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Multi-label segmentation
and high-order constraints

m Basic energies of image labelings
= Move making (and other) algorithms

m Geometric constraints on multi-labelings
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Submodular functions

m Edmonds 1970

Lattice ([,,/\ ,\/) - set of elements with Inf and sup operations

STer = SAT el SvT er

Function E: £ —R scalled submodular ifforany S, T € [

E(SAT)+E(SvT)<E(S)+E(T)
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Submodular set functions
Assume set Q, then (2°,N,U) is a lattice of subsets

Set function E:2* — R issubmodularifforany S,T — Q
E(SOT)+E(SUT)<E(S)+E(T)

GOD |
Significance: any submodular set function can be

globally optimized in polynomial time O(\ Q \9)
[ Grotschel et al.1981,88, Schrijver 2000]
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Submodular set functions

Sets are conveniently represented by binary indicator variables

ScQ © {S,e{01}/peQ | Q

S, =0

Thus, set functions E : 2> — R can be represented as

E(S)=E(S1,S,,S0)

Define S, = {Sp lpeA } a restriction of S to any subset A < ()

and consider projections E(S, | S, ,) of energy E onto subsets A

Set function E(S) IS submodular iff for any pair p,qe(2
E(0,0|Sq,,,) + E(L1]Sg, ) <E(L0] Sy, ) + E(0,1] S, )

Q\pq Q\pg Q\pq
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Graph cuts for minimization of
submodular set functions

Assume set Q and 2nd-order (quadratic) function

E(S) = Zqu(Sp’ q S, S, €10,1}

(Pa)eN Indicator variables
Function E(S) is submodular if forany (p,q) € N
qu(0,0) + qu(l,l) <E, (1,0) + E, (0,1)

Significance: submodular 2"-order boolean (set) function
can be globally optimized in polynomial time by graph cuts

[Hammer 1968, Pickard&Ratliff 1973] O(| N |-|Q|2)
[Boros&Hammer 2000, Kolmogorov&Zabin2003]
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Submodular labeling energies
Labelings L: Q —A

examples of image labelings (non-binary)

-«m { ‘ 7@

restoration

segmentation
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Submodular labeling energies

Labelings L: Q —A form a lattice (A™,A,Vv)
for strictly ordered labels A, e.g. for A={1,..,n}

L = (L) ={L,|pinQ}
(LYA(2)=(L AL2)  (L)v(L)=(L VL)
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Submodular labeling energies

Labelings L: Q —A form a lattice (A™,A,Vv)
for strictly ordered labels A, e.g. for A={1,..,n}

A/\ le L2

segmentation
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Submodular labeling energies

Labelings L: Q —A form a lattice (A™,A,Vv)
for strictly ordered labels A, e.g. for A={1,..,n}

A

i

L1v |2
L1 | 2

1A L2 e

Energy E(L) is submodular if for any two labelings
E(L AL2)+ E(L* v 12) < E(L) + E(L%)
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Reducing to set functions

Theorem [Birkhoff, 1937]: any distrib. lattice (£,A,V)
IS Isomorphic to a set lattice (2°*,N,U) for some Q.

Example [e.g. Ishikawa 1999]: labelings in A for
strictly ordered set of labels A can be represented as

subsets of QXxA. %
A

[ : Q —>A
ScQOQxA /S\

Q
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Reducing to set functions

Note: submodular energy E(L) of labelings L in A€
gives submodular set function E(S)= E(L).

E(LAL)+E(Lv L) <E(L)+E(LY)
E(SNT)+E(SUT)<E(S)+E(T)

\

A SuUT

ScQOxA

ST
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Graph cuts for minimization of
submodular pairwise labeling energies

E(L) = > E,(L)+ > E,(L,L) L eA

peQ) ( pg)eN strictly
ordered

Function E(L) is submodular if forany  (p,d) € N
E (@ Ana,,bAb)+E (3, va,,b vhb,)<E  (a,b)+E(a,,b,)

qu (a,b)=g(a—b) for some convex function g()
[Ishikawa, PAMI 2003] ~ can be globally

minimized with graph cuts
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Optimizing labelings
with s-t graph cuts [Roy&Cox’98,Ishikawa’98]




Optimizing labelings
with s-t graph cuts [Roy&Cox’98,Ishikawa’98]

t cut

labels
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s-t graph-cuts for
multi-label energy minimization

Yuri Boykov, UNO

m Ishikawa 1998, 2000, 2003

= Modification of construction by Roy&Cox 1998
E(L) = > —D,(L,) + > V(L,, L L, eR’

pgeN

Linear interactions “Convex” interactions

+ V(dL) +V(dL)

/

dL=Lp-Lq

dL=Lp-Lq
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Pixel interactions V:

Yuri Boykov, UNO

“convex’ vs. “discontinuity-preserving”

Tractable NP hard
Robust (>2labels)
“Convex” “discontinuity preserving”
Interactions V Interactions V
A V(dL) * V(dL)
— Potts
“linear” mode/
mode/
# . dL=Lp-Lqg
dL=Lp-Lq
tV(dL) t V(dL)
\ / > _\-/>_d|_=|_ L
dL=Lp-Lq P-4

[Blake & Zisserman, 1986]
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Pixel interactions:
“convex’ vs. “discontinuity-preserving”

stair-casing

“linear” V

' >

truncated
“linear” V
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Robust interactions

m NP-hard problem (3 or more labels) code
e two labels can be solved via s-tcuts
® a-expansion approximation algorithm
(Boykov, Veksler, Zabih 1998, 2001)

 guaranteed approximation quality (\Veksler, thesis
2001)

— within a factor of 2 from the global minima (Potts model)
= Many other (small or large) move making algorithms

- a/b swap, jump moves, range moves, fusion moves, etc.
= LP relaxations, message passing, e.g. (TRWS)
m Many other MRF techniques (talk by Ying Niar Wu)
m Variational methods (talk by Mila Nikolova, Daniel Cremers)
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a-expansion move

Basic idea is motivated by methods for multi-way cut problem
(similar to Potts model)

Break computation into a sequence of binary s-f cuts
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a-expansion (binary move)
optimizies sumbodular set function

L ={L, | peQ}

current Iabelinq expansions
correspond to subsets
(shaded area)

ScQ
L (S,)=a-S,+L,-S,
i—sp
E(S) = E(L'(S)) = ZE (Lp)+ D Ep(Ly L)

(pg)eN

Ep(Sp) pq(Sp’ q)
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a-expansion (binary move)
optimizies sumbodular set function

L ={L, | peQ}
current labeling

E,(L,)| Ep(o)

E(S) = E(L'(S)) = ZE (Lp)+ D Bl L)

(pg)eN

Ep(Sp) pq(Sp’ q)
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a-expansion (binary move)
optimizies sumbodular set function

L ={L, | peQ}
current labeling

Yuri Boykov, UNO

0 qu(Lp’ q)

E a0 ly)

E(S) = E(L'(S)) = ZE (Lp)+ D Bl L)

(pg)eN

Ep(Sp) pq(Sp’

1 E (L, o) E

(o, Q)

Sq)
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a-expansion (binary move)
optimizies sumbodular set function

L ={L, | peQ}
current labeling

0 |Eu(Ly L) Eg(anLy)
1 E (L, o) E,q(0,0)

Set function E(S) is submodular if
E..(11)+E(00)<E/(0,1)+E,(1,0)
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a-expansion (binary move)
optimizies sumbodular set function

L ={L, | peQ}
current labeling

0 |Eu(Ly L) Eg(anLy)
1 E (L, o) E,q(0,0)

Set function E(S) is submodular if

Eoec) + By (L L) < Epg(Ly, ) + Epg (0t L)
\ J

I Y
0 triangular inequality for ||a-b||=E(a,b)
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a-expansion (binary move)
optimizies sumbodular set function

L ={L, | peQ}
current labeling

0 |Eu(Ly L) Eg(anLy)
1 E (L, o) E,q(0,0)

a-expansion moves are submodular if
E .(a,b) is a metric on the space of labels

[Boykov, Veksler, Zabih, PAMI 2001]
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a-expansion moves

In each g-expansion a given label “a” grabs space from other labels
initial solution
@ -cxpansion

@ -cxpansion

@ -cxpansion

@ -cxpansion

For each move we choose expansion that gives the largest decrease in
the energy: binary optimization problem
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a-expansions:
examples of metric interactions

ACH)

~

o

v

—— . i
Pottsy ¢~/ Truncated “linear” V
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Multi-way graph cuts

Multi-object Extraction

Obvious generalization of binary object extraction technique
(Boykov, Jolly, Funkalea 2004)
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Multi-way graph cuts

stereo vision

original pair of “stereo” 1images



IPAM Graduate Summer School: Computer Vision, July 2013 Yuri Boykov, UNO

Multi-way graph cuts

Stereo/Motion with slanted surfaces
(Birchfield &Tomasi 1999)

Labels = parameterized surfaces

Block-coordinate descent: models <> segments
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Multi-way graph cuts

Graph-cut textures
(Kwatra, Schodl, Essa, Bobick 2003)

similar to “image-quilting” (Efros & Freeman, 2001)
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Multi-way graph cuts

Graph-cut textures
(Kwatra, Schodl, Essa, Bobick 2003)
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a-expansions vs. simulated annealing

rsiml it arorealatipn, a-expansions (BVZ 89,01)
starttfdohannsal Q) 324 &% err 90 seconds, 5.8% err
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Multi-set lattices and multi-set functions

Assume set Q. then (29 x...x2° A,v) is a lattice of
multi-sets (S;) :==(S;)iL, whereeach S, = Q and

oD

()

Q

(S))AC

D=5

(S)v(T)=(SuUT)

V(S),(T) e 2" x...x 2"

i)
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Multi-set lattices and multi-set functions
Multi-set function E(S,,...S,) isamapping E:2%x...x2% >R
0
ae

E(S,,...S,) /s submodularif forany (S;),(T;) e 2 x..x2"

E((S)A(T)+EW(S)v(T)) < E((S))+E((T))
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Submodular multi-set functions

Inclusion constraint

Minimum margin constraint

or elastic repulsion

Boundary smoothness (Potts)
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Non submodular multi-set functions

exclusion constraint @ @

Maximum Hausdorf o
distance constraint

(S, ]S,)<T (5

or elastic attraction
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Reducing to set functions

Theorem [Birkhoff, 1937]: any distrib. lattice (£,A,V)
IS Isomorphic to a set lattice (2*,N,U) for some Q.
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Multi-set functions via graph cuts
Let x € B~*” over objects L and pixels P

interaction terms

L

muit ZD]) ‘|‘ Zva —|— Z H/ﬂ:j (X)
peP €L 1,.7€L
i3
A
‘layer cake’ - - - - -
| jo. .,
a-la Ishikawa’03 - - - - - -
A

variables J k40
acp, T, Ty
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Multi-set functions via graph cuts
Let x € B~*” over objects L and pixels P

Z Vi(x")

el
m Standard regularization of L
each independent surface - - - - - .
Vix") = Z Vﬁq(xg,xé) S A
pgeNt e e e e . o
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Multi-set functions via graph cuts
Let x € B~*” over objects L and pixels P

interaction terms

> W (x)
1.7€L
i#]
_ _ koo o o oo
m |nter-surface Interaction S DD
W) = 3 Wik
o
7:. R 2
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So what can we do with graph cuts?

m Nestedness/inclusion of sub-segments
[Delong , Boykov ICCV 2009] (exact solution)

m Spring-like repulsion of surfaces, minimum distance
[Delong , Boykov ICCV 2009] (exact solution)

m Spring-like attraction of surfaces, Hausdorf distance
[Schmidt, Boykov ECCV 2012] (approximation)

m Extends Li, Wu, Chen & Sonka, PAMI’06

 no pre-computed medial axes
* no topology constraints

43
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Applications

= Medical Segmentation

» Lots of complex shapes with
priors between boundaries

 Better domain-specific models

m Scene Layout Estimation

 Basically just regularize
Holem-style data terms [4]

44
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Application: Medical

~

™

. S— g h
(a) input B (d) our result

45
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Application: Medical

|

(a) full body MRI L | (c) two-part model

46
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Application: Medical




