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Alignment of Deformable Objects 

Associated by Non-Rigid Deformations 



Representations and Mappings 

¨  Representations 
¤  Point-sets 
¤ Curves 
¤  Surfaces 
¤  Implicit representations (fields) 

¨  Mappings 
¤  Rigid 
¤ Affine 
¤ Non-rigid deformations (splines) 
¤ Diffeomorphisms 
¤ Geodesics 
 
 



Non-rigid  
Point  
Matching 
Problem 

* Noise. 

* Outliers. 

* High dimensional   
parameter space. 

* Hard optimization 
problem. 

Difficulties: 

Correspondence Transformation 
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Correspondence 
•  Given two point sets:  

•  Match matrix 
–  Inner 

–  All rows and columns (except outlier) sum up to 1,  
 1-to-1 correspondence. 
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mai =1⇔ Point xi correspondstopoint va.
mai = 0⇔ Otherwise.
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–  Outlier row and column :M
mK+1,i =1⇔ Point xi isanoutlier.
ma,N+1 =1⇔ Point va isanoutlier.
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Match Matrix (M) 

¨  Correspondence: 

Outlier 

Outlier 

1 

1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 
1v

2v

3v

1x

2x

3x

4x

1v

2v

3v

1x 2x 3x 4x
aim



Transformation 

¨  Non-rigid spatial transformation f. 
¨  Contains affine transformation as a special case. 
¨  Spatial transformation comprises multiple functions – 

one per dimension. 
¨  Spatial transformation is regularized using linear 

operator L. 

¨  Original feature points     get mapped to  
Lf 2 Standard regularization 

f (va )va



Joint Optimization Formulation 

 
¨  Linear Assignment (Outliers) for Correspondence 
¨  Least-squares objective for Transformation 

•  Under constraints: 

min
M , f

E(M, f ) = mai xi − f (va )
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Discrete solutions to correspondence 

¨  Objective function on correspondence is linear assignment (almost) + 
outliers. 

¨  Totally unimodular (TU) property: 
¤  Unimodular matrix is a square matrix with determinant +1 or -1. 
¤  Totally unimodular constraint matrix: every square non-singular submatrix is 

unimodular. 
¨  Constraint matrix for correspondence + outliers is TU. 
¨  The vector b comprised of integers. 
¨  Optimal values occur for integer values of M. 
¨  Linear programming will yield integer solutions – in this case discrete {0,1} 

solutions. 
¨  Example: Transportation problem (used in earth mover’s distance). 

minx c
T x

subject to 
Ax = b

When do we get integer solutions when using an LP solver? 



Modeling the Transformation 

¨  Properties: 
¤  TPS contains an affine transform 
¤  One function for each coordinate 
¤  Least-squares data term can be generalized to include correspondence 

Espline ( f ) = (ui − f (vi ))
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The Thin-Plate Spline (TPS) 

 

ETPS(A,c) = ‖ui − Avi − K
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Kernelize 



The RPM objective function 

¨  Putting it all together: 

¨  Linear assignment + outliers for correspondence. 
¨  Least-squares problem for transformation. 
¨  Regularization and outlier parameters. 
¨  TPS-RPM: Alternate between assignments and TPS. 
¨  Iterative closest point (ICP): AVOID. 
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Implicit Correspondence 
Density estimation and I-divergence minimization 
Shape atlas estimation 



Gaussian Mixture Models 

Mixture density used: where 

multivariate Gaussian, isotropic covariance 

negative log-likelihood: 



Implicit Correspondence: Density Distances 

 

¨  Estimate Jensen-Shannon (JS) divergence using law of large numbers approach 
¨  Non-rigid deformation estimation using thin-plate splines  

Point Set X Point Set Y 
Original RPM 

Mixture Model   
Parameters 

  

Gaussian 
Mixture Model 

Mixture Model   
Parameters 

Cluster means, variance   

Gaussian 
Mixture Model 

Jensen-Shannon  
Divergence 

Cluster means, variance 



Motivating the Jensen-Shannon divergence 
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Motivating the JS divergence (contd.) 
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Logarithm of likelihood ratio leads to JS divergence (using law of large numbers) 
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Estimating An Atlas 
¨  Given multiple sample shape (sample point sets), compute the average shape for 

which the joint distance between the samples and the average is the shortest. 

Average ? 

Difficult if the correspondences between the sample points are unknown. 



Atlas estimation 



Brain Mapping motivation 

Brain 
Functional 

Image 

Alignment of Subjects 

Comparison of Subjects After Alignment 

Direct Comparison of Subjects Distribution Before 
Alignment 

Distribution After 
Alignment 



Nine 3D hippocampal point-sets  



Atlas Estimation in 3D 



Overlay of point-sets Estimated atlas 

Point-sets warped into atlas space Affine warping 



Diffeomorphisms 





Minimize distance between densities 

 

¨  Closed form L2 distance between Gaussian mixtures 
¨  No correspondences at either the cluster or point level  

Point Set X Point Set Y 
Original RPM 

Mixture Model   
Parameters 

Cluster Centers Set  

Gaussian 
Mixture Model 

Mixture Model   
Parameters 

Cluster Centers Set  

Gaussian 
Mixture Model 

Closed-form  
L2 distance 

µ ν



   distance between Gaussian mixtures 

Distance in closed form for Gaussian mixtures 

Nonlinear optimization on (A,c) 

 θ
(2) is the warped version of  θ (2)

 E2 (A,c) = D[p(x |θ
(1) ), p(x | θ (2) )]+ λ trace(cTKc)

 
D[p(x |θ (1) ), p(x |θ (2) )]= p(x |θ (1) )− p(x |θ (2) )⎡⎣ ⎤⎦D∫
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Shape L’Âne Rouge 
 
A red donkey solves Klotski 



Square-root densities 
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Shape is a point on hypersphere 
due to  Fisher-Rao geometry  

Wavelets 



Shape L’Âne Rouge: Sliding Wavelets  



Geometry of Shape Matching 
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Localized Alignment Via 

¨  Local shape differences will cause coefficients to 
shift. 

¨  Permutations ⇒ Translations 
¤ Slide coefficients back into alignment. 

Sliding 
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Penalize Excessive Sliding 

¨  Location operator,           , gives centroid of each (j,k) basis. 
¨  Sliding cost equal to square of Euclidean distance. 

),( kjr



Sliding Objective 

¨  Objective minimizes over penalized permutation 
assignments 

¨  Solve via linear assignment using cost matrix 

¤ where Θi  is vectorized list of ith shape’s coefficients and 
D is the matrix of distances between basis locations. 
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Effects of λ 



Discussion 

¨  Implicit and explicit approaches to shape 
correspondence 

¨  RPM: point-to-point matching 
¨  JS divergence: density matching 
¨  Diffeomorphic matching 
¨  L2 distance: density matching in closed form 
¨  Fast square-root wavelet density matching (Klotski) 
¨  All approaches use separate regularization 



The shape matching ecosystem 

¨  Henry Baird thesis (‘84): Linear assignment 
¨  Besl and McKay (‘92): Iterative Closest Point (ICP) 
¨  Yuille and Grzywacz (‘88): Motion coherence theory 
¨  Chui and Rangarajan  (‘00): TPS-RPM 
¨  Myronenko et al. (’09): Coherent Point Drift (CPD) 
¨  Klotski and Earth Mover’s Distance (EMD): (’08 & earlier) 
¨  Lee and Won (‘11): TPRL (topology preserving relax. lab.) 
¨  L2 distance minimization: (Jian et al. ‘05, Yuille et al. ’13) 
¨  Information-theoretic shape matching: Principe (‘12) 
¨  Shapes and diffeomorphisms: Laurent Younes book 
 


