Introduction to Image Segmentation:

Part 2: multi-label segmentation

Yuri Boykov

University of Western Ontario

Yuri Boykov, UWO

Multi-label segmentation and high-order constraints

Basic energies of image labelingsMove making (and other) algorithms

Geometric constraints on multi-labelings

Submodular functions

Edmonds 1970

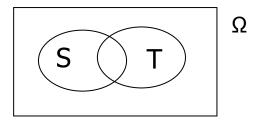
Lattice $(\mathcal{L}, \wedge, \vee)$ - set of elements with *inf* and *sup* operations $S, T \in \mathcal{L} \implies S \wedge T \in \mathcal{L} \qquad S \vee T \in \mathcal{L}$

Function $E: \mathcal{L} \to \mathfrak{R}$ s called **submodular** if for any $S, T \in \mathcal{L}$ $E(S \wedge T) + E(S \vee T) \leq E(S) + E(T)$

Submodular set functions

Assume set Ω , then $(2^{\Omega}, \bigcap, \bigcup)$ is a lattice of subsets

Set function $E: 2^{\Omega} \to \Re$ is **submodular** if for any $S, T \subseteq \Omega$ $E(S \cap T) + E(S \cup T) \le E(S) + E(T)$



Significance: any submodular set function can be globally optimized in polynomial time $O(|\Omega|^9)$ [Grotschel et al.1981,88, Schrijver 2000]

Submodular set functions

Sets are conveniently represented by binary indicator variables

$$S \subset \Omega \iff \left\{ S_p \in \{0,1\} \mid p \in \Omega \right\}$$

Thus, set functions $E: 2^{\Omega} \to \Re$ can be represented as $E(S) = E(S_1, S_2, ..., S_{|\Omega|})$

Define $S_A = \{S_p \mid p \in A\}$, a *restriction* of S to any subset $A \subseteq \Omega$ and consider *projections* $E(S_A \mid S_{\Omega \setminus A})$ of energy E onto subsets A

Set function E(S) is **submodular** iff for any pair $p,q \in \Omega$ $E(\mathbf{0},\mathbf{0} | S_{\Omega \setminus pq}) + E(\mathbf{1},\mathbf{1} | S_{\Omega \setminus pq}) \leq E(\mathbf{1},\mathbf{0} | S_{\Omega \setminus pq}) + E(\mathbf{0},\mathbf{1} | S_{\Omega \setminus pq})$

Graph cuts for minimization of submodular set functions

Assume set Ω and 2nd-order (quadratic) function

$$E(S) = \sum_{(pq) \in N} E_{pq}(S_p, S_q) \qquad S_p, S_q \in \{0, 1\}$$

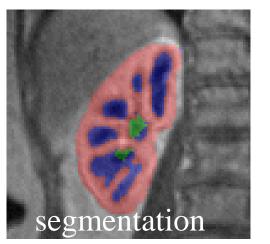
Indicator variables

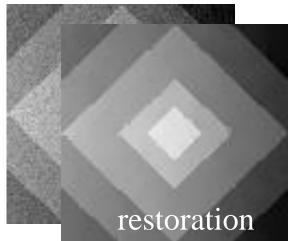
Function E(S) is **submodular** if for any $(p,q) \in N$ $E_{pq}(\mathbf{0},\mathbf{0}) + E_{pq}(\mathbf{1},\mathbf{1}) \leq E_{pq}(\mathbf{1},\mathbf{0}) + E_{pq}(\mathbf{0},\mathbf{1})$

Significance: submodular 2nd-order boolean (set) function can be globally optimized in polynomial time by **graph cuts** [Hammer 1968, Pickard&Ratliff 1973] $O(|N| \cdot |\Omega|^2)$ [Boros&Hammer 2000, Kolmogorov&Zabih2003]

Labelings $L: \Omega \to \Lambda$

examples of image labelings (non-binary)

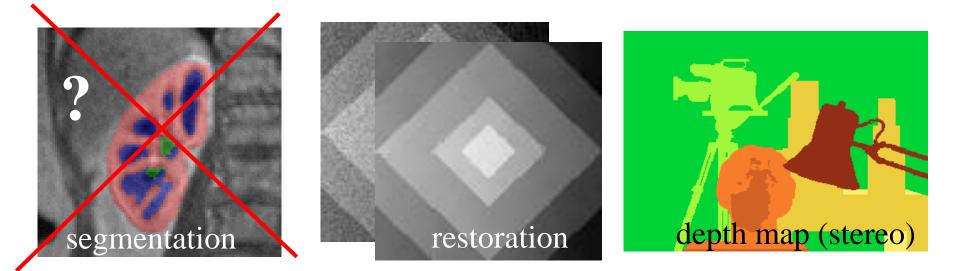




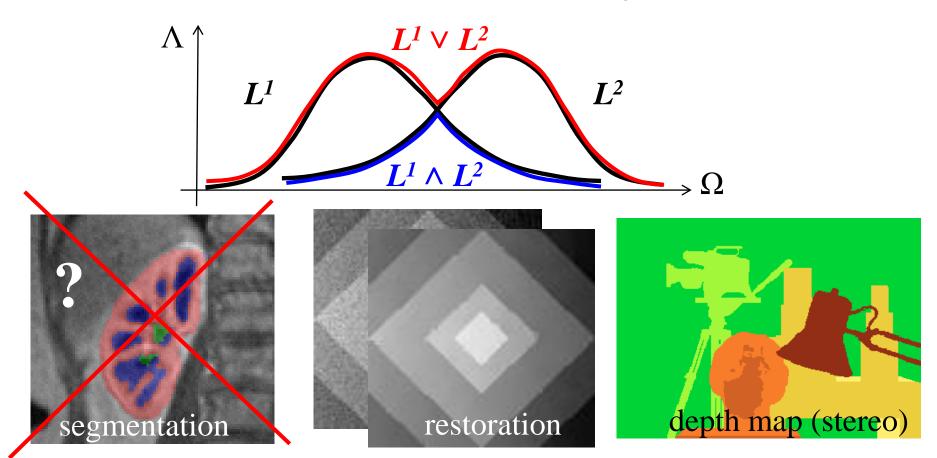
Labelings $L: \Omega \to \Lambda$ form a lattice $(\Lambda^{\Omega}, \Lambda, \vee)$ for **strictly ordered** labels Λ , e.g. for $\Lambda = \{1, ..., n\}$

$$L = (L_p) = \{L_p \mid p \text{ in } \Omega\}$$

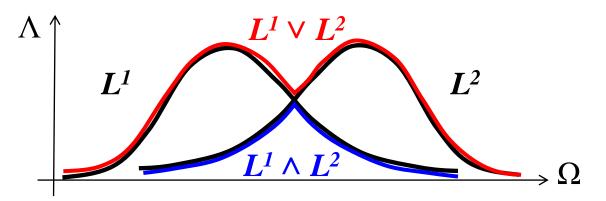
(L_p^1) $\wedge (L_p^2) = (L_p^1 \wedge L_p^2)$ (L_p^1) $\vee (L_p^2) = (L_p^1 \vee L_p^2)$



Labelings $L: \Omega \to \Lambda$ form a lattice $(\Lambda^{\Omega}, \Lambda, \vee)$ for **strictly ordered** labels Λ , e.g. for $\Lambda = \{1, ..., n\}$



Labelings $L: \Omega \to \Lambda$ form a lattice $(\Lambda^{\Omega}, \Lambda, \vee)$ for **strictly ordered** labels Λ , e.g. for $\Lambda = \{1, ..., n\}$



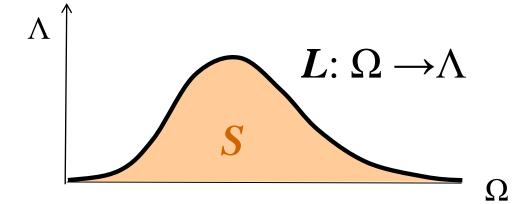
Energy E(L) is **submodular** if for any two labelings $E(L^{1} \wedge L^{2}) + E(L^{1} \vee L^{2}) \le E(L^{1}) + E(L^{2})$

Reducing to set functions

 $S \subset \Omega \times \Lambda$

Theorem [Birkhoff, 1937]: any distrib. lattice $(\mathcal{L}, \wedge, \vee)$ is isomorphic to a set lattice $(2^{\Omega}, \cap, \cup)$ for some Ω .

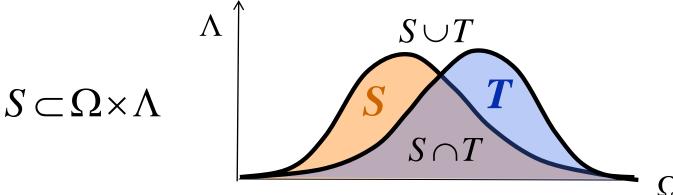
Example [e.g. Ishikawa 1999]: labelings in Λ^{Ω} for strictly ordered set of labels Λ can be represented as subsets of $\Omega x \Lambda$.



Reducing to set functions

Note: submodular energy E(L) of labelings L in Λ^{Ω} gives submodular set function E(S) = E(L).

$$E(L^{1} \wedge L^{2}) + E(L^{1} \vee L^{2}) \leq E(L^{1}) + E(L^{2})$$
$$E(S \cap T) + E(S \cup T) \leq E(S) + E(T)$$



Graph cuts for minimization of submodular pairwise labeling energies

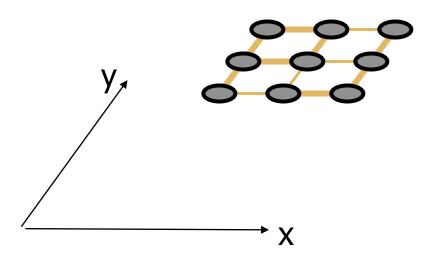
$$E(L) = \sum_{p \in \Omega} E_p(L_p) + \sum_{\substack{(pq) \in N}} E_{pq}(L_p, L_q) \qquad L_p \in \Lambda$$
strictly
ordered

Function E(L) is **submodular** if for any $(p,q) \in N$ $E_{pq}(a_1 \wedge a_2, b_1 \wedge b_2) + E_{pq}(a_1 \vee a_2, b_1 \vee b_2) \le E_{pq}(a_1, b_1) + E_{pq}(a_2, b_2)$

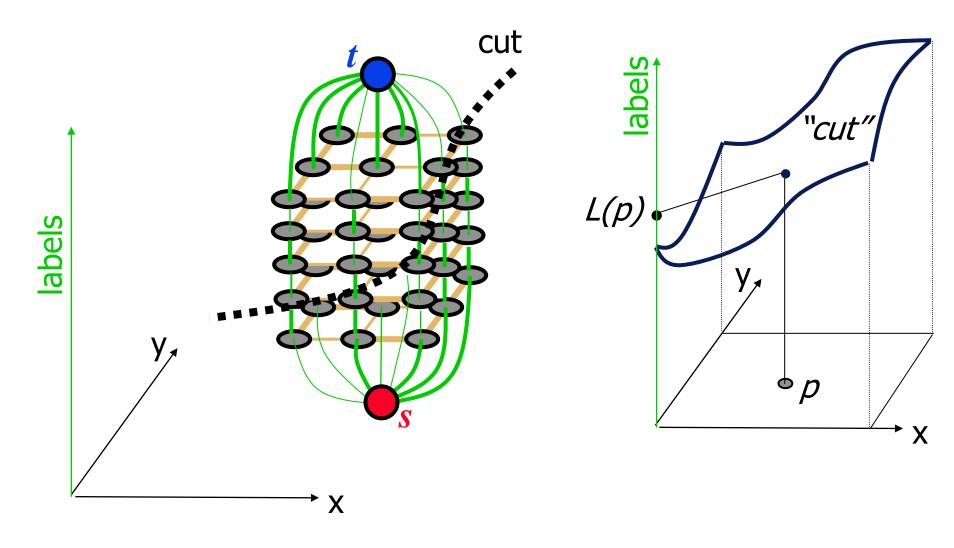
 $E_{pa}(a,b) = g(a-b)$ for some **convex** function g()[Ishikawa, PAMI 2003]

can be globally minimized with graph cuts

Optimizing labelings with *s-t* graph cuts [Roy&Cox'98,Ishikawa'98]

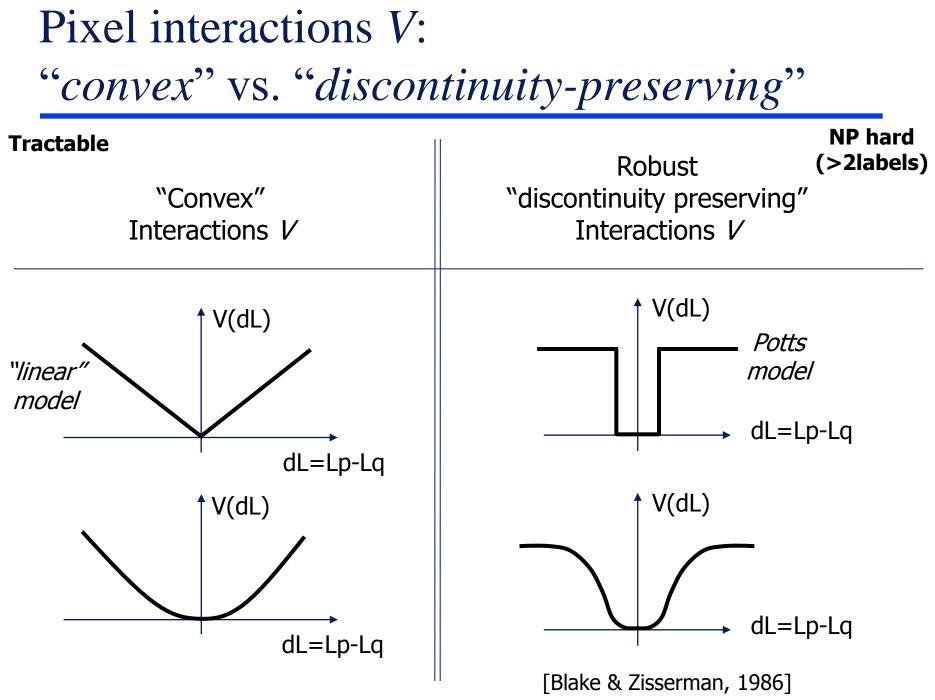


Optimizing labelings with *s-t* graph cuts [Roy&Cox'98,Ishikawa'98]

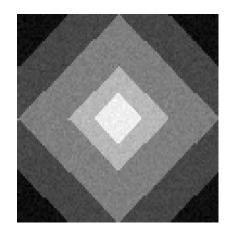


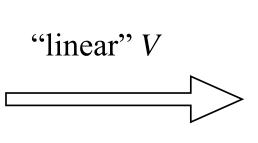
s-t graph-cuts for multi-label energy minimization

- Ishikawa 1998, 2000, 2003
- Modification of construction by Roy&Cox 1998

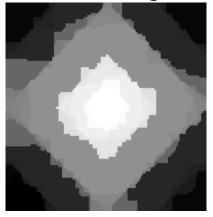


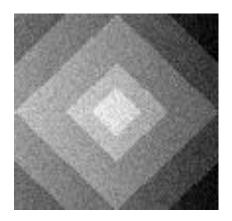
Pixel interactions: "convex" vs. "discontinuity-preserving"



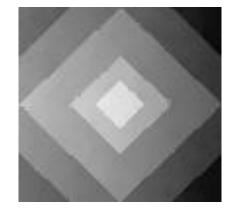


stair-casing





truncated "linear" V



Robust interactions

- NP-hard problem (3 or more labels)
 - two labels can be solved via *s*-*t* cuts
- *a-expansion* approximation algorithm

(Boykov, Veksler, Zabih 1998, 2001)

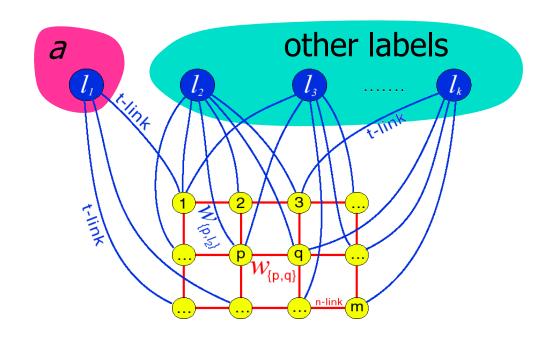
• guaranteed approximation quality (Veksler, thesis 2001)

within a factor of 2 from the global minima (Potts model)
Many other (small or large) move making algorithms

- a/b swap, jump moves, range moves, fusion moves, etc.
- LP relaxations, message passing, e.g. (TRWS)
- Many other MRF techniques (talk by Ying Niar Wu)
- Variational methods (talk by Mila Nikolova, Daniel Cremers)

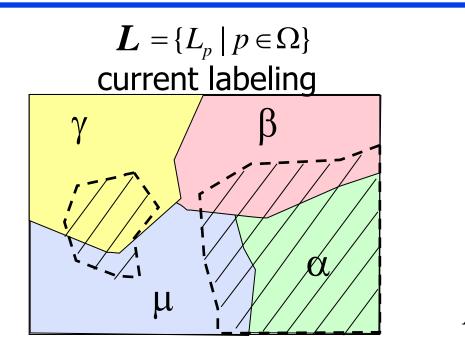
code

Basic idea is motivated by methods for multi-way cut problem (similar to Potts model)



Break computation into a **sequence of binary** *s*-*t* **cuts**

a-expansion (binary move) optimizies sumbodular set function



expansions correspond to subsets (shaded area)

 $S \subset \Omega$

 $L'_{p}(S_{p}) = \alpha \cdot S_{p} + L_{p} \cdot S_{p}$ $\tilde{l} - S_{n}$

 $\hat{E}(S) = E(L'(S)) = \sum E_p(L'_p) + \sum E_{pq}(L'_p, L'_q)$ $(pq) \in N$ $\hat{E}_{pq}(S_p,S_q)$ $\hat{E}_n(S_n)$

a-expansion (binary move) optimizies sumbodular set function

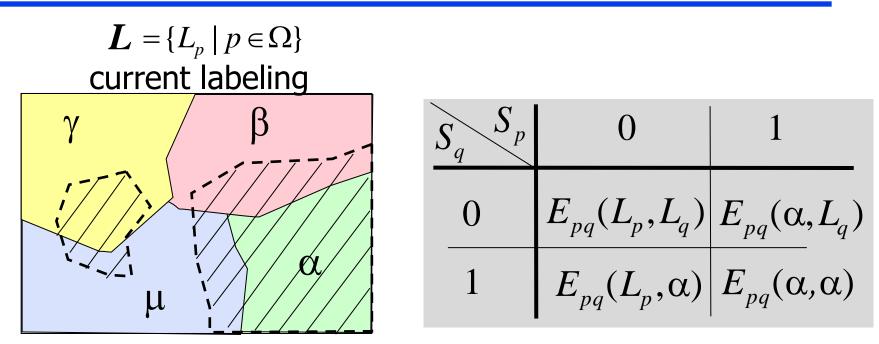
$$\begin{array}{c}
L = \{L_p \mid p \in \Omega\} \\
\text{current labeling} \\
\hline \gamma & \beta \\
\hline \gamma & \gamma \\
\hline \gamma &$$

a-expansion (binary move) optimizies sumbodular set function

 \sim

$$\hat{L} = \{L_p \mid p \in \Omega\}$$
current labeling
$$\hat{\gamma} \qquad \hat{\beta} \qquad$$

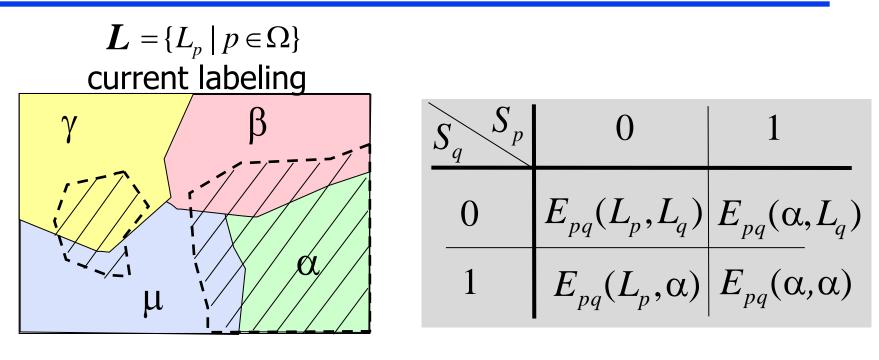
a-expansion (binary move) optimizies sumbodular set function



Set function $\hat{E}(S)$ is **submodular** if $\hat{E}_{pq}(1,1) + \hat{E}_{pq}(0,0) \leq \hat{E}_{pq}(0,1) + \hat{E}_{pq}(1,0)$

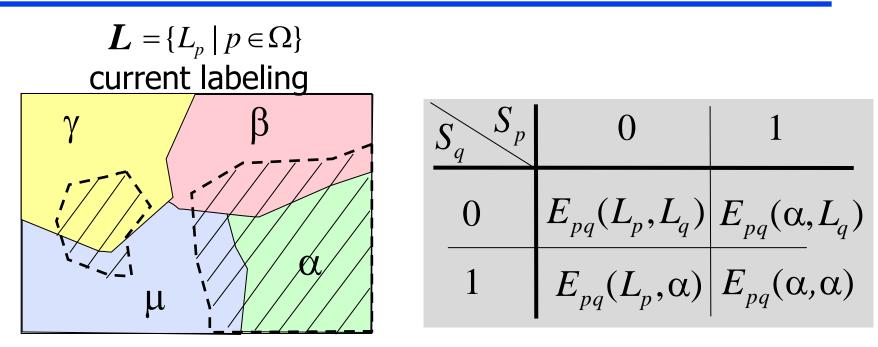
Yuri Boykov, UWO

a-expansion (binary move) optimizies sumbodular set function



Set function $\hat{E}(S)$ is **submodular** if $E_{pq}(\alpha, \alpha) + E_{pq}(L_p, L_q) \le E_{pq}(L_p, \alpha) + E_{pq}(\alpha, L_q)$ Il **triangular inequality for ||a-b||=E(a,b)**

a-expansion (binary move) optimizies sumbodular set function



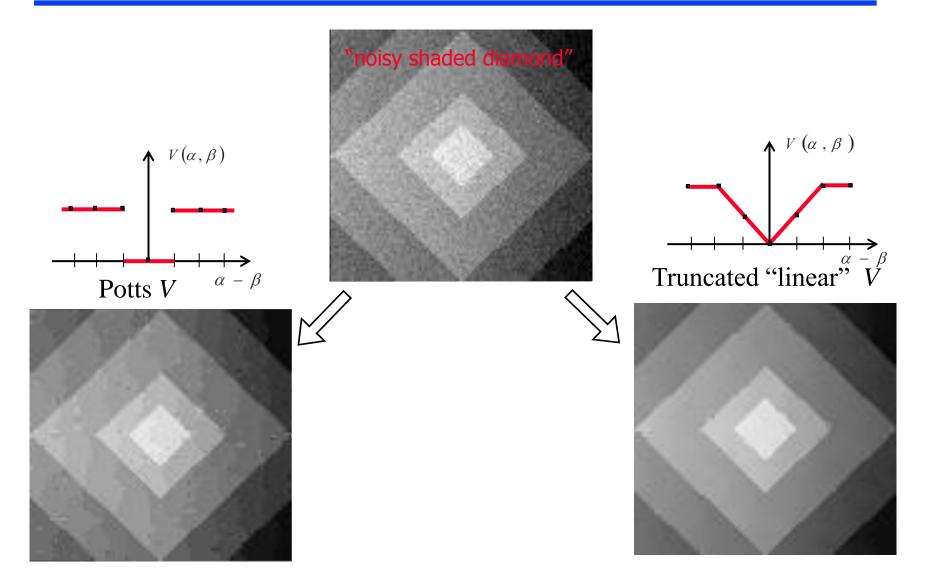
a-expansion moves are **submodular** if $E_{pq}(a,b)$ is a **metric** on the space of labels [Boykov, Veksler, Zabih, PAMI 2001]

a-expansion moves

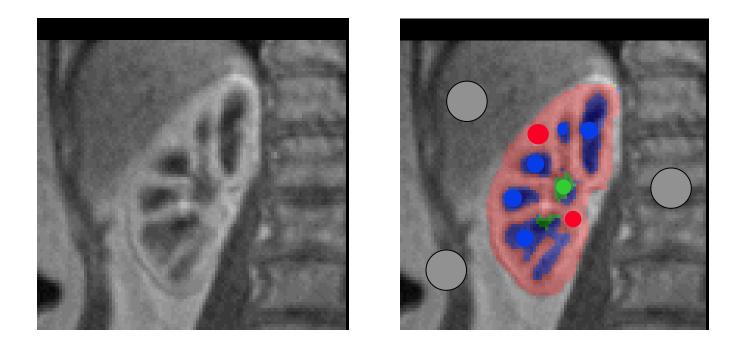
In each *a*-expansion a given label "a'' grabs space from other labels

For each move we choose expansion that gives the largest decrease in the energy: **binary optimization problem**

a-expansions: examples of *metric* interactions



Multi-object Extraction

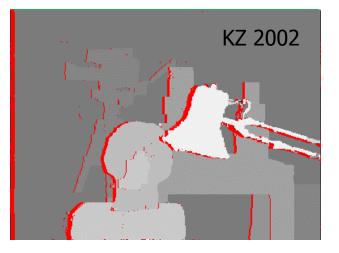


Obvious generalization of binary object extraction technique (Boykov, Jolly, Funkalea 2004)

stereo vision



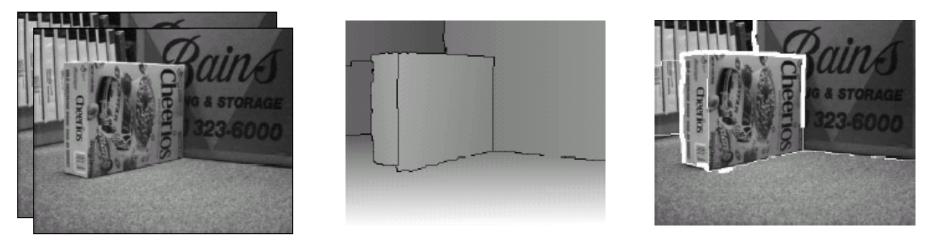
original pair of "stereo" images



depth map

Stereo/Motion with slanted surfaces

(Birchfield & Tomasi 1999)

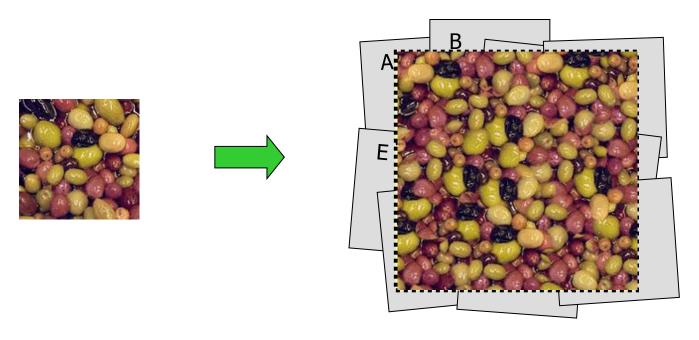


Labels = parameterized surfaces

Block-coordinate descent: models <> segments

Graph-cut textures

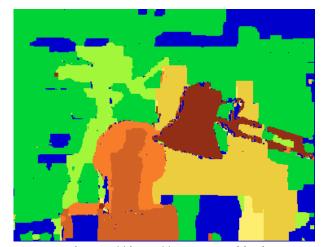
(Kwatra, Schodl, Essa, Bobick 2003)



similar to "image-quilting" (Efros & Freeman, 2001)

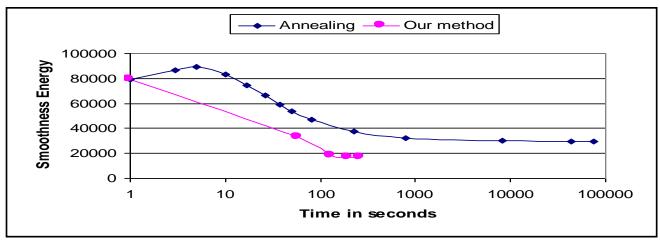
Graph-cut textures (Kwatra, Schodl, Essa, Bobick 2003)

a-expansions vs. simulated annealing



nsirmdlitædlæmrealinig,n, startlføhouns,ali202,324.51% err

a-expansions (BVZ 89,01) 90 seconds, 5.8% err



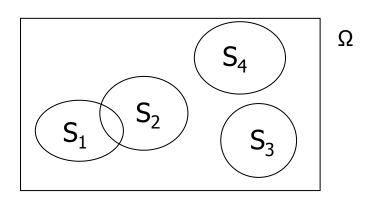
 $\forall (S_i), (T_i) \in 2^{\Omega} \times ... \times 2^{\Omega}$

 $(S_i) \wedge (T_i) = (S_i \cap T_i)$

 $(S_i) \lor (T_i) = (S_i \cup T_i)$

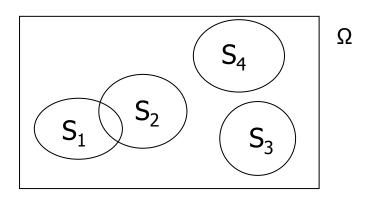
Multi-set lattices and multi-set functions

Assume set Ω , then $(2^{\Omega} \times ... \times 2^{\Omega}, \wedge, \vee)$ is a lattice of multi-sets $(S_i) := (S_i)_{i=1}^n$ where each $S_i \subset \Omega$ and



Multi-set lattices and multi-set functions

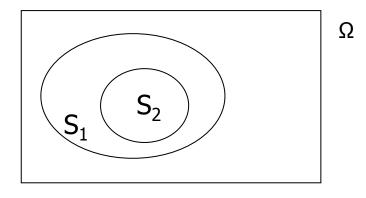
Multi-set function $E(S_1, ..., S_n)$ is a mapping $E: 2^{\Omega} \times ... \times 2^{\Omega} \to \Re$



 $E(S_{1},...S_{n}) \text{ is submodular if for any } (S_{i}), (T_{i}) \in 2^{\Omega} \times ... \times 2^{\Omega}$ $E((S_{i}) \wedge (T_{i})) + E((S_{i}) \vee (T_{i})) \leq E((S_{i})) + E((T_{i}))$

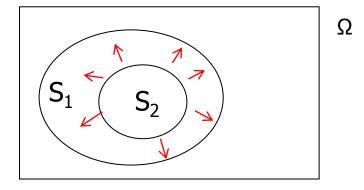
Submodular multi-set functions

Inclusion constraint



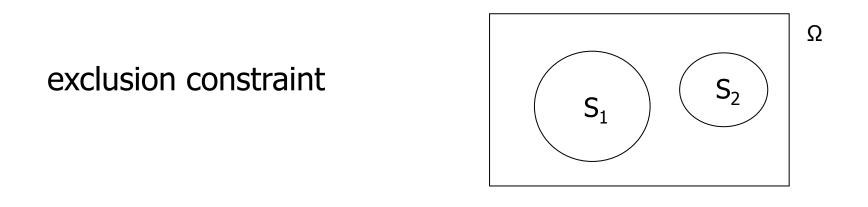
Minimum margin constraint

or elastic repulsion



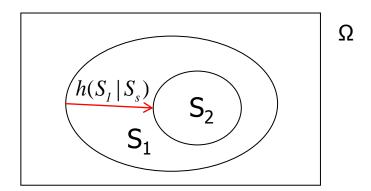
Boundary smoothness (Potts)

Non submodular multi-set functions



Maximum Hausdorf distance constraint $h(S_1 | S_s) \le T$

or elastic attraction



Reducing to set functions

Theorem [Birkhoff, 1937]: any distrib. lattice $(\mathcal{L}, \wedge, \vee)$ is isomorphic to a set lattice $(2^{\Omega}, \cap, \cup)$ for some Ω .

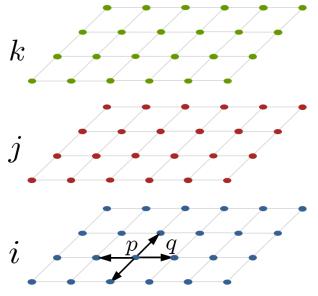
Multi-set functions via graph cuts Let $\mathbf{x} \in \mathbb{B}^{\mathcal{L} \times \mathcal{P}}$ over objects L and pixels P interaction terms $E_{mult}(\mathbf{x}) = \sum D_p(\mathbf{x}_p) + \sum V^i(\mathbf{x}^i) + \sum W^{ij}(\mathbf{x})$ $p \in \mathcal{P}$ $i \in \mathcal{L}$ $i,j \in \mathcal{L}$ 'layer cake' a-la Ishikawa'03 i \boldsymbol{v}

variables x_p^i, x_p^j, x_p^k 40

Multi-set functions via graph cuts Let $\mathbf{x} \in \mathbb{B}^{\mathcal{L} \times \mathcal{P}}$ over objects L and pixels P $E_{mult}(\mathbf{x}) = \sum_{p \in \mathcal{P}} D_p(\mathbf{x}_p) + \sum_{i \in \mathcal{L}} V^i(\mathbf{x}^i) + \sum_{\substack{i,j \in \mathcal{L} \\ i \neq j}} W^{ij}(\mathbf{x})$

Standard regularization of each independent surface

$$V^{i}(\mathbf{x}^{i}) = \sum_{pq \in \mathcal{N}^{i}} V^{i}_{pq}(\mathbf{x}^{i}_{p}, \mathbf{x}^{i}_{q})$$



Multi-set functions via graph cuts Let $\mathbf{x} \in \mathbb{B}^{\mathcal{L} \times \mathcal{P}}$ over objects L and pixels P interaction terms $E_{mult}(\mathbf{x}) = \sum D_p(\mathbf{x}_p) + \sum V^i(\mathbf{x}^i) + \sum W^{ij}(\mathbf{x})$ $i,j{\in}\mathcal{L}$ Inter-surface interaction ſ $W^{ij}(\mathbf{x}) = \sum W^{ij}_{pq}(\mathbf{x}^i_p, \mathbf{x}^j_q)$ $pq \in \mathcal{N}^{ij}$ Ž

So what *can* we do with graph cuts?

- Nestedness/inclusion of sub-segments [Delong, Boykov ICCV 2009] (exact solution)
- Spring-like repulsion of surfaces, minimum distance [Delong, Boykov ICCV 2009] (exact solution)
- Spring-like attraction of surfaces, Hausdorf distance [Schmidt, Boykov ECCV 2012] (approximation)

Extends *Li*, *Wu*, *Chen & Sonka*, PAMI'06

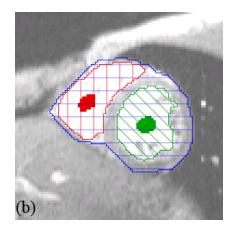
- no pre-computed medial axes
- no topology constraints

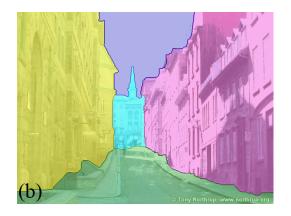
Applications

Medical Segmentation

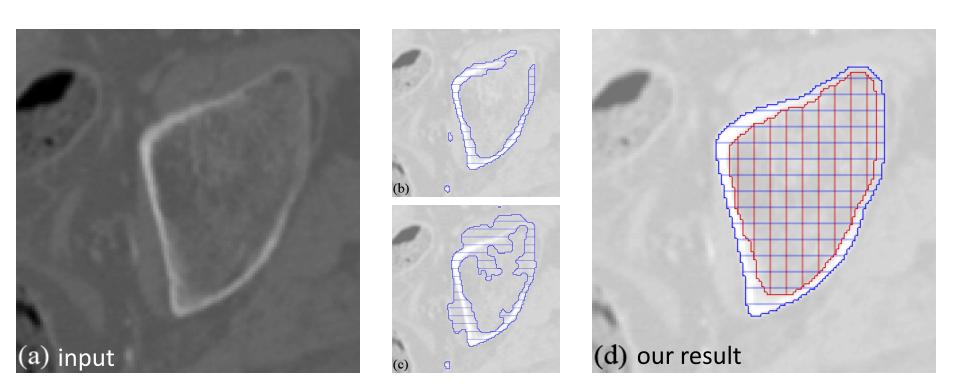
- Lots of complex shapes with priors between boundaries
- Better domain-specific models

- Scene Layout Estimation
 - Basically just regularize Hoiem-style data terms [4]

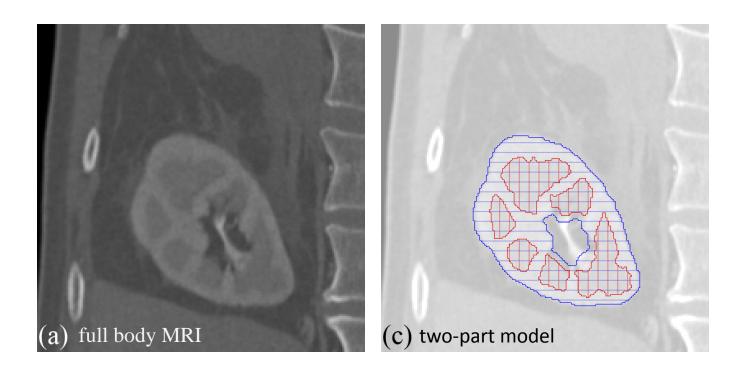




Application: Medical



Application: Medical



Application: Medical

