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• Inference in MRF’s.
– Gibbs sampling, simulated annealing
– Iterated conditional modes (ICM)
– Belief propagation

• Application example—super-resolution
– Graph cuts
– Variational methods

• Learning MRF parameters.
– Iterative proportional fitting (IPF)

Outline of MRF section
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Super-resolution

• Image:  low resolution image
• Scene:  high resolution image
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Polygon-based 
graphics 
images are 
resolution 
independent

Pixel-based images 
are not resolution 

independent

Pixel replication

Cubic splineCubic spline, 
sharpened

Training-based 
super-resolution
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3 approaches to perceptual 
sharpening

(1)  Sharpening;  boost existing high 
frequencies.

(2)  Use multiple frames to obtain 
higher sampling rate in a still frame.

(3)  Estimate high frequencies not 
present in image, although implicitly 
defined.

In this talk, we focus on (3), which 
we’ll call “super-resolution”.

spatial frequency
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•  Schultz and Stevenson, 1994
•  Pentland and Horowitz, 1993
• fractal image compression (Polvere, 1998; Iterated Systems)
• astronomical image processing (eg. Gull and Daniell, 1978;  

“pixons” http://casswww.ucsd.edu/puetter.html)
• Follow-on:  Jianchao Yang, John Wright, Thomas S. Huang, 

Yi Ma: Image super-resolution as sparse representation of raw 
image patches. CVPR 2008

Super-resolution: other approaches
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Training images, ~100,000 image/scene patch pairs

Images from two Corel database categories:  
“giraffes” and “urban skyline”.

7

Wednesday, August 7, 13



Do a first interpolation

Zoomed low-resolution

Low-resolution

8

Wednesday, August 7, 13



Zoomed low-resolution

Low-resolution

Full frequency original
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Full freq. original
RepresentationZoomed low-freq.
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True high freqs
Low-band input

(contrast normalized, 
PCA fitted)

Full freq. original
RepresentationZoomed low-freq.

(to minimize the complexity of the relationships we have to learn,
we remove the lowest frequencies from the input image, 

and normalize the local contrast level).
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Training data samples (magnified)

......

Gather ~100,000 patches

low freqs.

high freqs.
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True high freqs.Input low freqs.

Training data samples (magnified)

......

Nearest neighbor estimate

low freqs.

high freqs.

Estimated high freqs.
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Input low freqs.

Training data samples (magnified)

......

Nearest neighbor estimate

low freqs.

high freqs.

Estimated high freqs.
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Example:  input image patch, and closest 
matches from database

Input patch

Closest image
patches from database

Corresponding
high-resolution

patches from database
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Assume overlapped regions, d, of hi-res. 
patches differ by Gaussian observation noise:

Scene-scene compatibility function, 
Ψ(xi, xj) 

d

Uniqueness constraint,
not smoothness.
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Image-scene compatibility 
function, Φ(xi, yi)

 Assume Gaussian noise takes you from 
observed image patch to synthetic sample:

y

x
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 Markov network

image patches

Φ(xi, yi)

Ψ(xi, xj)
scene patches
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Belief Propagation
Input
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Belief Propagation
Input

Iter. 0

After a few iterations of belief propagation, the 
algorithm selects spatially consistent high resolution 

interpretations for each low-resolution patch of the 
input image.
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Iter. 1

Belief Propagation
Input

Iter. 0

After a few iterations of belief propagation, the 
algorithm selects spatially consistent high resolution 

interpretations for each low-resolution patch of the 
input image.
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Iter. 3

Iter. 1

Belief Propagation
Input

Iter. 0

After a few iterations of belief propagation, the 
algorithm selects spatially consistent high resolution 

interpretations for each low-resolution patch of the 
input image.
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Zooming 2 octaves

85 x 51 input

We apply the super-resolution 
algorithm recursively, zooming 

up 2 powers of 2, or a factor of 4 
in each dimension.
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Zooming 2 octaves

85 x 51 input

Cubic spline zoom to 340x204

We apply the super-resolution 
algorithm recursively, zooming 

up 2 powers of 2, or a factor of 4 
in each dimension.
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Max. likelihood zoom to 340x204

Zooming 2 octaves

85 x 51 input

Cubic spline zoom to 340x204

We apply the super-resolution 
algorithm recursively, zooming 

up 2 powers of 2, or a factor of 4 
in each dimension.
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True
200x232

Original
50x58

(cubic spline implies 
thin plate prior)

Now we examine the effect of the prior 
assumptions made about images on the 

high resolution reconstruction.
First, cubic spline interpolation.
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Cubic spline
True

200x232

Original
50x58

(cubic spline implies 
thin plate prior)
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True

Original
50x58

Training images

Next, train the Markov network 
algorithm on a world of random noise 

images.
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Markov
network True

Original
50x58

The algorithm learns that, in such a 
world, we add random noise when zoom 

to a higher resolution.

Training images
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True

Original
50x58

Training images

Next, train on a world of vertically 
oriented rectangles.
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Markov
network True

Original
50x58

The Markov network algorithm 
hallucinates those vertical rectangles that 

it was trained on.

Training images
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True

Original
50x58

Training images

Now train on a generic collection of 
images.
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Markov
network True

Original
50x58

The algorithm makes a reasonable guess 
at the high resolution image, based on its 

training images.

Training images
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Generic training images

Next, train on a generic 
set of training images.  

Using the same camera 
as for the test image, but 

a random collection of 
photographs.
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Cubic 
Spline

Original
70x70

Markov
net, 
training:
generic

True
280x280
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Kodak Imaging Science Technology Lab test.

3 test images, 640x480, to be
zoomed up by 4 in each 
dimension.

8 judges, making 2-alternative, 
forced-choice comparisons.
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Algorithms compared

• Bicubic Interpolation
• Mitra's Directional Filter
• Fuzzy Logic Filter
•Vector Quantization
• VISTA
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Bicubic spline Altamira VISTA
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Bicubic spline Altamira VISTA
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User preference test results

“The observer data indicates that six of the observers ranked
Freeman’s algorithm as the most preferred of the five tested
algorithms. However the other two observers rank Freeman’s algorithm
as the least preferred of all the algorithms….

Freeman’s algorithm produces prints which are by far the sharpest
out of the five algorithms.  However, this sharpness comes at a price
of artifacts (spurious detail that is not present in the original
scene). Apparently the two observers who did not prefer Freeman’s
algorithm had strong objections to the artifacts. The other observers
apparently placed high priority on the high level of sharpness in the
images created by Freeman’s algorithm.”
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Training images
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Training images
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Training images
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Training image
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Processed image
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code available online
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Motion application
image patches

image

scene

scene patches
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• Aperture problem
• Resolution through propagation of 

information
• Figure/ground discrimination

What behavior should we see in a 
motion algorithm?
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The aperture problem
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
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The aperture problem
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The aperture problem
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The aperture problem
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motion program demo
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Motion estimation results 
(maxima of scene probability distributions displayed)

Initial guesses only 
show motion at edges.

Iterations 0 and 1

Inference:

Image data
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Motion estimation results 

Figure/ground still 
unresolved here.

(maxima of scene probability distributions displayed)

Iterations 2 and 3
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Motion estimation results 

Final result compares well with vector 
quantized true (uniform) velocities.

(maxima of scene probability distributions displayed)

Iterations 4 and 5
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