SHAPE MATCHING WITH IMPLICIT AND EXPLICIT CORRESPONDENCE

CV School UCLA Anand Rangarajan, Dept. of CISE, Univ. Florida

Alignment of Deformable Objects

20 40 60 80 100120140

Representations and Mappings

Representations

- Point-sets
- Curves
- Surfaces
- Implicit representations (fields)
- Mappings
 - Rigid
 - Affine
 - Non-rigid deformations (splines)
 - Diffeomorphisms
 - Geodesics

Non-rigid Point Matching Problem

Data Point Set

+ Template Point Set

Difficulties:

* High dimensional parameter space.

* Hard optimization problem.

* Noise.

* Outliers.

Correspondence

Transformation

Correspondence

- Given two point sets: $X\{x_i, i = 1, 2, ..., N\}, V\{v_a, a = 1, 2, ..., K\}$
- Match matrix M

- Inner
$$M(K \times N)$$
:

$$\begin{cases}
m_{ai} = 1 \Leftrightarrow \text{Point } x_i \text{ corresponds to point } v_a, \\
m_{ai} = 0 \Leftrightarrow \text{Otherwise.}
\end{cases}$$

– Outlier row and column M : $\begin{cases} m_{K+1,i} = 1 \Leftrightarrow \text{Point } x_i \text{ is an outlier.} \\ m - 1 \Leftrightarrow \text{Doint } x_i \text{ is an outlier.} \end{cases}$

$$m_{a,N+1} = 1 \Leftrightarrow$$
 Point v_a is an outlier.

- All rows and columns (except outlier) sum up to 1, \rightarrow 1-to-1 correspondence.

Match Matrix (M)

Transformation

- □ Non-rigid spatial transformation *f*.
- Contains affine transformation as a special case.
- Spatial transformation comprises multiple functions one per dimension.
- Spatial transformation is regularized using linear operator L.

$$\left\|Lf\right\|^2$$
 Standard regularization

 \Box Original feature points v_a get mapped to $f(v_a)$

Joint Optimization Formulation

- Linear Assignment (Outliers) for Correspondence
- Least-squares objective for Transformation

$$\min_{M,f} E(M,f) = \sum_{a=1}^{K} \sum_{i=1}^{N} m_{ai} ||x_i - f(v_a)||^2 + \lambda ||Lf||^2 - \zeta \sum_{a=1}^{K} \sum_{i=1}^{N} m_{ai}$$

Outliers

Regularization

Under constraints:

$$\begin{cases} \sum_{a=1}^{K+1} m_{ai} = 1, & \text{for } i = 1, \dots, N. \\ \sum_{i=1}^{N+1} m_{ai} = 1, & \text{for } a = 1, \dots, K. \end{cases}$$

Discrete solutions to correspondence

Objective function on correspondence is linear assignment (almost) + outliers.

$$\min_{x} c^{T} x$$
$$Ax = b$$

□ Whendowdelgeffintegersolutions when using an LP solver?

- Unimodular matrix is a square matrix with determinant +1 or -1.
- Totally unimodular constraint matrix: every square non-singular submatrix is unimodular.
- □ Constraint matrix for correspondence + outliers is TU.
- □ The vector **b** comprised of integers.

subject to

- \Box Optimal values occur for integer values of *M*.
- Linear programming will yield integer solutions in this case discrete {0,1} solutions.
- Example: Transportation problem (used in earth mover's distance).

Modeling the Transformation

The Thin-Plate Spline (TPS)

$$E_{\text{spline}}(f) = \sum_{i=1}^{N} (u_i - f(v_i))^2 + \lambda \iint_{\Omega} \left[\left(\frac{\partial^2 f}{\partial x^2} \right)^2 + 2 \left(\frac{\partial^2 f}{\partial x \partial y} \right)^2 + \left(\frac{\partial^2 f}{\partial y^2} \right)^2 \right] dx \, dy$$

Kernelize

$$E_{\text{TPS}}(A,c) = \sum_{i=1}^{N} \| u_i - Av_i - \sum_{j=1}^{N} K(v_i, v_j)c_j \|^2 + \lambda \operatorname{trace}(c^T K c)$$

- Properties:
 - TPS contains an affine transform
 - One function for each coordinate
 - Least-squares data term can be generalized to include correspondence

The RPM objective function

Putting it all together:

$$E_{\text{RPM}}(M,A,c) = \sum_{a=1}^{K} \sum_{i=1}^{N} m_{ai} \| x_a - Av_i - \sum_{j=1}^{N} K(v_i, v_j)c_j \|^2 + \lambda \operatorname{trace}(c^T K c) - \zeta \sum_{a=1}^{K} \sum_{i=1}^{N} m_{ai}$$

Correspondence Transformation

- □ Linear assignment + outliers for correspondence.
- Least-squares problem for transformation.
- Regularization and outlier parameters.
- TPS-RPM: Alternate between assignments and TPS.
- □ Iterative closest point (ICP): AVOID.

Implicit Correspondence

Density estimation and I-divergence minimization

Shape atlas estimation

Gaussian Mixture Models

Mixture density used:

 $p(\mathbf{x}|\mu_a,\sigma) = \frac{1}{(2\pi\sigma^2)^{\frac{D}{2}}} \exp\{-$

$$p(\mathbf{x}|\theta) = \frac{1}{K} \sum_{a=1}^{K} p(\mathbf{x}|\mu_a, \sigma) \quad \text{where}$$
$$\frac{1}{2\pi^2} ||\mathbf{x} - \mu_a||^2 \}$$

multivariate Gaussian, isotropic covariance

Implicit Correspondence: Density Distances

- Estimate Jensen-Shannon (JS) divergence using law of large numbers approach
- Non-rigid deformation estimation using thin-plate splines

Motivating the Jensen-Shannon divergence

Motivating the JS divergence (contd.)

Overlay with identity

Overlay without identity

$$\log \Lambda = \log \frac{p(Z \mid \theta^{(1)}, \theta^{(2)})}{p(X \bigcup Y \mid \theta^{(1)}, \theta^{(2)})} = \frac{\prod_{i=1}^{N_1 + N_2} \left\{ \frac{N_1}{N_1 + N_2} \sum_{a=1}^{K_1} p(Z_i \mid \theta^{(1)}_a) + \frac{N_2}{N_1 + N_2} \sum_{b=1}^{K_2} p(Z_i \mid \theta^{(2)}_b) \right\}}{\prod_{i=1}^{N_1} \sum_{a=1}^{K_1} p(X_i \mid \theta^{(1)}_a) \prod_{j=1}^{N_2} \sum_{b=1}^{K_2} p(Y_j \mid \theta^{(2)}_b)}$$

Logarithm of likelihood ratio leads to JS divergence (using law of large numbers)

Estimating An Atlas

Given multiple <u>sample shape</u> (sample point sets), compute the <u>average shape</u> for which the joint distance between the samples and the average is the shortest.

Difficult if the correspondences between the sample points are unknown.

Atlas estimation

Brain Mapping motivation

Nine 3D hippocampal point-sets

Atlas Estimation in 3D

Point-sets warped into atlas space

Affine warping

Diffeomorphisms

Minimize distance between densities

- Closed form L2 distance between Gaussian mixtures
- No correspondences at either the cluster or point level

ℓ_2 distance between Gaussian mixtures

$$D[p(\mathbf{x} | \boldsymbol{\theta}^{(1)}), p(\mathbf{x} | \boldsymbol{\theta}^{(2)})] = \int_{\mathbb{R}^{D}} \left[p(\mathbf{x} | \boldsymbol{\theta}^{(1)}) - p(\mathbf{x} | \boldsymbol{\theta}^{(2)}) \right]^{2} d\mathbf{x}$$

Distance in closed form for Gaussian mixtures

 $E_{\ell_2}(A,c) = D[p(\mathbf{x} | \boldsymbol{\theta}^{(1)}), p(\mathbf{x} | \boldsymbol{\tilde{\theta}}^{(2)})] + \lambda \operatorname{trace}(c^T K c)$

 $\tilde{\theta}^{(2)}$ is the warped version of $\theta^{(2)}$

Nonlinear optimization on (A,C)

Shape L'Âne Rouge

A red donkey solves Klotski

Square-root densities

Shape L'Âne Rouge: Sliding Wavelets

Shape is a point on hypersphere

Geometry of Shape Matching

Point set representation Wavelet density estimation

Fast Shape Similarity Using Hellinger Divergence

$$D(p_1 \parallel p_2) = \int \left(\sqrt{p(\mathbf{x} \mid \Theta_1)} - \sqrt{p(\mathbf{x} \mid \Theta_2)} \right)^2 d\mathbf{x}$$
$$= 2 - 2\left(\Theta_1^T \Theta_2\right)$$
$$Or \text{ Geodesic Distance}$$
$$D(p_1, p_2) = \cos^{-1}(\Theta_1^T \Theta_2)$$

Localized Alignment Via Sliding

- Local shape differences will cause coefficients to shift.
- \Box Permutations \Rightarrow Translations
 - Slide coefficients back into alignment.

Penalize Excessive Sliding

Location operator, r(j,k), gives centroid of each (j,k) basis.
 Sliding cost equal to square of Euclidean distance.

Sliding Objective

•Permutation

Objective minimizes over penalized permutation assignments $E(\pi) = -\left[\sum_{j_0,k} \alpha_{j_0,k}^{(1)} \alpha_{j_0,\pi(k)}^{(2)} + \sum_{j>j_0,k} \beta_{j,k}^{(1)} \beta_{j,\pi}^{(2)}\right] + \sum_{j,k} \beta_{j,\pi}^{(1)} \beta_{j,\pi}^{(2)} + \sum_{j,k} \beta_{j,\pi}^{(1)} \beta_{j,\pi}^{(2)}\right]$

Malinear assignment using cost matrix

 $C = \Theta_1 \Theta_2^T + \lambda D$

 \square where Θ_i is vectorized list of ith shape's coefficients and D is the matrix of distances between basis locations.

Effects of λ

Discussion

- Implicit and explicit approaches to shape correspondence
- RPM: point-to-point matching
- □ JS divergence: density matching
- Diffeomorphic matching
- L2 distance: density matching in closed form
- Fast square-root wavelet density matching (Klotski)
- All approaches use separate regularization

The shape matching ecosystem

- Henry Baird thesis ('84): Linear assignment
- Besl and McKay ('92): Iterative Closest Point (ICP)
- Yuille and Grzywacz ('88): Motion coherence theory
- □ Chui and Rangarajan ('00): TPS-RPM
- □ Myronenko et al. ('09): Coherent Point Drift (CPD)
- Klotski and Earth Mover's Distance (EMD): ('08 & earlier)
- □ Lee and Won ('11): TPRL (topology preserving relax. lab.)
- □ L2 distance minimization: (Jian et al. '05, Yuille et al. '13)
- Information-theoretic shape matching: Principe ('12)
- Shapes and diffeomorphisms: Laurent Younes book