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Which problems we will be looking at?

In this first lecture:

Understand GPs from two perspectives:

weight view
function view

Applications in Computer Vision
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Let’s look at the regression problem
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Regression Problem
The Prediction Problem
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What’s the difference between this two results?
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Questions

Model Selection

how to find out which model to use?

Model Fitting

how do I fit the parameters?
what about over fitting?

Can I trust the predictions, even if I am not sure of the parameters and the
model structure?
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Supervised Regression

Assume an underlying process which generates ”clean” data.

Task: Recover underlying process from noisy observed data {x(i), yi}

Introduction

Supervised Learning: Regression (1)
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training data

Assume an underlying process which generates “clean” data.

Goal: recover underlying process from noisy observed data.

Hanna M. Wallach hmw26@cam.ac.uk

Introduction to Gaussian Process Regression

Figure: from H. Wallach
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The weight view on GPs
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Bayesian Linear Regression

The linear regression model is

f (x|w) = wT x, y = f + η

with i.i.d. noise η ∼ N (0, σ2)

Bayesian Linear Regression

Bayesian Linear Regression (1)
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Assuming noise ε ∼ N (0, σ2), the linear regression model is:

f (x|w) = x>w, y = f + ε.

Hanna M. Wallach hmw26@cam.ac.uk

Introduction to Gaussian Process Regression

Figure: from H. Wallach
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Bayesian Linear Regression

The linear regression model is

f (x|w) = wT x, y = f + η

with η ∼ N (0, σ2)

Likelihood of the parameters is

P(y|X,w) = N (wT X, σ2I)

Applying the Bayes Theorem we have

P(w|y,X)︸ ︷︷ ︸
posterior

∝ P(y|X,w)︸ ︷︷ ︸
likelihood

P(w)︸ ︷︷ ︸
prior

Typically we assume a Gaussian prior over the parameters

P(w|y,X) ∝ N (wT X, σ2I)N (0,Σ)

What’s the form of the posterior then? Why did we use a Gaussian prior?
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Bayesian Linear Regression

The posterior is Gaussian!

P(w|y,X) = N (
1

σ2
A−1Xy,A−1)

with A = Σ−1 + 1
σ2 XT X

How can we make predictions?

The predictive distribution is also Gaussian!

P(f ∗|x∗,X, y) =

∫
P(f ∗,w|x∗,X, y)dw

= N (
1

σ2
x∗T A−1Xy, x∗T A−1x∗)
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Non-linear Bayesian Regression

The linear regression model is

f (x|w) = wT x, y = f + η

with i.i.d. noise η ∼ N (0, σ2)

How to model more complex functions?

P(f ∗|x∗,X, y) can be expressed in terms of inner products of φ(x)

Why is this interesting?

Well we can apply the kernel trick: we do not need to define φ(x) explicitly

How many basis functions should we use?

GPs come at our rescue!
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The function view of GPs
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What’s a GP?

A Gaussian process is a generalization of a multivariate Gaussian distribution
to infinitely many variables.

Definition: a Gaussian process is a collection of random variables, any finite
number of which have (consistent) Gaussian distributions.

A Gaussian is fully specified by a mean vector µ and a covariance matrix Σ

f = (f1, · · · , fn)T ∼ N (µ,Σ)

(index i)

A Gaussian process is fully specified by a mean function m(x) and a PSD
covariance function k(x, x′)

f (x) ∼ GP (m(x), k(x, x′))

(index x)

Typically m(x) = 0
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Marginalization property

Thinking of a GP as a Gaussian distribution with an infinitely long mean
vector and an infinite by infinite covariance matrix may seem impractical

Marginalization property

p(x) =

∫
p(x , y)dy

For Gaussians
(
y (1)

y (2)

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
then y (1) ∼ N (µ1,Σ11)

Therefore I only need to consider the points that I observe!

This is the consistency property
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The Gaussian Distribution
The Gaussian Distribution

The Gaussian distribution is given by

p(x|µ,Σ) = N(µ,Σ) = (2π)−D/2|Σ|−1/2 exp
(
− 1

2 (x − µ)>Σ−1(x − µ)
)

where µ is the mean vector and Σ the covariance matrix.

Rasmussen (MPI for Biological Cybernetics) Advances in Gaussian Processes December 4th, 2006 8 / 55

Figure: from C. Rasmussen
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Conditionals and Marginals of a Gaussian
Conditionals and Marginals of a Gaussian

 

 

joint Gaussian
conditional

 

 

joint Gaussian
marginal

Both the conditionals and the marginals of a joint Gaussian are again Gaussian.
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Figure: from C. Rasmussen
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GP from Bayesian linear model

The Bayesian linear model is

f (x) = wT x with w ∼ N (0,Σ)

The mean function is
E[f (x)] = E[wT ]x = 0

Covariance is
E[f (x)f (x′)] = xT E[wwT ]x′ = xT Σx′

For any set of m basis functions, φ(x), the corresponding covariance
function is

K (x(p), x(q)) = φ(x(p))T Σφ(x(q))

Conversely, for every covariance function K , there is a possibly infinite
expansion in terms of basis functions

K (x(p), x(q)) =
∞∑

i=1

λiφi (x(p))Tφi (x(q))

R. Urtasun (TTIC) Gaussian Processes August 2, 2013 17 / 58



Covariance

For any set of inputs x(1), · · · , x(n) we can compute K , which defines a joint
distribution over function values

f (x(1)), · · · , f (x(n)) ∼ N (0,K)

Therefore, a GP specifies a distribution over functions

Encode the prior knowledge by defining the kernel, which specifies the
covariance between pairs of random variables, e.g.,

K (x(p), x(q)) = exp(
1

2
||x(p) − x(q)||22)

Gaussian Process Regression

The Covariance Function

Specifies the covariance between pairs of random variables.

e.g. Squared exponential covariance function:

Cov(f (x(p)), f (x(q))) = K (x(p), x(q)) = exp (−1

2
|x(p) − x(q)|2).

0 2 4 6 8 10
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0.2

0.4
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0.8

1
K(x(p) = 5, x(q)) as a function of x(q)

Hanna M. Wallach hmw26@cam.ac.uk

Introduction to Gaussian Process Regression
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Gaussian Process Prior

Given a set of inputs x(1), · · · , x(n), we can draw samples f (x(1)), · · · , f (x(n))

Example when using an RBF kernel

Gaussian Process Regression

Gaussian Process Prior

Given a set of inputs x(1), . . . , x(n) we may draw samples
f (x(1)), . . . , f (x(n)) from the GP prior:

f (x(1)), . . . , f (x(n)) ∼ N (0,K ).

Four samples:
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Hanna M. Wallach hmw26@cam.ac.uk

Introduction to Gaussian Process Regression

Figure: from H. Wallac

How can we generate this samples?
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Sampling

Let’s do sequential generation

p(f1, · · · , fn|x1, · · · , xn) =
n∏

i=1

p(fi |fi−1, · · · , f1, xi , · · · , x1)

Each term is again Gaussian since

p(x , y) = N
((

a
b

)
,

(
A B

BT C

))
⇒ p(x |y) = N (a + BC−1(y − b),A− BC−1BT )Prior and Posterior
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Predictive distribution:

p(y∗|x∗
, x, y) ∼ N

(
k(x∗

, x)>[K + σ2
noiseI]

−1y,

k(x∗
, x∗) + σ2

noise − k(x∗
, x)>[K + σ2

noiseI]
−1k(x∗

, x)
)

Rasmussen (MPI for Biological Cybernetics) Advances in Gaussian Processes December 4th, 2006 20 / 55

Figure: from C. Rasmussen
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Noise free Observations

Given noise-free training data D = {(x(i), f (i))} we want to make predictions
f ∗ about new points X∗

The GP prior says

[
f
f∗

]
∼ N

(
0,

[
K (X,X) K (X,X∗)
K (X∗,X) K (X∗,X∗)

])

Condition {X∗, f∗} on the training data {X, f} to obtain the posterior

This restricts the posterior to contain functions which agree with the
training data
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training data

The posterior is Gaussian p(f ∗|X∗,X, ) = N (µ,Σ) with

µ = K (X,X∗)K (X,X)−1f

Σ = K (X∗,X∗)− K (X,X∗)K (X,X)−1K (X∗,X)
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Example of PosteriorPrior and Posterior
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Predictive distribution:

p(y∗|x∗
, x, y) ∼ N

(
k(x∗

, x)>[K + σ2
noiseI]

−1y,

k(x∗
, x∗) + σ2

noise − k(x∗
, x)>[K + σ2

noiseI]
−1k(x∗

, x)
)

Rasmussen (MPI for Biological Cybernetics) Advances in Gaussian Processes December 4th, 2006 20 / 55

Figure: from C. Rasmussen

All samples agree with observations

Highest variance in regions with few training points
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How to deal with noise?

We have noisy observations {X, y} with

y = f + η with η ∼ N (0, σ2I)

Conditioning on the training data {X, y} gives a Gaussian predictive
distribution p(f∗|X∗,X, y)

µ = K (X,X∗)[K (X,X) + σ2I]−1y

Σ = K (X∗,X∗)− K (X,X∗)[K (X,X) + σ2I]K (X∗,X)
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Model Selection: Hyperparameters

Let’s talk about the most employed kernel

K (x(p), x(q)) = exp(− 1

2θ2
||x(p) − x(q)||22)

How can we choose θ?

Gaussian Process Regression

Model Selection: Hyperparameters

e.g. the ARD covariance function:

k(x (p), x (q)) = exp (− 1

2θ2
(x (p) − x (q))2).

How best to choose θ?
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Hanna M. Wallach hmw26@cam.ac.uk

Introduction to Gaussian Process Regression

Figure: from H. Wallach
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Maximum Likelihood

If we don’t have a prior on P(θ), the posterior for hyper parameter θ is

P(θ|X, y) ∝ P(y|X, θ)

In the log domain

logP(y|X, θ) = − 1

2
log |K (X,X) + σ2I|

︸ ︷︷ ︸
capacity

− 1

2
yT (K (X,X) + σ2I)−1y
︸ ︷︷ ︸

model fitting

−n

2
log 2π

Obtain hyperparameters

argmin
θ
− logP(y|X, θ)

What if we have P(θ)?

This is not the ”right” thing to do a Bayesian would say, as θ should be
integrated out

A pragmatic is very happy with this
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Coming back to the example

θML = 0.3255

Gaussian Process Regression

Model Selection: Optimizing Marginal Likelihood (2)

θML = 0.3255:
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Using θML is an approximation to the true Bayesian method of
integrating over all θ values weighted by their posterior.

Hanna M. Wallach hmw26@cam.ac.uk

Introduction to Gaussian Process Regression

Figure: from H. Wallach
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Interpretations

Recall that the predictive distribution p(f∗|x∗,X, y) is Gaussian with

µ(x∗) = k(X, x∗)[K (X,X) + σ2I]−1y

Σ(x∗) = k(x∗, x∗)− k(X, x∗)[K (X,X) + σ2I]k(x∗,X)

Notice that the mean in linear in two forms

µ =
n∑

i=1

βi y
(i) =

n∑

i=1

αik(x∗, x
(i))

Note that the last one you might have seen e.g., SVMs, Representer theorem

Cool thing is that α has closed form solution, no need to optimize over!

The variance is the difference between the prior variance and a term that
says how much the data X has explained.

The variance is independent of the observed outputs y
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Other Covariances: Periodic smooth

First map the inputs to u = (cos(x), sin(x))T , and then measure distance on
the u space.

Combine with the squared exponential we have

kperiodic (x , x ′) = exp(−2 sin2(π(x − x ′)/l2)

Periodic, smooth functions

To create a distribution over periodic functions of x, we can first map the inputs
to u = (sin(x), cos(x))>, and then measure distances in the u space. Combined
with the SE covariance function, which characteristic length scale `, we get:

kperiodic(x, x ′) = exp(−2 sin2(π(x − x ′))/`2)
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Three functions drawn at random; left ` > 1, and right ` < 1.
Rasmussen (MPI for Biological Cybernetics) Advances in Gaussian Processes December 4th, 2006 35 / 55

Figure: from C. Rasmussen
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Other Covariances: mattern

Mattern form stationary covariance but not necessarily differentiable

Complicated function, lazy to write it ;)

Matérn covariance functions II

Univariate Matérn covariance function with unit characteristic length scale and
unit variance:
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ν=2
ν→∞

Rasmussen (MPI for Biological Cybernetics) Advances in Gaussian Processes December 4th, 2006 34 / 55

Figure: from C. Rasmussen

More complex covariances can be created by summing and multiplying
covariances
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What if you want to do classification?
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Binary Gaussian Process Classification

Simplest thing is to use regression for classification

More principled is to relate the class probability to the latent function f via
an additional function

p(y = 1|f (x)) = π(x) = ψ(f (x))

with ψ a sigmoid function such as the logistic or cumulative Gaussian

The likelihood is

p(y |f ) =
n∏

i=1

p(yi |fi ) =
n∏

i=1

ψ(yi fi )
Binary Gaussian Process Classification
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The class probability is related to the latent function, f , through:

p(y = 1|f (x)) = π(x) = Φ
(
f (x)

)
,

where Φ is a sigmoid function, such as the logistic or cumulative Gaussian.
Observations are independent given f , so the likelihood is

p(y|f) =

n∏

i=1

p(yi|fi) =

n∏

i=1

Φ(yifi).

Rasmussen (MPI for Biological Cybernetics) Advances in Gaussian Processes December 4th, 2006 40 / 55

Figure: from C. Rasmussen
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Houston we have a problem!

We have a GP prior on the latent function

p(f|X) = N (0,K)

The posterior becomes

p(f|X, y) =
p(y|f)p(f|X)

p(X, y)
=
N (f|0,K)

p(X, y)

n∏

i=1

ψ(yi fi )

This is non-Gaussian!

The prediction of the latent function at a new test point is intractable

p(f∗|X, y, x∗) =

∫
p(f∗|f,X, x∗)p(f|X, y)df

Same problem from the predictive class probability

p(y∗|X, y, x∗) =

∫
p(y∗|f∗)p(f∗|X, y, x∗)df∗

Resort to approximations: Laplace, EP, Variational Bounds

In practice for the mean prediction, doing GP regression works as well!
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Are GPs useful in computer vision?
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Applications in Computer Vision

Many applications, we will concentrate on a few if time permits

Multiple kernel learning: object recognition

GPs as an optimization tool: weakly supervised segmentation

Human pose estimation from single images

Flow estimation

Fashion show
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1) Object Recognition

Task: Given an image x, predict the class of the object present in the image
y ∈ Y

y → {car , bus, bicycle}

Although this is a classification task, one can treat the categories as real
values and formulate the problem as regression.
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How do we do Object Recognition?

Given this two images, we will like to say if they are of the same class.

Choose a representation for the images

Global descriptor of the full image
Local features: SIFT, SURF, etc.

We need to choose a way to compute similarities

Histograms of local features (i.e., bags of words), pyramids, etc.
Kernels on global descriptors, e.g., RBF
· · ·
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Multiple Kernel Learning (MKL)

Why do we need to choose a single representation and a single similarity
function?

Which one is the best among all possible ones?

Multiple kernel learning comes at our rescue, by learning which cues and
similarities are more important for the prediction task.

K =
∑

i

αi Ki

This is just hyperparameter learning in GPs! No need for specialized SW!
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Efficient Learning Using GPs for Multiclass Problems

Supposed we want to emulate a 1-vs-all strategy as |Y| > 2

We define y ∈ {−1, 1}|Y|

We can employ maximum likelihood and learn all the parameters for all
classifiers at once

min
θ,α>0

−
∑

i

log p(y(i)|X,θ,α) + γ1||α||1 + γ2||α||2

with y(i) ∈ {−1, 1} each of the individual problems.

Efficient to do joint learning as we can share the covariance across all classes

What’s the difference between θ and α?
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Caltech 101 dataset

R. Urtasun (TTIC) Gaussian Processes August 2, 2013 39 / 58



Results: Caltech 101

[A. Kapoor, K. Graumann, R. Urtasun and T. Darrell, IJCV 2009]

Comparison with SVM kernel combination: kernels based on Geometric Blur
(with and without distortion), dense PMK and spatial PMK on SIFT, etc.
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Figure: Comparison with the state of the art as in late 2008.
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Other forms of MKL

Convex combination of kernels is too simple (not big boost reported), we need
more complex (non-linear) combinations

Localized comb.: (the weighting varies locally) (Christioudias et al. 09)

K(v) = K(v)
np �K(v)

p

use structure to define K
(v)
np , e.g., low-rank

Bayesian co-training (Yu et al. 07)

Kc =


∑

j

(Kj + σ2
j I)−1



−1

Heteroscedastic Bayesian Co-training: model noise with full covariance
(Christoudias et al. 09)

Check out Mario Christoudias PhD thesis for more details
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2) Optimization non-differentiable functions

Supposed you have a function that you want to optimize, but it is
non-differentiable and also computationally expensive to evaluate, you can

Discretize your space and evaluate discretized values in a grid
(combinatorial)

Randomly sample your parameters

Utilize GPs to query where to look
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GPs as an optimization tool
[N. Srinivas, A. Krause, S. Kakade and M. Seeger, ICML 2010]

Suppose we want to compute max f (x), we can simply

repeat
Choose xt = arg maxx∈D µt−1(x) +

√
βtσt−1(x)

Evaluate yt = f (xt) + εt

Evaluate µt and σt

until budget reached

−2 −1 1 2

−3

−2

−1

1
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3
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GPs as an optimization tool in vision

[A. Vezhnevets, V. Ferrari and J. Buhmann, CVPR 2012]

Image segmentation in the weakly supervised setting, where the only labels
are which classes are present in the scene.

y ∈ {sky , building , tree}

Train based on expected agreement, if I partition the dataset on two sets
and I train on the first, it should predict the same as if I train on the second.

This function is sum of indicator functions and thus non-differentiable.
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Examples of Good Segmentations and Results

[A. Vezhnevets, V. Ferrari and J. Buhmann, CVPR 2012]

[Tighe 10] [Vezhnevets 11] GMIM

supervision fulll weak weak
average accuracy 29 14 21
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3) Discriminative Approaches to Human Pose Estimation

Task: given an image x, estimate the 3D location and orientation of the
body parts y.

We can treat this problem as a multi-output regression problem, where the
input are image features, e.g., BOW, HOG, etc.

The main challenges are

Poor imaging: motion blurred, occlusions, etc.
Need of large number of examples to represent all possible poses:
represent variations in appearance and in pose.
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Challenges for GPs

GP have complexity O(n3), with n the number of examples, and cannot deal
with large datasets in their standard form.

This problem can’t be solved directly as a regression task, since the mapping
is multimodal: an image observation can represent more than one pose.

Solutions to the first problem exist in the literature, they are called
sparsification techniques
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Dealing with multimodal mappings

We can represent the regression problem as a mixture of experts, where each
expert is a local GP.

The experts should be selected online to avoid the possible boundary
problems of clustering.

Fast solution with up to millions of examples if combined with fast NN
retrieval, e.g., LSH.

ONLINE: Inference of test point x∗
T : number of experts, S: size of each expert

Find NN in x of x∗
Find Modes in y of the NN retrieved
for i = 1 . . .T do

Create a local GP for each mode i
Retrieve hyper-parameters
Compute mean µ and variance σ

end for
p(f∗|y) ≈

∑T
i=1 πiN (µi , σ

2
i )
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Online vs Clustering
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Single GP vs Mixture of Online GPs
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Results: Humaneva

[R. Urtasun and T. Darrell, CVPR 2008]

walk jog box mono. discrim. dyn.
Lee et al. I 3.4 – – yes no no
Lee et al. II 3.1 – – yes no yes

Pope 4.53 4.38 9.43 yes yes no
Muendermann et al. 5.31 – 4.54 no no yes

Li et al. – – 20.0 yes no yes
Brubaker et al. 10.4 – – yes no yes
Our approach 3.27 3.12 3.85 yes yes no

Table: Comparison with state of the art (error in cm).

Caviat: Oracle has to select the optimal mixture component
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4) Flow Estimation with Gaussian Process

Model a trajectory as a continuous dense flow field from a sparse set of
vector sequences using Gaussian Process Regression

Each velocity component modeled with an independent GP

The flow can be expressed as

φ(x) = y(u)(x)i + y(v)(x)j + y(t)(x)k ∈ <3

where x = (u, v , t)

Difficulties:

How to model a GPRF from different trajectories, which may have
different lengths
How to handle multiple GPRF models trained from different numbers
of trajectories with heterogeneous scales and frame rates

Solution: normalize the length of the tracks before modeling with a GP, as
well as the number of samples

Classification based on the likelihood for each class
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Flow Classification and Anomaly Detection

[K. Kim, D. Lee and I. Essa, ICCV 2011]
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5) 3D Shape Recovery for Online Shopping

Interactive system for quickly modelling 3D body shapes from a single image

Obtain their 3D body shapes so as to try on virtual garments online

Interface for users to conveniently extract anthropometric measurements
from a single photo, while using readily available scene cues for automatic
image rectification

GPs to predict the body parameters from input measurements while
correcting the aspect ratio ambiguity resulting from photo rectification
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Creating the 3D Shape from Single Images

Manually annotate a set of five 2D measurements

Well-defined by the anthropometric positions, easy to discern and
unambiguous to users.

Good correlations with the corresponding tape measurements and convey
enough information for estimating the 3D body shape

User’s effort for annotation should be minimised
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The role of the GPs

A body shape estimator is learned to predict the 3D body shape from user’s
input, including both image measurements and actual measurements.

Training set is (CAESAR) dataset (Robinette et al. 99), with 2000 bodies.

Register each 3D instance in the dataset with a 3D morphable human body

A 3D body is decomposed into a linear combination of body morphs

Shape-from-measurements estimator can be formulated into a regression
problem, y is the morph parameters and x is the user specified parameters.

Multi-output done as independent predictors, each with a GP
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Online Shopping

[Y. Chen and D. Robertson and R. Cipolla, BMVC 2011]

Chest Waist Hips Inner leg length
Error(cm) 1.52 ± 1.36 1.88 ± 1.06 3.10 ± 1.86 0.79 ± 0.90
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