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Panoramic Image Mosaics

Full screen panoramas (cubic):  http://www.panoramas.dk/

Mars:  http://www.panoramas.dk/fullscreen3/f2_mars97.html

2003 New Years Eve:  http://www.panoramas.dk/fullscreen3/f1.html

http://www.panoramas.dk/
http://www.panoramas.dk/fullscreen3/f2_mars97.html
http://www.panoramas.dk/fullscreen3/f1.html
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Gigapixel panoramas & images

Mapping / Tourism / WWT

Medical Imaging

http://research.microsoft.com/IVM/HDView.htm
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Gigapixel panoramas & images

Photosynth

http://photosynth.net/
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Image Mosaics

+ +   …   + =

Goal:  Stitch together several images into a 

seamless composite
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Today’s lecture

Image alignment and stitching

• motion models

• image warping

• point-based alignment

• complete mosaics (global alignment)

• compositing and blending

• ghost and parallax removal
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Readings

• Szeliski, CVAA:

• Chapter 3.6: Image warping

• Chapter 6.1: Feature-based alignment

• Chapter 9.1: Motion models

• Chapter 9.2: Global alignment

• Chapter 9.3: Compositing

• Recognizing Panoramas, Brown & Lowe, ICCV’2003

• Szeliski & Shum, SIGGRAPH'97



Motion models
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Motion models

What happens when we take two images with a 

camera and try to align them?

• translation?

• rotation?

• scale?

• affine?

• perspective?

… see interactive demo (VideoMosaic)



Projective transformations

(aka homographies)
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“keystone” distortions



Image Warping
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Image Warping

image filtering: change range of image

g(x) = h(f(x))

image warping: change domain of image

g(x) = f(h(x))
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Image Warping

image filtering: change range of image

g(x) = h(f(x))

image warping: change domain of image

g(x) = f(h(x))
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Parametric (global) warping

Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical
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2D coordinate transformations

translation: x’ = x + t x = (x,y)

rotation: x’ = R x + t

similarity: x’ = s R x + t

affine: x’ = A x + t

perspective: x’  H x x = (x,y,1)

(x is a homogeneous coordinate)

These all form a nested group (closed w/ inv.)
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Image Warping

Given a coordinate transform x’ = h(x) and a 

source image f(x), how do we compute a 

transformed image g(x’) = f(h(x))?

f(x) g(x’)
x x’

h(x)
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Forward Warping

Send each pixel f(x) to its corresponding 

location x’ = h(x) in g(x’)

f(x) g(x’)
x x’

h(x)

• What if pixel lands “between” two pixels?
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Forward Warping

Send each pixel f(x) to its corresponding 

location x’ = h(x) in g(x’)

f(x) g(x’)
x x’

h(x)

• What if pixel lands “between” two pixels?

• Answer: add “contribution” to several pixels, 

normalize later (splatting)
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Inverse Warping

Get each pixel g(x’) from its corresponding 

location x’ = h(x) in f(x)

f(x) g(x’)
x x’

h(x)

• What if pixel comes from “between” two pixels?
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Inverse Warping

Get each pixel g(x’) from its corresponding 

location x’ = h(x) in f(x)

• What if pixel comes from “between” two pixels?

• Answer: resample color value from 

interpolated (prefiltered) source image

f(x) g(x’)
x x’
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Interpolation

Possible interpolation filters:

• nearest neighbor

• bilinear

• bicubic (interpolating)

• sinc / FIR

Needed to prevent “jaggies”

and “texture crawl”



Motion models (reprise)
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Motion models

Translation

2 unknowns

Affine

6 unknowns

Perspective

8 unknowns

3D rotation

3 unknowns



Finding the transformation

Translation = 2 degrees of freedom

Similarity = 4 degrees of freedom

Affine = 6 degrees of freedom

Homography = 8 degrees of freedom

How many corresponding points do we need to 

solve?
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Plane perspective mosaics

• 8-parameter generalization of affine motion

– works for pure rotation or planar surfaces

• Limitations:

– local minima 

– slow convergence

– difficult to control interactively
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Rotational mosaics

• Directly optimize rotation and focal length

• Advantages:

– ability to build full-view 

panoramas

– easier to control interactively

– more stable and accurate 

estimates
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3D → 2D Perspective Projection

u

(Xc,Yc,Zc)

ucf
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Rotational mosaic

Projection equations

1. Project from image to 3D ray

(x0,y0,z0) = (u0-uc,v0-vc,f)

2. Rotate the ray by camera motion

(x1,y1,z1) = R01 (x0,y0,z0)

3. Project back into new (source) image

(u1,v1) = (fx1/z1+uc,fy1/z1+vc)



Image Mosaics (Stitching)

[Szeliski & Shum, SIGGRAPH’97]

[Szeliski, FnT CVCG, 2006]
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Image Mosaics (stitching)

Blend together several overlapping images into 

one seamless mosaic (composite)

+ +   …   + =
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Mosaics for Video Coding

Convert masked images into a background sprite 

for content-based coding

+ + +

=
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Establishing correspondences

1. Direct method:

• Use generalization of affine motion model

[Szeliski & Shum ’97]

2. Feature-based method

• Extract features, match, find consisten inliers 

[Lowe ICCV’99; Schmid ICCV’98,

Brown&Lowe ICCV’2003]

• Compute R from correspondences

(absolute orientation)



Richard Szeliski Image Stitching 41

Stitching demo
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Panoramas

What if you want a 360 field of view?

mosaic Projection Cylinder
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Cylindrical panoramas

Steps
• Reproject each image onto a cylinder

• Blend 

• Output the resulting mosaic

mcmillan.mpeg
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f = 180 (pixels)

Cylindrical Panoramas

Map image to cylindrical or spherical coordinates

• need known focal length

Image 384x300 f = 380f = 280
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• Map 3D point (X,Y,Z) onto 

cylinder

Cylindrical projection

X

Y

Z

unwrapped cylinder

• Convert to cylindrical coordinates

cylindrical image

• Convert to cylindrical image 
coordinates

– s defines size of the final image
unit cylinder
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Cylindrical warping

Given focal length f and 

image center (xc,yc)

X

Y

Z

(X,Y,Z)

(sinq,h,cosq)
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Spherical warping

Given focal length f and 

image center (xc,yc)

X

Y

Z

(x,y,z)

(sinθcosφ, sinφ, cosθcosφ)

cos φ

φ

cos θ cos φ

sin φ
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3D rotation

Rotate image before 

placing on unrolled sphere

(x,y,z)

cos φ

φ

cos θ cos φ

sin φ

_    _

_    _

p = R p

(sinθcosφ, sinφ, cosθcosφ)
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Radial distortion
Correct for “bending” in wide field of view lenses

To model lens distortion
• Use above projection operation instead of standard projection matrix multiplication

Apply radial distortion

Apply focal length 
translate image center

Project                
to “normalized” 

image coordinates
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Fisheye lens

Extreme “bending” in ultra-wide fields of view
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Matching features

What do we do about the “bad” matches?
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RAndom SAmple Consensus

Select one match, count inliers
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RAndom SAmple Consensus

Select one match, count inliers
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Least squares fit

Find “average” translation vector



RANSAC for estimating homography

RANSAC loop:

1. Select four feature pairs (at random)

2. Compute homography H (exact)

3. Compute inliers where ||pi’, H pi|| < ε

Keep largest set of inliers

Re-compute least-squares H estimate using all 

of the inliers
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Simple example: fit a line

Rather than homography H (8 numbers) 

fit y=ax+b (2 numbers a, b) to 2D pairs

58



Simple example: fit a line

Pick 2 points

Fit line

Count inliers

59

3 inliers



Simple example: fit a line

Pick 2 points

Fit line

Count inliers

60

4 inliers



Simple example: fit a line

Pick 2 points

Fit line

Count inliers

61

9 inliers



Simple example: fit a line

Pick 2 points

Fit line

Count inliers

62

8 inliers



Simple example: fit a line

Use biggest set of inliers

Do least-square fit

63



RANSAC
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red: rejected by 2nd nearest 

neighbor criterion

blue:  Ransac outliers

yellow:  inliers
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Image Stitching—review

1. Align the images over each other

• camera pan ↔ translation on cylinder

2. Blend the images together  (demo)



Full-view (360° spherical) 

panoramas
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Full-view Panorama

+

+

+

+
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Texture Mapped Model
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Global alignment

• Register all pairwise overlapping images

• Use a 3D rotation model (one R per image)

• Use direct alignment (patch centers) or 

feature based

• Infer overlaps based on previous matches 

(incremental)

• Optionally discover which images overlap 

other images using feature selection 

(RANSAC)



Recognizing Panoramas

Matthew Brown & David Lowe

ICCV’2003
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Recognizing Panoramas

[Brown & 
Lowe, ICCV’03]
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Finding the panoramas
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Finding the panoramas
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Finding the panoramas
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Finding the panoramas
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Fully automated 2D stitching

Demo
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http://windows.microsoft.com/en-US/windows-live/photo-gallery

http://windows.microsoft.com/en-US/windows-live/photo-gallery#photogallery=overview
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Rec.pano.: system components

1. Feature detection and description

• more uniform point density

2. Fast matching (hash table)

3. RANSAC filtering of matches

4. Intensity-based verification

5. Incremental bundle adjustment

[M. Brown, R. Szeliski, and S. Winder. Multi-image 
matching using multi-scale oriented patches, 
CVPR'2005]
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Probabilistic Feature Matching
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RANSAC motion model
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RANSAC motion model
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RANSAC motion model
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Probabilistic model for verification



How well does this work?

Test on 100s of examples…



How well does this work?

Test on 100s of examples…

…still too many failures (5-10%)

for consumer application



Matching Mistakes: False Positive
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Matching Mistakes: False Positive
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Matching Mistake: False Negative

Moving objects: large areas of disagreement
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Matching Mistakes

Accidental alignment

• repeated / similar regions

Failed alignments

• moving objects / parallax

• low overlap

• “feature-less” regions

(more variety?)

No 100% reliable algorithm?
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How can we fix these?

Tune the feature detector

Tune the feature matcher (cost metric)

Tune the RANSAC stage (motion model)

Tune the verification stage

Use “higher-level” knowledge

• e.g., typical camera motions

→ Sounds like a big “learning” problem

• Need a large training/test data set (panoramas)



Image Blending
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Image feathering

Weight each image proportional to its distance 

from the edge

(distance map [Danielsson, CVGIP 1980]

1. Generate weight map for each image

2. Sum up all of the weights and divide by sum:

weights sum up to 1:  wi’ = wi / ( ∑i wi)
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Image Feathering
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Feathering

0
1

0
1

+

=
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Effect of window size

0

1 left

right

0

1
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Effect of window size

0

1

0

1
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Good window size

0

1

“Optimal” window:  smooth but not ghosted

• Doesn’t always work...



Richard Szeliski Image Stitching 104

Pyramid Blending

Burt, P. J. and Adelson, E. H., A multiresolution spline with applications to image 

mosaics, ACM Transactions on Graphics, 42(4), October 1983, 217-236. 

http://www-bcs.mit.edu/people/adelson/publications/abstracts/spline83.html


Richard Szeliski Image Stitching 105

Laplacian

level

4

Laplacian

level

2

Laplacian

level

0

left pyramid right pyramid blended pyramid
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Laplacian image blend

1. Compute Laplacian pyramid

2. Compute Gaussian pyramid on weight

image (can put this in A channel)

3. Blend Laplacians using Gaussian blurred 

weights

4. Reconstruct the final image

Q: How do we compute the original weights?

A: For horizontal panorama, use mid-lines

Q: How about for a general “3D” panorama?
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Weight selection (3D panorama)

Idea: use original feather weights to select

strongest contributing image

Can be implemented using L-∞ norm: (p = 10)

wi’ = [wi
p / ( ∑i wi

p)]1/p
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Poisson Image Editing

Blend the gradients of the two images, then integrate

[Perez et al, SIGGRAPH 2003]



De-Ghosting
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Local alignment (deghosting)

Use local optic flow to compensate for small 

motions [Shum & Szeliski, ICCV’98]
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Local alignment (deghosting)

Use local optic flow to compensate for radial 

distortion [Shum & Szeliski, ICCV’98]
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Region-based de-ghosting

Select only one image in regions-of-difference

using weighted vertex cover 

[Uyttendaele et al., CVPR’01]
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Region-based de-ghosting

Select only one image in 

regions-of-difference using 

weighted vertex cover 

[Uyttendaele et al., 

CVPR’01]
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Cutout-based de-ghosting

•Select only one image 

per output pixel, using 

spatial continuity 

•Blend across seams 

using gradient continuity 

(“Poisson blending”)

[Agarwala et al., SG’2004]
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Cutout-based compositing

Photomontage [Agarwala et al., SG’2004]

• Interactively blend different images:

group portraits
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PhotoMontage

Technical details:

• use Graph Cuts to optimize seam placement

Demo:

• Windows Live

Photo Gallery

Photo Fuse
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Cutout-based compositing

Photomontage [Agarwala et al., SG’2004]

• Interactively blend different images:

focus settings
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Cutout-based compositing

Photomontage [Agarwala et al., SG’2004]

• Interactively blend different images:

people’s faces
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More stitching possibilities

• Video stitching

• High dynamic range image stitching

• Flash + Non-Flash

• Video-based rendering

Related lecture: 

Computational Photography
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Other types of mosaics

Can mosaic onto any surface if you know the geometry

• See NASA’s Visible Earth project for some stunning earth 

mosaics

– http://earthobservatory.nasa.gov/Newsroom/BlueMarble/

http://earthobservatory.nasa.gov/Newsroom/BlueMarble/
http://earthobservatory.nasa.gov/Newsroom/BlueMarble/
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Slit images

y-t slices of the video volume are known as slit images

• take a single column of pixels from each input image
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Slit images:  cyclographs
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Slit images:  photofinish
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Final thought:

What is a “panorama”?

Tracking a subject

Repeated (best) shots

Multiple exposures

“Infer” what photographer wants?



( Questions )

[ The End ]


