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Outline of MRF section

* Inference in MRF’s.
— Gibbs sampling, simulated annealing
— Iterated conditional modes (ICM)
— Belief propagation
» Application example—super-resolution

— Graph cuts

— Variational methods

* Learning MRF parameters.
— Iterative proportional fitting (IPF)
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Super-resolution

* Image: low resolution image

* Scene: high resolution 1image

Scene
- 13 3

ultimate goal...
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Polygon-based
graphics
images are
resolution
independent
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Pixel-based images
are not resolution
independent

Pixel replication

Cubic spline,
sharpene

Training-based

Polygon-based super-resolution
graphics

1mages are

resolution

independent
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3 approaches to perceptual

sharpening

(1) Sharpening; boost existing high

frequencies.
(2) Use multiple frames to obtain

higher sampling rate 1n a still frame

(3) Estimate high frequencies not

N\

spatial frequency

amplitude

f** :

present 1n 1mage, although implicitly

defined.

In this talk, we focus on (3), which
we’ll call “super-resolution”.

amplitude

—

spatial frequency

5
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Super-resolution: other approaches

Schultz and Stevenson, 1994
Pentland and Horowitz, 1993

 fractal image compression (Polvere, 1998; Iterated Systems)

 astronomical 1image processing (eg. Gull and Daniell, 1978;
“pixons” http://casswww.ucsd.edu/puetter.html)

* Follow-on: Jianchao Yang, John Wright, Thomas S. Huang,
Y1 Ma: Image super-resolution as sparse representation of raw
image patches. CVPR 2008
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Training images, ~100,000 image/scene patch pairs

Images from two Corel database categories:
“giraffes” and “urban skyline”.

o
..7
»
o
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Do a first interpolation

Zoomed low-resolution

Low-resolution
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- -

Zoomed low-resolution Full frequency origine:f

Low-resolution
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Representation

Zoomed low-freq.

Full freq. original

10
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Representation

Zoomed low-freq.

Full freq. original

. True high fregs
Low-band input \ & q
contrast normalized, to minimize the complexity of the relationships we have to learn,
plexity
PCA fitted) we remove the lowest frequencies from the input image,

and normalize the local contrast level).
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Gather ~100,000 patches

~ENTHITEEEE

Training data samples (magnified)

high freqs

low fregs.

12
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Nearest neighbor estimate

Input low fregs.

Estimated high fregs.

- high fregs.

= 3 BN B B B B
(XX - XX
I Iﬁll AEREEN .

Training data samples (magnified)
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Nearest neighbor estimate

Input low fregs.

Estimated high fregs.

H B E E B B N hlghfreqs
0) Ic
wiiegs, *

Training data samples (magnified)
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Example: 1nput image patch, and closest
matches from database

Input patch ‘
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Corresponding
high-resolution
patches from database
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T~ O  Image patch

e SO Underlying candidate

‘ ‘ scene patches. Each

x ‘ renders to the image
tch.

N N &

16
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Scene-scene compatibility function,
Yix, x) | o—os

-

Assume overlapped regions, d, of hi-res.
patches differ by Gaussian observation noise:

. . N _|d1_d|2 20-2
ql(l’.zat)j]) — €XP J /

Uniqueness constraint,

not smoothness. ;
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Image-scene compatibility — _ s

function, O(x;, y,) rI

—

Assume Gaussian noise takes you from A
observed 1mage patch to synthetic sample:

— |y —y(x; 2 20.2

18
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Markov network

1mage patches
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Belief Propagation

20

Input
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B elief Prop a g ation After a few iterations of belief propagation, the

algorithm selects spatially consistent high resolution
interpretations for each low-resolution patch of the
input image.

Iter. 0

20
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Belief Propagation

After a few iterations of belief propagation, the
algorithm selects spatially consistent high resolution
interpretations for each low-resolution patch of the
input image.

20
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Belief Propagation
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After a few iterations of belief propagation, the
algorithm selects spatially consistent high resolution
interpretations for each low-resolution patch of the
input image.




Zooming 2 octaves

T e
’ We apply the super-resolution
algorithm recursively, zooming
up 2 powers of 2, or a factor of 4
in each dimension.

85 x 51 input

21
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Zooming 2 octaves

3

We apply the super-resolution
algorithm recursively, zooming
up 2 powers of 2, or a factor of 4
in each dimension.

85 x 51 input

21

Cubic spline zoom to 340x204
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Zooming 2 octaves

| —
e b G . - We apply the super-resolution

: - algorithm recursively, zooming
up 2 powers of 2, or a factor of 4
in each dimension.

Cubic spline zoom to 340x204 Max. likelihood zoom to 340x204
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Now we examine the effect of the prior
assumptions made about images on the
high resolution reconstruction.

First, cubic spline interpolation.

(cubic spline implies
thin plate prior)

Original
50x58

True
200x232

22
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Original (cubic spline implies

50x58 thin plate prior)
: : True
Cubic spline 200x232
23
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Next, train the Markov network
algorithm on a world of random noise
images.

Original
50x58

True

24
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The algorithm learns that, in such a
world, we add random noise when zoom
to a higher resolution.

Original
50x58
Markov
True
network
25
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Original
50x58

Next, train on a world of vertically
oriented rectangles.

True

26
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The Markov network algorithm
hallucinates those vertical rectangles that
it was trained on.

Original
50x58

Markov
network
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Original
50x58

Now train on a generic collection of
images.
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The algorithm makes a reasonable guess
at the high resolution image, based on its
training images.

Original
50x58

Markov
network
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Generic training 1mages

Next, train on a generic
set of training images.
Using the same camera
as for the test image, but
a random collection of
photographs.

30

Wednesday, August 7, 13




Original Cubic
70X70 Spline
Markov
?et.’ . True
raming. 280x280
generic |
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Kodak Imaging Science Technology Lab test.
30 'f “tfﬂ;’#;\.w

3 test images, 640x480, to be
zoomed up by 4 in each
dimension.

8 judges, making 2-alternative,
forced-choice comparisons.
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Algorithms compared

* Bicubic Interpolation

e Mitra's Directional Filter
* Fuzzy Logic Filter
*Vector Quantization

* VISTA

33
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Bicubic spline Altamira
» 47
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Bicubic spline Altamira

35

Wednesday, August 7, 13




User preference test results

“The observer data indicates that six of the observers ranked

Freeman’s algorithm as the most preferred of the five tested
algorithms. However the other two observers rank Freeman’s algorithm
as the least preferred of all the algorithms....

Freeman’s algorithm produces prints which are by far the sharpest
out of the five algorithms. However, this sharpness comes at a price
of artifacts (spurious detail that is not present in the original

scene). Apparently the two observers who did not prefer Freeman’s
algorithm had strong objections to the artifacts. The other observers
apparently placed high priority on the high level of sharpness in the
images created by Freeman’s algorithm.”

36
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Cubic spline zoom
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Super-rasolution zoom

7z
—

Training images |
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Super-rasolution zoom

Source image patches m Y. s

o Wg ‘. J .
Bandpass filtered and [ .
contrast normalized :

) li'—'" Ah‘i"
True hagh resolution pusls E )
High resciution pixels chosen _]'
by super-resolution s
Bandpass filtered and contrast | “41

normakzed best match patches | -
fram traning data ) 8
Best match patches from | i
traning data 3

ot {

“
[

Training images
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Super-rasolution zoom

Source image patches

Bandpass filtered and
contrast normalized

Trus hagh resohtion puels

- ‘,
-
o

High resciubion pxels chosen
by super-resolution

Bandpass hiltered and contrast
nomakized best match palches
from tranng data

Best match patches from
training data

Training images
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Training 1mage

ANl Il LU Srniieso . o oo
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Jztem, andsent i tdowntoanew
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zraproduct-bundl ingdeci=si
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40

Wednesday, August 7, 13




Processed 1image
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code available online
http://people.csail.mit.edu/billf/project%20pages/sresCode/Markov%20Random%?20Fields

%20for%20Super-Resolution.html

Lt N

)2 ) (€ () () (21 o i /pecpie csal.ma edu bl project pages/sresCode/ Markov Random Freids for Super-Resolymondt 7 v (0l e s ~
28 3 h e -\ AT N

m-mw a Meadlines B Cooghe Apple Yahoo! YouTube Wikipedia News = Popular = CGoogle Maps \lisevier L7 "_? s a3 b~

Markov Random Fieids for Sup.. © B MIT Human Resources | MITE @ | MIT Payroll - Dectromic Form .. © ) 31 Authgp ratohBae:

Markov Random Fields for Super-Resolution

| William T. Freeman | Ce Liu
Massachusetts Institute of Technology | Microsoft Research New England

[Download the package]

This is an implementation of the example-based super-resobution algorithm of [1]. Although the applications of MSFs have now extended beyond example-based super resolution and texture synthesis, it is still
of great value 1o revisit this problem, especially to share the source code and examplar images with the research community. We bope that this software package can help 1o understand Markov random ficlds
for low-level vision, and to create benchmark for super-resolution algorithms,

When you refer 10 this code in your paper, please cite the following book chapter:

W. T Freeman and C. Liv. Markov Random Fields for Super-resolution and Texture Synthesis. In A. Blake, P. Kohli, and C. Rother, eds., Advances in Markov Random Fields for Vision and Image
Processing, Chapter 10, MIT Press, 2011, To appear.

Algorithm

The core of the algorithm is based on [1]. We collect pairs of low-res and high-res image patches from a set of images as training. An input low-res image is decomposed 10 overlapping patches on a grid, and
the inference problem is to find the high-res patches from the training database for cach low-res patch, We use the kd-tree algorithen, which has been used for real-time texsure synthesis [2), 1o retrieve a set of
high-res, k-nearest neighbors for cach low-res patch. Lastly, we run a max-product belsef propagation (BP) algorithm 10 minimize an objective function that balances both local compatibility and spatial
smoothenss.

Examples

Several exampics of applying the example-based super resolution code in the package are shown below. These examplar images are also included in the package. Once you run the code, it should give you the
same result.

We first apply bicubic sampling %0 cnlarge the input image (2) by a factor of 4 (b), where image detaills are missing. If we use the nearest neighbor for cach low-res patch independently, we obtain high-res but
noasy results in (¢). To address this issue, we incorporating spatial smoothness into a Markov Random Ficlds formulation by enforcing the synthesized neighboring patches to agree on the overlapped arcas.
Max-product delief propagation is used 10 obtain high-res images in (d). The inferred high-froquency imsages are shown in (¢), and the original high-res are shown ia (f).

Xy AMSCRINCS o 7 v ok
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Motion application

image patches

1mage

Y
7

SCCNC
43
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What behavior should we see 1n a
motion algorithm?

* Aperture problem

* Resolution through propagation of
information

* Figure/ground discrimination

44
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The aperture problem

http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html

45
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The aperture problem

http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html

45

Wednesday, August 7, 13


http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html

The aperture problem

46

Wednesday, August 7, 13



The aperture problem

46
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motion program demo

47
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Inference: M ot1ion estimation results

(maxima of scene probability distributions displayed)

Image data

--------

........

................

...............

Iterations 0 and 1

Initial guesses only
show motion at edges. 48
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Motion estimation results

(maxima of scene probability distributions displayed)

.................
................
................
...................
............................
..........................................
-----------------------------------------------
..................................................
........................................
------------------------------------------
-------------------------------------------
................................................
...............................................
----------------------------------------------
.............................................
...........................................
-------------------------------------------
........................................
.............................................
.................................................
..........................................

.....................................

........

........

Iterations 2 and 3

Figure/ground still
unresolved here.

49
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Motion estimation results

(maxima of scene probability distributions displayed)

...................................................
......................................................

......................................

.........................................

..........................................
................................................
..............................................
.............................................
..........................................

..................................................

..............................................

Iterations 4 and 5 I

Final result compares well with vector
quantized true (uniform) velocities.
50

Wednesday, August 7, 13



