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Which problems we will be looking at?

In this first lecture:
@ Understand GPs from two perspectives:

e weight view
o function view

@ Applications in Computer Vision
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Let's look at the regression problem
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Regression Problem
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Regression Problem
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What's the difference between this two results?
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@ Model Selection
e how to find out which model to use?
@ Model Fitting

e how do | fit the parameters?
e what about over fitting?

@ Can | trust the predictions, even if | am not sure of the parameters and the
model structure?
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Supervised Regression

@ Assume an underlying process which generates "clean” data.

@ Task: Recover underlying process from noisy observed data {x(),y;}

underlying function and noisy data

output, f(x)

+ training data

=1 -0.5 0 0.5 1
input, x

Figure: from H. Wallach
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The weight view on GPs
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Bayesian Linear Regression

@ The linear regression model is
fxlw) =w'x, y=f+y
with i.i.d. noise n ~ N(0,0?)
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Figure: from H. Wallach
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Bayesian Linear Regression

@ The linear regression model is
fixw)=w'x, y=Ff+n
with n ~ N(0, 0?)

R. Urtasun (TTIC) Gaussian Processes August 2, 2013 9 /58



Bayesian Linear Regression

@ The linear regression model is
fixw)=w'x, y=Ff+n
with n ~ N(0, 0?)
@ Likelihood of the parameters is

P(y|X,w) = N (w”X,o?)
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Bayesian Linear Regression

@ The linear regression model is

fixw)=w'x, y=Ff+n

with n ~ N(0, 0?)
@ Likelihood of the parameters is
P(y|X,w) = N(w™X, o)

@ Applying the Bayes Theorem we have

P(wly, X) oc P(y|X, w) P(w)

—_—— N —

posterior likelihood  prior
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Bayesian Linear Regression

@ The linear regression model is
fixw)=w'x, y=Ff+n
with n ~ N(0, 0?)
@ Likelihood of the parameters is
P(y|X,w) = N (w”X,o?)
@ Applying the Bayes Theorem we have

P(wly, X) o< P(y|X, w) P(w)
—_—

posterior likelihood  prior
@ Typically we assume a Gaussian prior over the parameters

P(wly, X) o< N'(w' X, s2HN(0, X)
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Bayesian Linear Regression

@ The linear regression model is
fixw)=w'x, y=Ff+n
with n ~ N(0, 0?)

@ Likelihood of the parameters is
P(y|X,w) = N(w’X,o?l)
@ Applying the Bayes Theorem we have

P(wly, X) o< P(y|X, w) P(w)
—_—

posterior likelihood ~ prior
@ Typically we assume a Gaussian prior over the parameters
P(wly, X) o< N'(w' X, s2HN(0, X)
@ What's the form of the posterior then? Why did we use a Gaussian prior?
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Bayesian Linear Regression

@ The posterior is Gaussian!
1 _

with A = =1 4 LXTX
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Bayesian Linear Regression

@ The posterior is Gaussian!
1 _

with A = =1 4 LXTX

@ How can we make predictions?
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Bayesian Linear Regression

@ The posterior is Gaussian!
1 _

with A =¥"1+ %XTX
@ How can we make predictions?

@ The predictive distribution is also Gaussian!
PUFIXXy) = [ P(Fwik X.y)dw

1
= N(—zx* TA_1Xy, x* TA_lx*)
o
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Non-linear Bayesian Regression

@ The linear regression model is
fxw) =w'x, y="f+n

with i.i.d. noise  ~ N(0,0?)
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Non-linear Bayesian Regression

@ The linear regression model is

fixw)=w'x, y=Ff+n

with i.i.d. noise  ~ N(0,0?)

@ How to model more complex functions?
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Non-linear Bayesian Regression

@ The linear regression model is
fxw) =w'¢(x), y=Ff+n

with 77 =~ N(0,02) and basis functions ¢(x)

@ How to model more complex functions?
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Non-linear Bayesian Regression

@ The linear regression model is
fxlw) =wTo(x), y=Ff+
with 77 =~ N(0,02) and basis functions ¢(x)
@ How to model more complex functions?

@ P(f*|x*,X,y) can be expressed in terms of inner products of ¢(x)
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Non-linear Bayesian Regression

@ The linear regression model is
fxlw) =wTo(x), y=Ff+
with 77 =~ N(0,02) and basis functions ¢(x)
@ How to model more complex functions?

@ P(f*|x*,X,y) can be expressed in terms of inner products of ¢(x)

@ Why is this interesting?
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Non-linear Bayesian Regression

The linear regression model is

Fxlw) =w'o(x), y=Ff+n
with 77 =~ N(0,02) and basis functions ¢(x)

@ How to model more complex functions?

P(f*|x*,X,y) can be expressed in terms of inner products of ¢(x)

Why is this interesting?

Well we can apply the kernel trick: we do not need to define ¢(x) explicitly

R. Urtasun (TTIC) Gaussian Processes August 2, 2013 11 / 58



Non-linear Bayesian Regression

The linear regression model is

Fxlw) =w'o(x), y=Ff+n

with 77 =~ N(0,02) and basis functions ¢(x)

@ How to model more complex functions?

P(f*|x*,X,y) can be expressed in terms of inner products of ¢(x)

Why is this interesting?

Well we can apply the kernel trick: we do not need to define ¢(x) explicitly

How many basis functions should we use?
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Non-linear Bayesian Regression

The linear regression model is

Fxlw) =w'o(x), y=Ff+n
with 77 =~ N(0,02) and basis functions ¢(x)

@ How to model more complex functions?

P(f*|x*,X,y) can be expressed in terms of inner products of ¢(x)

Why is this interesting?

Well we can apply the kernel trick: we do not need to define ¢(x) explicitly

How many basis functions should we use?

GPs come at our rescue!
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The function view of GPs
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What's a GP?

@ A Gaussian process is a generalization of a multivariate Gaussian distribution
to infinitely many variables.
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What's a GP?

@ A Gaussian process is a generalization of a multivariate Gaussian distribution
to infinitely many variables.

@ Definition: a Gaussian process is a collection of random variables, any finite
number of which have (consistent) Gaussian distributions.
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What's a GP~

@ A Gaussian process is a generalization of a multivariate Gaussian distribution
to infinitely many variables.

@ Definition: a Gaussian process is a collection of random variables, any finite
number of which have (consistent) Gaussian distributions.

@ A Gaussian is fully specified by a mean vector u and a covariance matrix ¥

f= (f17 afn)T NN(N’Z)
(index i)
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What's a GP?

@ A Gaussian process is a generalization of a multivariate Gaussian distribution
to infinitely many variables.

@ Definition: a Gaussian process is a collection of random variables, any finite
number of which have (consistent) Gaussian distributions.

@ A Gaussian is fully specified by a mean vector u and a covariance matrix ¥
f= (f17 ’fn)T NN(NvZ)

(index i)

@ A Gaussian process is fully specified by a mean function m(x) and a PSD
covariance function k(x,x’)

f(x) ~ GP (m(x), k(x,x"))

(index x)
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What's a GP?

@ A Gaussian process is a generalization of a multivariate Gaussian distribution
to infinitely many variables.

@ Definition: a Gaussian process is a collection of random variables, any finite
number of which have (consistent) Gaussian distributions.

@ A Gaussian is fully specified by a mean vector u and a covariance matrix ¥
f= (f17 ’fn)T NN(NvZ)

(index i)

@ A Gaussian process is fully specified by a mean function m(x) and a PSD
covariance function k(x,x’)

f(x) ~ GP (m(x), k(x,x"))

(index x)

@ Typically m(x) =0
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Marginalization property

@ Thinking of a GP as a Gaussian distribution with an infinitely long mean
vector and an infinite by infinite covariance matrix may seem impractical

@ Marginalization property
() = [ plx.y)dy

@ For Gaussians

W Sh %
y ~ H1 11 12 (1) N
(y(2)> N ((#2) ’ (221 ):22>> then N(p1, X11)
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Marginalization property

@ Thinking of a GP as a Gaussian distribution with an infinitely long mean
vector and an infinite by infinite covariance matrix may seem impractical

@ Marginalization property
() = [ plx.y)dy

@ For Gaussians

W Sh %
y ~ H1 11 12 (1) N
(y(2)> N ((#2) ’ (221 ):22>> then N(p1, X11)

@ Therefore | only need to consider the points that | observe!
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Marginalization property

Thinking of a GP as a Gaussian distribution with an infinitely long mean
vector and an infinite by infinite covariance matrix may seem impractical

Marginalization property
p(x) = / p(x,y)dy
@ For Gaussians
()~ (). (B E2)) then s~ 3
@ Therefore | only need to consider the points that | observe!

@ This is the consistency property
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The Gaussian Distribution

The Gaussian distribution is given by
pxILI) = N(w £) = 2n) P2Z Y exp (— dx—w) T2 Hx—w)

where p is the mean vector and X the covariance matrix.

Figure: from C. Rasmussen
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Conditionals and Marginals of a Gaussian

—joint .G.aussmn —joint Gaussian
— conditional —marginal

Both the conditionals and the marginals of a joint Gaussian are again Gaussian.

Figure: from C. Rasmussen
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GP from Bayesian linear model

The Bayesian linear model is
f(x) =w'x with w~N(0,X)

@ The mean function is
E[f(x)] = E[WT]x =0

@ Covariance is
E[f(x)f(x')] = x" Ejww’]x" = x"Xx’

@ For any set of m basis functions, ¢(x), the corresponding covariance
function is

K(X(P)’ X(q)) _ ¢(X(P))TZ¢(X(‘7))

@ Conversely, for every covariance function K, there is a possibly infinite
expansion in terms of basis functions

x(q) Z i (x(” )
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Covariance

@ For any set of inputs x| - - x(") we can compute K, which defines a joint
distribution over function values

f(x(l))’ o ’f(x(")) ~ N(0,K)
@ Therefore, a GP specifies a distribution over functions

@ Encode the prior knowledge by defining the kernel, which specifies the
covariance between pairs of random variables, e.g.,

1
K(x(P),x(q)) - eXP(§||X(p) — X(q)H%)

Kx® = 5, X9y as a function of x@

1
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Covariance

@ For any set of inputs x| - - x(") we can compute K, which defines a joint
distribution over function values

f(x(l))’ o ’f(x(")) ~ N(0,K)
@ Therefore, a GP specifies a distribution over functions

@ Encode the prior knowledge by defining the kernel, which specifies the
covariance between pairs of random variables, e.g.,

1
K(x(P),x(q)) - eXP(§||X(p) — X(q)H%)
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Gaussian Process Prior

@ Given a set of inputs x(), ... x(" we can draw samples f(x()), .-, f(x(")

@ Example when using an RBF kernel

samples from the prior

N w

output, f(x)
[

\/
0 v
0z 04 o6 o8 1
input, x

Figure: from H. Wallac

@ How can we generate this samples?
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Sampling

@ Let's do sequential generation
n
p(fla ,fn|X1,"' 7Xn) :Hp(fl|fl—la ,f]_,X,',"' ,X]_)
i=1

@ Each term is again Gaussian since

p(x,y):N((Z),(;T g)) — p(xly) = N(a+ BC Ly — b), A— BC1BT)

output, f(x)

0
input, x

Figure: from C. Rasmussen
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Noise free Observations

@ Given noise-free training data D = {(x("), f())} we want to make predictions
f* about new points X*

@ The GP prior says

(el )
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Noise free Observations

@ Given noise-free training data D = {(x("), f())} we want to make predictions
f* about new points X*

@ The GP prior says

(el )

@ Condition {X*,f*} on the training data {X,f} to obtain the posterior
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Noise free Observations

@ Given noise-free training data D = {(x("), f())} we want to make predictions
f* about new points X*

The GP prior says

(el )

@ Condition {X*,f*} on the training data {X,f} to obtain the posterior

@ This restricts the posterior to contain functions which agree with the
training data
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Noise free Observations

@ Given noise-free training data D = {(x("), f())} we want to make predictions
f* about new points X*

@ The GP prior says

el )

@ Condition {X*,f*} on the training data {X,f} to obtain the posterior

@ This restricts the posterior to contain functions which agree with the
training data

@ The posterior is Gaussian p(f*|X*,X,) = N (u, X) with

po= KX XHK(X,X)"'f
Y = K(X*,X*) = K(X, X*)K(X,X) 1K (X*, X)
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Example of Posterior

output, f(x)

-5 0 5
input, x

Figure: from C. Rasmussen

@ All samples agree with observations

@ Highest variance in regions with few training points
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How to deal with noise?

@ We have noisy observations {X,y} with
y=Ff+n with 75~N(0%)

@ Conditioning on the training data {X,y} gives a Gaussian predictive
distribution p(f.|X., X,y)

po= KX XHK(X,X)+ o2l ty
Y = K(X*,X*)— KX, X)[K(X,X) + 21K (X*, X)
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Model Selection: Hyperparameters

output, f(x)

@ Let's talk about the most employed kernel

1
K(xP), x(9) = exp(‘ﬁﬂx(p) — x(9]2)

@ How can we choose 67

samples from the posterior, 8 = 0.1

samples from the posterior, 8 = 0.3

samples from the posterior, 8 = 0.5

R. Urtasun (TTIC)

Figure: from H. Wallach

Gaussian Processes
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Maximum Likelihood

@ If we don't have a prior on P(8), the posterior for hyper parameter 6 is
P(01X,y) o< P(y[X, 0)
@ In the log domain

1 1
log P(y|X,0) = — 5 log |K(X, X) + o?l| — §yT(K(X, X) + o2ty fg log 27

capacity model fitting
@ Obtain hyperparameters

argmin — log P(y|X, 0)
0
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Maximum Likelihood

@ If we don't have a prior on P(8), the posterior for hyper parameter 6 is

P(01X,y) o< P(y|X,0)
@ In the log domain

1 1
log P(y|X,0) = — 5 log |K(X, X) + o?l| — §yT(K(X, X) + o2ty fg log 27

capacity model fitting

@ Obtain hyperparameters

argmin — log P(y|X, 0)
0

@ What if we have P(0)?
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Maximum Likelihood

@ If we don't have a prior on P(8), the posterior for hyper parameter 6 is
P(01X,y) o< P(y[X, 0)
@ In the log domain

1 1
log P(y|X,0) = — 5 log |K(X, X) + o?l| — §yT(K(X, X) + o2ty fg log 27

capacity model fitting
@ Obtain hyperparameters

argmin — log P(y|X, 0)
0

@ What if we have P(0)?

@ This is not the "right” thing to do a Bayesian would say, as 6 should be
integrated out
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Maximum Likelihood

@ If we don't have a prior on P(8), the posterior for hyper parameter 6 is
P(01X,y) o< P(y[X, 0)

@ In the log domain

1 1
log P(y|X,0) = — 5 log |K(X, X) + o?l| — §yT(K(X, X) + o2ty fg log 27

capacity model fitting
@ Obtain hyperparameters

argmin — log P(y|X, 0)
0

@ What if we have P(0)?

@ This is not the "right” thing to do a Bayesian would say, as 6 should be
integrated out

@ A pragmatic is very happy with this
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Coming back to the example

oML = 0.3255

samples from the posterior, 6 = 0.3255

+
— .
.1 \

=

. +
3

>

[}

"0 01 02 03 04 05 06 07 08 09 1

input, x

Figure: from H. Wallach
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Interpretations

@ Recall that the predictive distribution p(f.|x., X,y) is Gaussian with

p(x*) = k(X x*)[K(X,X)+ %]y
Y(x*) = k(x*,x*) — k(X,x*)[K(X, X) + o21]k(x*, X)

@ Notice that the mean in linear in two forms

= En:ﬁfy(") = En:afk(x*vx("’)
i=1 i=1
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Interpretations

@ Recall that the predictive distribution p(f.|x., X,y) is Gaussian with

p(x*) = k(X x*)[K(X,X)+ %]y
Y(x*) = k(x*,x*) — k(X,x*)[K(X, X) + o21]k(x*, X)

@ Notice that the mean in linear in two forms
p=>Y_ By =>"aik(x.,x?")
i=1 i=1

@ Note that the last one you might have seen e.g., SVMs, Representer theorem
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Interpretations

@ Recall that the predictive distribution p(f.|x., X,y) is Gaussian with

p(x*) = k(X x*)[K(X,X)+ %]y
Y(x*) = k(x*,x*) — k(X,x*)[K(X, X) + o21]k(x*, X)

@ Notice that the mean in linear in two forms
p=>Y_ By =>"aik(x.,x?")
i=1 i=1

@ Note that the last one you might have seen e.g., SVMs, Representer theorem

@ Cool thing is that « has closed form solution, no need to optimize over!
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Interpretations

@ Recall that the predictive distribution p(f.|x., X,y) is Gaussian with

p(x*) = k(X x*)[K(X,X)+ %]y
Y(x*) = k(x*,x*) — k(X,x*)[K(X, X) + o21]k(x*, X)

Notice that the mean in linear in two forms

p= iﬁiy(i) = zn:a;k(x*7x(i))
i=1 i=1

@ Note that the last one you might have seen e.g., SVMs, Representer theorem

Cool thing is that « has closed form solution, no need to optimize over!

@ The variance is the difference between the prior variance and a term that
says how much the data X has explained.
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Interpretations

@ Recall that the predictive distribution p(f.|x., X,y) is Gaussian with

p(x*) = k(X x*)[K(X,X)+ %]y
Y(x*) = k(x*,x*) — k(X,x*)[K(X, X) + o21]k(x*, X)

Notice that the mean in linear in two forms

p= iﬁiy(i) = zn:a;k(x*7x(i))
i=1 i=1

@ Note that the last one you might have seen e.g., SVMs, Representer theorem

Cool thing is that « has closed form solution, no need to optimize over!

@ The variance is the difference between the prior variance and a term that
says how much the data X has explained.

@ The variance is independent of the observed outputs y
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Other Covariances: Periodic smooth

@ First map the inputs to u = (cos(x),sin(x))", and then measure distance on
the u space.

@ Combine with the squared exponential we have

Kperiodic (X, x") = exp(—2 sin?(m(x — x')/1?)

w
w

NANN
1 1
0 0
-1 -1
-2 -2
3 -1 0 1 2 3 -1 0 1 2

Figure: from C. Rasmussen
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Other Covariances: mattern

@ Mattern form stationary covariance but not necessarily differentiable

@ Complicated function, lazy to write it ;)

1

0.5

output, f(x)

0 1 2 3 -5 0 5
input distance input, x

Figure: from C. Rasmussen
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Other Covariances: mattern

@ Mattern form stationary covariance but not necessarily differentiable

@ Complicated function, lazy to write it ;)

z
5
o
5
o
0 1 2 3 -5 0 5
input distance input, x

Figure: from C. Rasmussen

@ More complex covariances can be created by summing and multiplying
covariances
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What if you want to do classification?
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Binary Gaussian Process Classification

@ Simplest thing is to use regression for classification

@ More principled is to relate the class probability to the latent function f via
an additional function

ply = 1/f(x)) = w(x) = ¥(f(x))
with 1 a sigmoid function such as the logistic or cumulative Gaussian
@ The likelihood is

plylf) = pr,lf =TT ¢0if)
i=1

latent function, f(x)
class probability, Ti(x)

0
input, x input, x
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Houston we have a problem!

@ We have a GP prior on the latent function
p(fIX) = N (0,K)

@ The posterior becomes

) = PR _ VOO

This is non-Gaussian!

The prediction of the latent function at a new test point is intractable

p(fX,y, x,) :/p(f*|f,X,x*)p(f\X,y)df

Same problem from the predictive class probability

p(y.[X.y.x.) = / p(y.|£)p(F. X, y. x.)df,
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Houston we have a problem!

@ We have a GP prior on the latent function
p(fIX) = N (0,K)

@ The posterior becomes

p(fIX,y) = p(i{))([?(;)x) - Ag&?’y';)ﬂw(yfﬁ)

@ This is non-Gaussian!

@ The prediction of the latent function at a new test point is intractable
pEX,y.x) = [ pUEIF. X x)p(FIX. y)dF

@ Same problem from the predictive class probability
POy X,y.x.) = [ ply.|£)p(F. X, y. ).

@ Resort to approximations: Laplace, EP, Variational Bounds
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Houston we have a problem!

@ We have a GP prior on the latent function
p(fIX) = N (0,K)

@ The posterior becomes

) = PR _ VOO

This is non-Gaussian!

The prediction of the latent function at a new test point is intractable

p(fX,y, x,) :/p(f*|f,X,x*)p(f\X,y)df

Same problem from the predictive class probability
POy X,y.x.) = [ ply.|£)p(F. X, y. ).

@ Resort to approximations: Laplace, EP, Variational Bounds

@ In practice for the mean prediction, doing GP regression works as well!
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Are GPs useful in computer vision?
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Applications in Computer Vision

Many applications, we will concentrate on a few if time permits
@ Multiple kernel learning: object recognition
@ GPs as an optimization tool: weakly supervised segmentation
@ Human pose estimation from single images

Flow estimation

Fashion show
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1) Object Recognition

@ Task: Given an image x, predict the class of the object present in the image
yey

y — {car, bus, bicycle}
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1) Object Recognition

@ Task: Given an image x, predict the class of the object present in the image
yey

y — {car, bus, bicycle}

@ Although this is a classification task, one can treat the categories as real
values and formulate the problem as regression.
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How do we do Object Recognition?

@ Given this two images, we will like to say if they are of the same class.

@ Choose a representation for the images

o Global descriptor of the full image
o Local features: SIFT, SURF, etc.

@ We need to choose a way to compute similarities

o Histograms of local features (i.e., bags of words), pyramids, etc.
o Kernels on global descriptors, e.g., RBF
° -
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Multiple Kernel Learning (MKL)

@ Why do we need to choose a single representation and a single similarity
function?

@ Which one is the best among all possible ones?
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Multiple Kernel Learning (M

@ Why do we need to choose a single representation and a single similarity
function?

@ Which one is the best among all possible ones?

@ Multiple kernel learning comes at our rescue, by learning which cues and
similarities are more important for the prediction task.

K= ZO[,’K,’
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Multiple Kernel Learning (M

@ Why do we need to choose a single representation and a single similarity
function?

@ Which one is the best among all possible ones?

@ Multiple kernel learning comes at our rescue, by learning which cues and
similarities are more important for the prediction task.

K= ZO[,’K,’

@ This is just hyperparameter learning in GPs! No need for specialized SW!
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Efficient Learning Using GPs for Multiclass Problems

Supposed we want to emulate a 1-vs-all strategy as || > 2
o We definey € {—1,1}1%I

@ We can employ maximum likelihood and learn all the parameters for all
classifiers at once
in =) | X, 0
Jming = > log ply?|X, 0, a) + fallr + 7ol
1

with y() € {—1,1} each of the individual problems.
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in =) | X, 0
Jming = > log ply?|X, 0, a) + fallr + 7ol

with y() € {—1,1} each of the individual problems.

@ Efficient to do joint learning as we can share the covariance across all classes
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Efficient Learning Using GPs for Multiclass Problems

Supposed we want to emulate a 1-vs-all strategy as || > 2
o We definey € {—1,1}1%I
@ We can employ maximum likelihood and learn all the parameters for all

classifiers at once

in =) | X, 0
Jming = > log ply?|X, 0, a) + fallr + 7ol

with y() € {—1,1} each of the individual problems.
@ Efficient to do joint learning as we can share the covariance across all classes

@ What's the difference between 6 and «o?
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Caltech 101 dataset
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Results: Caltech 101

[A. Kapoor, K. Graumann, R. Urtasun and T. Darrell, 1JCV 2009]

Comparison with SVM kernel combination: kernels based on Geometric Blur
(with and without distortion), dense PMK and spatial PMK on SIFT, etc.

Statistical Efficiency (Caltech-101, 15 Examples per Class) Computational Efflcle‘ncy (Caltech-101, 15‘ Examples per Class)
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aof GP (6 kemels) 1000 -
I - - - Varma & Ray (6 kemnels) L~
P
oL -
o P 7 ¢ s i 12 1 16 0 s 10 15
Number of labeled images per class Number of labeled images per class
Figure: Average precision. Figure: Time of computation.
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Results: Caltech 101

[A. Kapoor, K. Graumann, R. Urtasun and T. Darrell, 1JCV 2009]

Caltech 101 Categories Data Set

mean recognition rate per class

number of training examples per class

Figure: Comparison with the state of the art as in late 2008.
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Other forms of MKL

Convex combination of kernels is too simple (not big boost reported), we need
more complex (non-linear) combinations

@ Localized comb.: (the weighting varies locally) (Christioudias et al. 09)
KW — KE]‘;J) ® K;JV)

use structure to define KS,‘,/J), e.g., low-rank

@ Bayesian co-training (Yu et al. 07)

-1

Ke=|> (Ki+ o7l

Jj

@ Heteroscedastic Bayesian Co-training: model noise with full covariance
(Christoudias et al. 09)

Check out Mario Christoudias PhD thesis for more details
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2) Optimization non-differentiable functions

Supposed you have a function that you want to optimize, but it is
non-differentiable and also computationally expensive to evaluate, you can

@ Discretize your space and evaluate discretized values in a grid
(combinatorial)

@ Randomly sample your parameters

@ Utilize GPs to query where to look
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GPs as an optimization tool

[N. Srinivas, A. Krause, S. Kakade and M. Seeger, ICML 2010]
Suppose we want to compute max f(x), we can simply

repeat
Choose x; = arg maxyep pre—1(X) + v/Bror_1(x)
Evaluate y; = f(x;) + €
Evaluate u¢ and o,

until budget reached

=
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GPs as an optimization tool

[N. Srinivas, A. Krause, S. Kakade and M. Seeger, ICML 2010]
Suppose we want to compute max f(x), we can simply

repeat
Choose x; = arg maxyep pre—1(X) + v/Bror_1(x)
Evaluate y; = f(x;) + €
Evaluate u¢ and o,

until budget reached
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GPs as an optimization tool in vision

[A. Vezhnevets, V. Ferrari and J. Buhmann, CVPR 2012]

@ Image segmentation in the weakly supervised setting, where the only labels
are which classes are present in the scene.

y € {sky, building, tree}
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as an optimization tool in vision

[A. Vezhnevets, V. Ferrari and J. Buhmann, CVPR 2012]

@ Image segmentation in the weakly supervised setting, where the only labels
are which classes are present in the scene.

y € {sky, building, tree}

@ Train based on expected agreement, if | partition the dataset on two sets
and | train on the first, it should predict the same as if | train on the second.

@ This function is sum of indicator functions and thus non-differentiable.
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Examples of Good Segmentations and Results

[A. Vezhnevets, V. Ferrari and J. Buhmann, CVPR 2012]

Image Ground truth GMIM resuit

H

\ | [Tighe 10] | [Vezhnevets 11] | GMIM |

supervision fulll weak weak
average accuracy 29 14 21
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3) Discriminative Approaches to Human Pose Estimation

@ Task: given an image x, estimate the 3D location and orientation of the
body parts y.

@ We can treat this problem as a multi-output regression problem, where the
input are image features, e.g., BOW, HOG, etc.
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3) Discriminative Approaches to Human Pose Estimation

@ Task: given an image x, estimate the 3D location and orientation of the
body parts y.

@ We can treat this problem as a multi-output regression problem, where the
input are image features, e.g., BOW, HOG, etc.

@ The main challenges are

e Poor imaging: motion blurred, occlusions, etc.

o Need of large number of examples to represent all possible poses:
represent variations in appearance and in pose.
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Challenges for GPs

@ GP have complexity O(n?), with n the number of examples, and cannot deal
with large datasets in their standard form.

@ This problem can’t be solved directly as a regression task, since the mapping
is multimodal: an image observation can represent more than one pose.

@ Solutions to the first problem exist in the literature, they are called
sparsification techniques
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Dealing with multimodal mappings

@ We can represent the regression problem as a mixture of experts, where each
expert is a local GP.

@ The experts should be selected online to avoid the possible boundary
problems of clustering.

@ Fast solution with up to millions of examples if combined with fast NN
retrieval, e.g., LSH.

ONLINE: Inference of test point x
T: number of experts, S: size of each expert

Find NN in x of x4
Find Modes in y of the NN retrieved
fori=1...T do
Create a local GP for each mode i
Retrieve hyper-parameters
Compute mean p and variance o
end for

p(fely) = S, milN (ui, 07)
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Online vs Clustering

Full GP Local Offline GP Local online GP

Local Offline GP
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Single GP vs Mixture of Online GPs

Global GP Local Online GP
T T T T T T T 25 T T T T T T T
ey

L # 4

“ e v °

ol

w5t 1 " 1
wof 1 " 1
5k Bl 5 Bl
oF Bl 0 Bl
S ) & ]
1% = n = ) P T 5 g 10 = o E) 0 P : s )
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Humaneva

[R. Urtasun and T. Darrell, CVPR 2008]

walk jog box mono. discrim. dyn.

Lee et al. | 3.4 - — yes no no

Lee et al. Il 3.1 - — yes no yes
Pope 4.53 4.38 9.43 yes yes no
Muendermann et al. 5.31 - 4.54 no no yes
Li et al. - - 20.0 yes no yes
Brubaker et al. 10.4 - - yes no yes
Our approach 3.27 3.12 3.85 yes yes no

Table: Comparison with state of the art (error in cm).

@ Caviat: Oracle has to select the optimal mixture component
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4) Flow Estimation with Gaussian Process

@ Model a trajectory as a continuous dense flow field from a sparse set of
vector sequences using Gaussian Process Regression

@ Each velocity component modeled with an independent GP

@ The flow can be expressed as
¢(x) =y (x)i +y (x)j +yO (x)k € ®*

where x = (u, v, t)
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4) Flow Estimation with Gaussian Process

@ Model a trajectory as a continuous dense flow field from a sparse set of
vector sequences using Gaussian Process Regression

@ Each velocity component modeled with an independent GP
@ The flow can be expressed as
¢(x) =y ()i + y (x)j +y (x)k € ®*
where x = (u, v, t)
@ Difficulties:

e How to model a GPRF from different trajectories, which may have

different lengths
e How to handle multiple GPRF models trained from different numbers
of trajectories with heterogeneous scales and frame rates
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4) Flow Estimation with Gaussian Process

@ Model a trajectory as a continuous dense flow field from a sparse set of
vector sequences using Gaussian Process Regression

@ Each velocity component modeled with an independent GP

@ The flow can be expressed as
¢(x) =y (x)i +y (x)j +yO (x)k € ®*
where x = (u, v, t)

@ Difficulties:

e How to model a GPRF from different trajectories, which may have
different lengths

e How to handle multiple GPRF models trained from different numbers
of trajectories with heterogeneous scales and frame rates

@ Solution: normalize the length of the tracks before modeling with a GP, as
well as the number of samples

@ Classification based on the likelihood for each class
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Flow Classification and Anomaly Detection

[K. Kim, D. Lee and I. Essa, ICCV 2011]
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5) 3D Shape Recovery for Online Shopping

@ Interactive system for quickly modelling 3D body shapes from a single image
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5) 3D Shape Recovery for Online Shopping

@ Interactive system for quickly modelling 3D body shapes from a single image
@ Obtain their 3D body shapes so as to try on virtual garments online

@ Interface for users to conveniently extract anthropometric measurements
from a single photo, while using readily available scene cues for automatic
image rectification
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5) 3D Shape Recovery for Online Shopping

@ Interactive system for quickly modelling 3D body shapes from a single image
@ Obtain their 3D body shapes so as to try on virtual garments online

@ Interface for users to conveniently extract anthropometric measurements
from a single photo, while using readily available scene cues for automatic
image rectification

@ GPs to predict the body parameters from input measurements while
correcting the aspect ratio ambiguity resulting from photo rectification
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Creating the 3D Shape from Single Images

Manually annotate a set of five 2D measurements

@ Well-defined by the anthropometric positions, easy to discern and
unambiguous to users.

@ Good correlations with the corresponding tape measurements and convey
enough information for estimating the 3D body shape

@ User's effort for annotation should be minimised

Input 2:
» User's hody dimensions
(Height and weight)

Shape prediction
from measurements
+

Aspeet ratio
correction

Extracting the doorway Image rectification Annotating 3D body shape
image measurements
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The role of the GPs

@ A body shape estimator is learned to predict the 3D body shape from user’s
input, including both image measurements and actual measurements.

@ Training set is (CAESAR) dataset (Robinette et al. 99), with 2000 bodies.
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The role of the GPs

@ A body shape estimator is learned to predict the 3D body shape from user’s
input, including both image measurements and actual measurements.

@ Training set is (CAESAR) dataset (Robinette et al. 99), with 2000 bodies.

@ Register each 3D instance in the dataset with a 3D morphable human body

@ A 3D body is decomposed into a linear combination of body morphs
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The role of the GPs

@ A body shape estimator is learned to predict the 3D body shape from user’s
input, including both image measurements and actual measurements.

@ Training set is (CAESAR) dataset (Robinette et al. 99), with 2000 bodies.

@ Register each 3D instance in the dataset with a 3D morphable human body
@ A 3D body is decomposed into a linear combination of body morphs

@ Shape-from-measurements estimator can be formulated into a regression
problem, y is the morph parameters and x is the user specified parameters.

Multi-output done as independent predictors, each with a GP
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Online Shopping

[Y. Chen and D. Robertson and R. Cipolla, BMVC 2011]

Chest Waist Hips Inner leg length
Error(cm) | 1562 £ 1.36 | 1.88 £ 1.06 | 3.10 + 1.86 0.79 + 0.90

R. Urtasun (TTIC) Gaussian Processes August 2, 2013 58 / 58



	Intro

