SHAPE MATCHING WITH IMPLICIT AND EXPLICIT CORRESPONDENCE

Alignment of Deformable Objects

Associated by Non-Rigid Deformations

Representations and Mappings

\square Representations

- Point-sets
- Curves
\square Surfaces
\square Implicit representations (fields)
\square Mappings
\square Rigid
- Affine
\square Non-rigid deformations (splines)
- Diffeomorphisms
\square Geodesics

Non-rigid Point Matching Problem

Difficulties:

* High dimensional parameter space.
* Hard optimization problem.
* Noise.
* Outliers.

Correspondence
Transformation

Correspondence

- Given two point sets: $X\left\{x_{i}, i=1,2, \ldots, N\right\}, V\left\{v_{a}, a=1,2, \ldots, K\right\}$
- Match matrix M
- Inner $M(K \times N)$:

$$
\left\{\begin{array}{lc}
m_{a i}=1 \Leftrightarrow & \text { Point } x_{i} \text { corresponds to point } v_{\mathrm{a}} . \\
m_{a i}=0 \Leftrightarrow & \text { Otherwise } .
\end{array}\right.
$$

- Outlier row and column M :

$$
\left\{\begin{array}{l}
m_{K+1, i}=1 \Leftrightarrow \quad \text { Point } x_{i} \text { is an outlier. } . \\
m_{a, N+1}=1 \Leftrightarrow \text { Point } v_{a} \text { is an outlier. }
\end{array}\right.
$$

- All rows and columns (except outlier) sum up to 1 , \rightarrow 1-to-1 correspondence.

Match Matrix (M)

Correspondence:
$v_{1} \longleftrightarrow x_{1}$
$v_{2} \longleftrightarrow x_{2}$
$v_{3} \longleftrightarrow x_{3}$

Outlier $\longleftrightarrow x_{4}$

Transformation

\square Non-rigid spatial transformation f.
\square Contains affine transformation as a special case.
\square Spatial transformation comprises multiple functions one per dimension.
\square Spatial transformation is regularized using linear operator L.
$\|L f\|^{2}$ Standard regularization
\square Original feature points v_{a} get mapped to $f\left(v_{a}\right)$

Joint Optimization Formulation

- Linear Assignment (Outliers) for Correspondence
\square Least-squares objective for Transformation
$\min _{M, f} E(M, f)=\sum_{a=1}^{K} \sum_{i=1}^{N} m_{a i}\left\|x_{i}-f\left(v_{a}\right)\right\|^{2}+\lambda\|L f\|^{2}-\zeta \sum_{a=1}^{K} \sum_{i=1}^{N} m_{a i}$
- Under constraints:

Regularization

$$
\left\{\begin{array}{l}
\sum_{a=1}^{K+1} m_{a i}=1, \quad \text { for } i=1, \ldots, N \\
\sum_{i=1}^{N+1} m_{a i}=1, \quad \text { for } a=1, \ldots, K
\end{array}\right.
$$

Discrete solutions to correspondence

\square Objective function on correspondence is linear assignment (almost) + outliers.

$$
\min _{x} c^{T} x
$$

subject to

$$
A x=b
$$

\square Whthenudioadel getitinbegear selutions when using an LP solver?

- Unimodular matrix is a square matrix with determinant +1 or -1 .
- Totally unimodular constraint matrix: every square non-singular submatrix is unimodular.
\square Constraint matrix for correspondence + outliers is TU.
\square The vector b comprised of integers.
\square Optimal values occur for integer values of M.
\square Linear programming will yield integer solutions - in this case discrete $\{0,1\}$ solutions.
\square Example: Transportation problem (used in earth mover's distance).

Modeling the Transformation

The Thin-Plate Spline (TPS)

$$
E_{\text {spline }}(f)=\sum_{i=1}^{N}\left(u_{i}-f\left(v_{i}\right)\right)^{2}+\lambda \iint_{\Omega}\left[\left(\frac{\partial^{2} f}{\partial x^{2}}\right)^{2}+2\left(\frac{\partial^{2} f}{\partial x \partial y}\right)^{2}+\left(\frac{\partial^{2} f}{\partial y^{2}}\right)^{2}\right] d x d y
$$

Kernelize

$$
E_{\mathrm{TPS}}(A, c)=\sum_{i=1}^{N}\left\|u_{i}-A v_{i}-\sum_{j=1}^{N} K\left(v_{i}, v_{j}\right) c_{j}\right\|^{2}+\lambda \operatorname{trace}\left(c^{T} K c\right)
$$

\square Properties:
\square TPS contains an affine transform

- One function for each coordinate
\square Least-squares data term can be generalized to include correspondence

The RPM objective function

\square Putting it all together:
$E_{\mathrm{RPM}}(M, A, c)=\sum_{a=1}^{K} \sum_{i=1}^{N} m_{a i}\left\|x_{a}-A v_{i}-\sum_{j=1}^{N} K\left(v_{i}, v_{j}\right) c_{j}\right\|^{2}+\lambda \operatorname{trace}\left(\mathrm{c}^{T} K c\right)-\zeta \sum_{a=1}^{K} \sum_{i=1}^{N} m_{a i}$
Correspondence
Transformation
\square Linear assignment + outliers for correspondence.
\square Least-squares problem for transformation.
\square Regularization and outlier parameters.
\square TPS-RPM: Alternate between assignments and TPS.
\square Iterative closest point (ICP): AVOID.

Implicit Correspondence

Density estimation and I-divergence minimization
Shape atlas estimation

Gaussian Mixture Models

Mixture density used: $p(\mathbf{x} \mid \theta)=\frac{1}{K} \sum_{a=1}^{K} p\left(\mathbf{x} \mid \mu_{a}, \sigma\right)$ where
$p\left(\mathbf{x} \mid \mu_{a}, \sigma\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{D}{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}-\mu_{a}\right\|^{2}\right\}$
multivariate Gaussian, isotropic covariance

Implicit Correspondence: Density Distances

\square Estimate Jensen-Shannon (JS) divergence using law of large numbers approach
\square Non-rigid deformation estimation using thin-plate splines

Motivating the Jensen-Shannon divergence

Motivating the JS divergence (contd.)

Overlay with identity

Overlay without identity

$$
\log \Lambda=\log \frac{p\left(Z \mid \theta^{(1)}, \theta^{(2)}\right)}{p\left(X \bigcup Y \mid \theta^{(1)}, \theta^{(2)}\right)}=\frac{\prod_{i=1}^{N_{1}+N_{2}}\left\{\frac{N_{1}}{N_{1}+N_{2}} \sum_{a=1}^{K_{1}} p\left(Z_{i} \mid \theta_{a}^{(1)}\right)+\frac{N_{2}}{N_{1}+N_{2}} \sum_{b=1}^{K_{2}} p\left(Z_{i} \mid \theta_{b}^{(2)}\right)\right\}}{\prod_{i=1}^{N_{1}} \sum_{a=1}^{K_{1}} p\left(X_{i} \mid \theta_{a}^{(1)}\right) \prod_{j=1}^{N_{2}} \sum_{b=1}^{K_{2}} p\left(Y_{j} \mid \theta_{b}^{(2)}\right)}
$$

Logarithm of likelihood ratio leads to JS divergence (using law of large numbers)

Estimating An Atlas

\square Given multiple sample shape (sample point sets), compute the average shape for which the joint distance between the samples and the average is the shortest.

Difficult if the correspondences between the sample points are unknown.

Atlas estimation

Brain Mapping motivation

Nine 3D hippocampal point-sets

Atlas Estimation in 3D

Overlay of point-sets

Point-sets warped into atlas space

Diffeomorphisms

Clustering of Point Set 1

Diffeomorphism of Space

Clustering of Point Set 2

Minimize distance between densities

\square Closed form $\mathbf{L 2}$ distance between Gaussian mixtures
\square No correspondences at either the cluster or point level

ℓ_{2} distance between Gaussian mixtures

$$
D\left[p\left(\mathbf{x} \mid \theta^{(1)}\right), p\left(\mathbf{x} \mid \theta^{(2)}\right)\right]=\int_{\mathbb{R}^{D}}\left[p\left(\mathbf{x} \mid \theta^{(1)}\right)-p\left(\mathbf{x} \mid \theta^{(2)}\right)\right]^{2} d \mathbf{x}
$$

$$
D\left[p\left(\mathbf{x} \mid \theta^{(1)}\right), p\left(\mathbf{x} \mid \theta^{(2)}\right)\right] \propto-\sum_{a=1}^{K_{1}} \sum_{\alpha=1}^{K_{2}} \frac{2 \exp \left\{-\frac{1}{2\left(\sigma^{2}+\xi^{2}\right)}\left\|\mu_{a}-\nu_{\alpha}\right\|^{2}\right\}}{K_{1} K_{2}\left(\sigma^{2}+\xi^{2}\right)^{\frac{3}{2}}}+\sum_{\alpha=1}^{K_{2}} \sum_{\beta=1}^{K_{2}} \frac{\exp \left\{-\frac{1}{4 \xi^{2}}\left\|\nu_{\alpha}-\nu_{\beta}\right\|^{2}\right\}}{2^{\frac{3}{2}} K_{2}^{2} \xi^{3}}
$$

Distance in closed form for Gaussian mixtures
$E_{\ell_{2}}(A, c)=D\left[p\left(\mathbf{x} \mid \theta^{(1)}\right), p\left(\mathbf{x} \mid \tilde{\theta}^{(2)}\right)\right]+\lambda \operatorname{trace}\left(c^{T} K c\right)$
$\tilde{\theta}^{(2)}$ is the warped version of $\theta^{(2)}$
Nonlinear optimization on (A, C)

Shape L'Âne Rouge

A red donkey solves Klotski

Square-root densities

Shape L'Âne Rouge: Sliding Wavelets

Geometry of Shape Matching

Localized Alignment Via Sliding

\square Local shape differences will cause coefficients to shift.
\square Permutations \Rightarrow Translations
\square Slide coefficients back into alignment.

Penalize Excessive Sliding

\square Location operator, $\mathbf{r}(j, k)$, gives centroid of each (j, k) basis.
\square Sliding cost equal to square of Euclidean distance.

Sliding Objective

\square Objective minimizes over penalized permutation assignments
via linear assignment using cost matrix

$$
C=\Theta_{1} \Theta_{2}^{T}+\lambda D
$$

\square where Θ_{i} is vectorized list of i th shape's coefficients and D is the matrix of distances between basis locations.

Effects of λ

Discussion

\square Implicit and explicit approaches to shape correspondence
\square RPM: point-to-point matching
\square JS divergence: density matching
\square Diffeomorphic matching
\square L2 distance: density matching in closed form
\square Fast square-root wavelet density matching (Klotski)
\square All approaches use separate regularization

The shape matching ecosystem

\square Henry Baird thesis ('84): Linear assignment
\square Besl and McKay ('92): Iterative Closest Point (ICP)
\square Yuille and Grzywacz ('88): Motion coherence theory
\square Chui and Rangarajan ('00): TPS-RPM
\square Myronenko et al. ('09): Coherent Point Drift (CPD)
\square Klotski and Earth Mover's Distance (EMD): ('08 \& earlier)
\square Lee and Won ('11): TPRL (topology preserving relax. lab.)
\square L2 distance minimization: (Jian et al. '05, Yuille et al. '13)
\square Information-theoretic shape matching: Principe ("12)
\square Shapes and diffeomorphisms: Laurent Younes book

