-Invariant Clustering Using the EM Algorithm, Frey &. Jojic, 2003

Transformed Components Analysis

Latent variables for synthesis (continuous)

Latent variables for shift (discrete)

Estimate mean basis using EM

Input

z

х

Plain mean & PCA

Transformed Mixture of Gaussians

Latent variables for cluster (discrete) Latent variables for shift (discrete)

Plain Mixture-of-Gaussians

Transformed Mixture of Gaussians

Plain Mixture-of-Gaussians

With offset

Transformation-Invariant Clustering Using the EM Algorithm, Frey &. Jojic, PAMI 2003

Input

64

Mixture of Transformed Components

Latent variables for cluster Latent variables for components Latent variables for shift

Transformation-Invariant Clustering Using the EM Algorithm, Frey &. Jojic, PAMI 2003

Nonrigid deformations: AAMS

• Active Appearance Models

$$S(\mathbf{x};\mathbf{s}) = \sum_{i} \mathbf{s}_{i} S_{i}(\mathbf{x})$$
 $T(\mathbf{x};\mathbf{t}) = \sum_{i} \mathbf{t}_{i} T_{i}(\mathbf{x})$

EM-based AAM learning

 $\min_{\mathbf{s}_k, S_i, \mathcal{T}} \sum_{k=1}^{n} \sum_{\mathbf{x}} \left[I_k(\mathcal{S}(\mathbf{x}; \mathbf{s}_k)) - \mathcal{T}(\mathbf{x}) \right]^2$ $\mathcal{S}(\mathbf{x}; \mathbf{s}_k) = \sum_i \mathbf{s}_{i,k} S_i(\mathbf{x})$ Training criterion: E: Deform M: Update Edges & Ridges Input Images S AAM Fit

I. Kokkinos and A. Yuille, Unsupervised learning of object deformation models, ICCV 2007

Bottle models

Observations

Template

1st basis element

2nd basis element

I. Kokkinos and A. Yuille, Unsupervised learning of object deformation models, ICCV 2007

Recovering Object Contours (2007)

I. Kokkinos and A. Yuille, Unsupervised learning of object deformation models, ICCV 2007

Hand, apple, giraffe, mug, swan models (2008)

I. Kokkinos and A. Yuille, Inference and Learning for Hierarchical Shape Models, IJCV 2011

Pascal Dataset

20 Categories, 25000 images

`Bus'

`Car'

Multi-view models

Statistical Shape Models

Multi-view models + segmentation

73

Semi-automated learning of 3D morphable models

T. J. Cashman, A. W. Fitzgibbon: What Shape Are Dolphins? Building 3D Morphable Models from 2D Images, 2013 http://research.microsoft.com/en-us/um/people/awf/dolphins/ **Statistical Shape Models**

Reminder: Lucas-Kanade method

$$\begin{bmatrix} I_x(p_i)u + I_y(p_i)v + I_t(p_i) = 0\\ I_{x,1} & I_{y,1}\\ \vdots\\ I_{x,25} & I_{y,25} \end{bmatrix} \begin{bmatrix} u\\ v \end{bmatrix} = \begin{bmatrix} -I_{t,1}\\ \vdots\\ -I_{t,25} \end{bmatrix}$$

Rewrite: Au = b

25 equations, 2 unknows

Residuals: $\epsilon = \mathbf{A}\mathbf{u} - \mathbf{b}$ Cost: $\epsilon^T \epsilon = \mathbf{b}^T \mathbf{b} - 2\mathbf{u}^T \mathbf{A}^T \mathbf{b} + \mathbf{u}^T \mathbf{A}^T \mathbf{A}\mathbf{u}$ Minimization: $\mathbf{A}^T \mathbf{A}\mathbf{u} = \mathbf{A}^T \mathbf{b}$

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. IJCAI, 1981.