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Multi-label segmentation  

and high-order constraints 

 Basic energies of image labelings 

 Move making (and other) algorithms 

 

 Geometric constraints on multi-labelings 
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Submodular functions 

 Edmonds 1970 

LLL,  TSTSTS

Lattice                         - set of elements with inf and sup operations )( ,L,

Function                           s called submodular if for any L:E

)()()()( TESETSETSE 

L, TS
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Submodular set functions 

Assume set  Ω, then                 is a lattice of subsets )( ,,2

Set function                            is submodular if for any 2:E

)()()()( TESETSETSE  

TS,

Significance: any submodular set function can be  
globally optimized in polynomial time  

[Grotschel et al.1981,88, Schrijver 2000] 
 9O ||

S T 

Ω 
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Submodular set functions 

Sets are conveniently represented by binary indicator variables 

  pSS p |,1}{0

2:EThus, set functions                          can be represented as 

)()( ||,...,,  SSSESE 21

 ApSS pA  | ADefine                                  ,  a restriction of  S  to any subset 

and consider projections                          of energy  E  onto subsets  A )( AA SSE \| 

Ω 

1pS

0pS

Set function  E(S) is submodular iff  for any pair  

),(),(),(),( pqpqpqpq SESESESE \\\\ ||||   10011100

qp,
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Graph cuts for minimization of 

submodular set functions 

Assume set  Ω  and 2nd-order (quadratic) function 

 Function E(S)  is submodular if for any 

)()()()( 10011100 ,,,, pqpqpqpq EEEE 

Nqp )( ,

Significance: submodular 2nd-order boolean (set) function  
can be globally optimized in polynomial time by graph cuts  

[Hammer 1968, Pickard&Ratliff 1973] 

 

 2NO |||| 





Npq

qppq SSESE
)(

, )()( }{ 10SS qp ,, 
Indicator variables 

[Boros&Hammer 2000, Kolmogorov&Zabih2003] 
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Submodular labeling energies 

   Labelings  L: Ω →Λ 

segmentation restoration depth map (stereo) 

examples of image labelings (non-binary) 
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Submodular labeling energies 

   Labelings  L: Ω →Λ form a lattice                          

for strictly ordered labels Λ, e.g. for Λ={1,..,n} 

)(  ,,

segmentation restoration depth map (stereo) 

)()()( 2

p

1

p

2

p

1

p LLLL 

L   =  (Lp)   =  {Lp | p in Ω} 

)()()( 2

p

1

p

2

p

1

p LLLL 
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Submodular labeling energies 

   Labelings  L: Ω →Λ form a lattice                          

for strictly ordered labels Λ, e.g. for Λ={1,..,n} 

)(  ,,

Ω 

Λ 

L1 L2 

L1 ˄ L2 

L1 ˅ L2 

segmentation restoration depth map (stereo) 

? 
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Submodular labeling energies 

   Labelings  L: Ω →Λ form a lattice                          

for strictly ordered labels Λ, e.g. for Λ={1,..,n} 

)(  ,,

Energy E(L) is submodular if for any two labelings 

)E()E()E()E( 212121 LLLLLL 

Ω 

Λ 

L1 L2 

L1 ˄ L2 

L1 ˅ L2 
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Reducing to set functions 

   Theorem [Birkhoff, 1937]: any distrib. lattice                    

is isomorphic to a set lattice                 for some Ω. )( ,,2

   Example [e.g. Ishikawa 1999]: labelings in Λ for 

strictly ordered set of labels Λ can be represented as 

subsets of  ΩxΛ.  

Ω 

Λ 
L: Ω →Λ  

S S

)( ,L,
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Reducing to set functions 

   Note: submodular energy E(L) of labelings L in  Λ  

gives submodular set function  E(S)= E(L). 

Ω 

Λ 

S S

)()()()( TESETSETSE  

)()()()( 212121 LELELLELLE 

T 

TS 

TS 
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Graph cuts for minimization of 

submodular pairwise labeling energies 

 Function E(L)  is submodular if for any 

)()()()( 221121212121 baEbaEbbaaEbbaaE pqpqpqpq ,,,, 

Nqp )( ,





Npq

qppq

p

pp LLELELE
)(

, )()()( pL
strictly  
ordered 

[Ishikawa, PAMI 2003] 

)()( bagbaEpq , for some convex function g( ) 

can be globally  
minimized with graph cuts 



IPAM Graduate Summer School: Computer Vision, July 2013                                                                                                          Yuri Boykov, UWO 

Optimizing labelings 

with s-t graph cuts [Roy&Cox’98,Ishikawa’98] 

x 

y 
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Optimizing labelings 

with s-t graph cuts [Roy&Cox’98,Ishikawa’98] 

s 

t cut 

L(p) 

p 

“cut” 
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s-t graph-cuts for  

multi-label energy minimization 

 Ishikawa 1998, 2000, 2003 

 Modification of construction by Roy&Cox 1998 

V(dL) 

dL=Lp-Lq 

V(dL) 

dL=Lp-Lq 

Linear interactions “Convex” interactions 





Npq

qp

p

pp LLVLDLE ),()()( 1RLp 
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Pixel interactions V: 

“convex” vs. “discontinuity-preserving”   

V(dL) 

dL=Lp-Lq 

Potts  
model 

Robust 
“discontinuity preserving” 

Interactions V 

V(dL) 

dL=Lp-Lq 

“Convex” 
Interactions V 

V(dL) 

dL=Lp-Lq 

V(dL) 

dL=Lp-Lq 

“linear”  
model 

[Blake & Zisserman, 1986] 

NP hard 
(>2labels) 

Tractable 
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Pixel interactions: 

“convex” vs. “discontinuity-preserving” 

   “linear” V 

truncated  

“linear”  V    

stair-casing 
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code 

Robust interactions 

 NP-hard problem (3 or more labels)  

• two labels can be solved via s-t cuts 

 a-expansion approximation algorithm  

  (Boykov, Veksler, Zabih 1998, 2001) 

• guaranteed approximation quality (Veksler, thesis 
2001) 

– within a factor of 2 from the global minima (Potts model) 

 Many other (small or large) move making algorithms 

- a/b swap, jump moves, range moves, fusion moves, etc. 

 LP relaxations, message passing, e.g. (TRWS) 

 Many other MRF techniques (talk by Ying Niar Wu) 

 Variational methods (talk by Mila Nikolova, Daniel Cremers)  
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other labels a 

a-expansion move 

Basic idea is motivated by methods for multi-way cut problem 
(similar to Potts model) 

Break computation into a sequence of binary s-t cuts 
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),( qppq SSÊ)( pp SÊ

a-expansion (binary move) 

optimizies sumbodular set function 







expansions  
correspond to subsets 

(shaded area) 

S

  



Npq

qppq

p

pp LLELESLESE
)(

),()()()(ˆ

L                  
current labeling 

}{  pLp|

ppppp SLSSL  )(

pS1
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),( qppq SSÊ)( pp SÊ

a-expansion (binary move) 

optimizies sumbodular set function 







L                  
current labeling 

}{  pLp|

pS 0           1 

)(pE)( pp LE

  



Npq

qppq

p

pp LLELESLESE
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),()()()(ˆ



IPAM Graduate Summer School: Computer Vision, July 2013                                                                                                          Yuri Boykov, UWO 

),( qppq SSÊ)( pp SÊ

a-expansion (binary move) 

optimizies sumbodular set function 







L                  
current labeling 

}{  pLp|

pS 0              1 

)( ,pqE

),( qppq LLE

qS

0 

1 

),( qpq LE 

),( ppq LE

  



Npq
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pp LLELESLESE
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a-expansion (binary move) 

optimizies sumbodular set function 







L                  
current labeling 

}{  pLp|

pS 0              1 

)( ,pqE

),( qppq LLE

qS

0 

1 

),( qpq LE 

),( ppq LE

)(SÊ

(1,0)(0,1)(0,0)(1,1) pqpqpqpq EEEE ˆˆˆˆ 

Set function            is submodular if 
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a-expansion (binary move) 

optimizies sumbodular set function 







L                  
current labeling 

}{  pLp|

pS 0              1 

)( ,pqE

),( qppq LLE

qS

0 

1 

),( qpq LE 

),( ppq LE

)(SÊ

),(),(),(),( qpqppqqppqpq LELELLEE 

Set function            is submodular if 

=
 

0 triangular inequality for ||a-b||=E(a,b)  
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a-expansion (binary move) 

optimizies sumbodular set function 







L                  
current labeling 

}{  pLp|

pS 0              1 

)( ,pqE

),( qppq LLE

qS

0 

1 

),( qpq LE 

),( ppq LE

),( baEpq

a-expansion moves are submodular if 
                is a metric on the space of labels 

[Boykov, Veksler, Zabih, PAMI 2001] 
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a-expansion moves 

initial solution 

-expansion 

-expansion 

-expansion 

-expansion 

-expansion 

-expansion 

-expansion 

In each a-expansion a given label “a”  grabs space from other labels 

For each move we choose expansion that gives the largest decrease in 
the energy:      binary optimization problem 
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a-expansions: 

examples of metric interactions 

Potts V 

“noisy diamond” “noisy shaded diamond” 

   Truncated “linear”  V    
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Multi-way graph cuts 

Multi-object Extraction 

Obvious generalization of binary object extraction technique 
(Boykov, Jolly, Funkalea 2004)  
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Multi-way graph cuts 

stereo vision 

original pair of “stereo” images 

depth map 

ground truth BVZ 1998 KZ 2002 
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Multi-way graph cuts 

Stereo/Motion with slanted surfaces  

(Birchfield &Tomasi 1999)  

            Labels = parameterized surfaces 
 
  Block-coordinate descent: models <> segments 
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Multi-way graph cuts 

Graph-cut textures  
(Kwatra, Schodl, Essa, Bobick 2003) 

 similar to “image-quilting” (Efros & Freeman, 2001)  

B 
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Multi-way graph cuts 

Graph-cut textures  
(Kwatra, Schodl, Essa, Bobick 2003) 
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normalized correlation, 

start for annealing, 24.7% err 

simulated annealing,  

19 hours,   20.3% err 
a-expansions (BVZ 89,01) 

90 seconds,   5.8% err 
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Annealing Our method

a-expansions vs. simulated annealing 
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Multi-set lattices and multi-set functions 

Assume set  Ω, then                              is a lattice of 

multi-sets                          where each                and   

)(   ,,... 22

)()()( iiii TSTS 

  22TS ii ..., )()(

n

1iS  )(S:)( ii iS

)()()( iiii TSTS 
S1 

Ω 

S2 
S3 

S4 
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Multi-set lattices and multi-set functions 

Multi-set function  E(S1,…Sn)  is a mapping                            

  

  22 ...:E

S1 

Ω 

S2 
S3 

S4 

E(S1,…Sn)  is  submodular if for any 
  22TS ii ..., )()(

))(())(())()(())()(( iiiiii TESETSETSE 
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Submodular multi-set functions 

S1 

Ω 

S2 

Minimum margin constraint 

or elastic repulsion 
S1 

Ω 

S2 

Boundary smoothness (Potts) 

Inclusion constraint 
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Non submodular multi-set functions 

exclusion constraint 
 
 
 
 
 
 
 
 

S1 

Ω 

S2 

Maximum Hausdorf 
distance constraint 
 
 
 

or elastic attraction 

T)( s1 SSh |
S1 

Ω 

S2 
)( s1 SSh |
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Reducing to set functions 

   Theorem [Birkhoff, 1937]: any distrib. lattice                    

is isomorphic to a set lattice                 for some Ω. )( ,,2

)( ,L,
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     ‘layer cake’    

 a-la  Ishikawa’03 

 

Multi-set functions via graph cuts 

40 variables 

Let                        over objects L  and pixels P  



IPAM Graduate Summer School: Computer Vision, July 2013                                                                                                          Yuri Boykov, UWO 

Multi-set functions via graph cuts 

 

 
 Standard regularization of                                 

each independent surface 

 

41 

Let                        over objects L  and pixels P  
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Multi-set functions via graph cuts 

 

 
 Inter-surface interaction 

 

 

42 

Let                        over objects L  and pixels P  
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So what can we do with graph cuts? 

 Nestedness/inclusion of sub-segments 
    [Delong , Boykov ICCV 2009] (exact solution) 

 

 Spring-like repulsion of surfaces, minimum distance 
     [Delong , Boykov ICCV 2009] (exact solution) 
 

 Spring-like attraction of surfaces, Hausdorf distance 
     [Schmidt, Boykov ECCV 2012] (approximation) 

 

 

 

 Extends Li, Wu, Chen & Sonka, PAMI’06 
• no pre-computed medial axes 

• no topology constraints 

43 
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Applications 

 Medical Segmentation 

• Lots of complex shapes with                                     

priors between boundaries  

• Better domain-specific models 

 

 Scene Layout Estimation 

• Basically just regularize                                     

Hoiem-style data terms [4] 

 

44 
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Application: Medical 

45 

our result input 
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Application: Medical 

46 

full body MRI two-part model 
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Application: Medical 

47 

full body MRI 


