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What 1s the problem we’re trying to solve?
Surprisingly hard to be precise about....
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Laptev et al
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Computer vision grand challenge:
Dynamic scene understanding

indoors

T

M
"\‘ P‘

‘:“]

AT I"‘"

Objects:

cars, glasses,
people, etc...

outdoors

. -
m%_, .4

S

Actions:
drinking, running,
door exit, car
enter, efc...

Scene categories:

indoors, outdoors,
street scene, etc...

Geometry:

Street, wall, field,
stair, etc...

outdoors

_,;1 uﬁ.'t i

—

outdoors <car
Wt o NN
- ’ "
"‘1
{ i’
@y, % >
countryside
2
crash

Thursday, August 8, 2013



Computer vision grand challenge:
Dynamic scene understanding
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Computer vision grand challenge:
Dynamic scene understanding

NAOOTS” P outdoors OURIOUTON
. -1 mﬂl’
. TR Hg_lt rwis
‘\\ & l”m : - vy B o
- - N = (gl
Obijects: Actions: N 0TS

cars, glasses, drinking, running,
door exit, car

people, etc... . ' :
enter, etc... : f Y (|
A > -y
. — \ countryside
Scene categories:

indoors, outdoors, Geometry: —
Street, wall, field,
street scene, etc..il - W I

C stair, etc... J road.. ——

Thursday, August 8, 2013




Why focus on people/actions?
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Lots (most?) of training data
comes 1n video form

Data:
B EA[E Motion Gallery
ina TV—chapnels recorded
. since 60’s

>34K hours of video
uploads every day

CCTV SURVEILLANCE CAMERA
@ @ SALE) ~30M surveillance cameras in US
|5 AR .
=> ~700K video hours/day
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Lots (most?) of test data
comes 1n video form

Education: How do |
Wearable: where did I leave my keys? make a pizza?

Predicting 01“
Counting people
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Why focus on people/actions?

How many person-pixels are in the video?
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Why focus on people/actions?

How many person-pixels are in the video?

Movies | TV
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Why focus on people/actions?

How many person-pixels are in the video?
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One approach

Generalize ‘object detection’ techniques to spacetime windows

Spacet1me (XYT)
template

Grab-Cup Event

Ke et al, ICCVO05
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One approach

Generalize ‘object detection’ techniques to spacetime windows

Spacet1me (XYT)
template
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One approach

Generalize ‘object detection’ techniques to spacetime windows

Spacet1me (XYT)
template T

Grab—Cup Event

Ke et al, ICCVO05
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Spacetime correlation

Shechtman & Irani, CVPRO05
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Spacetime correlation
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Shechtman & Irani, CVPRO05
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Spacetime correlation
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Shechtman & Irani, CVPRO05
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Flexible spacetime part templates

C Run
C Sit C V\ilkj \\> Catch
gy |
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But what’s the des1red output here?
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But what’s the desired output here?
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Will we have a “throw cat in the trash bin” template?
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But what’s the desired output here?

Will we have a “throw cat in the trash bin” template?
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Long-tail distributions

Long Tail

Challenge: actions seem to follow an extremely heavy tail distribution
Complicates dataset collection and annotation
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Roadmap

Data/benchmark analysis

Spatiotemporal features

Spatiotemporal models
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Image benchmarks

Russell, et z2I. CVPR 2008

{} PASCALZ

Like 1t or not, crucial for advances in the field

Large-scale annotated video datasets are more rare - why?
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Action recognition benchmarks
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Hollywood, CVPR’09 UCF Youtube, CVPR’08 VIRAT, CVPR’11

1) Video is cumbersome to label (difficult to define natural categories outside sports)
2) Collecting interesting but natural video is surprisingly hard
3) Most current work focuses on K-way classification (similar to image recognition 10 years ago)
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Classification performance around 100%
“Outdated”
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TRECVID

board-trick, feeding animal, fishing, wedding, woodworking, birthday, changing vehicle tire, flash mob, vehicle
unstuck, grooming an animal, sandwich making, parade, parkour, repairing appliance and sewing,...

State-of-the-art 1s around 5-10% accuracy
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Challenge 1: how we do know what to label?

Look for cues 1n language (how do people describe images/videos?)

Why weren't you honest with me? Why
did you keep your marriage a secret?

Rick sits down with Lisa.

Oh, it wasn't my secret, Richard. his is a lot of technology.

Victor wanted it that way. Not even Somebody’s sareensaver of a pumpkin.
Black laptop is connected to black Dell monitor.

our closest friends knew about our Old school Computer monitor with many stickers on it.
marriage. A refrigerator full of food.

Mining movie scripts
Everingham et al. BMVC
Laptev et al 08.

Ask people on turk for descriptions
Farhadi et al ECCV 10
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Challenge 1: how we do know what to label?

Look for cues in medical literature on “activities of daily living” (ADLs)

external | 7 laundry
hygiene

preparing

fooc

actions

eating
food

entertainment

S washing hand/face

6 drying hand/face
1 combing hair

facial 2 make up

hygiene | oral 3 brushing teeth
hygiene | 4 dental floss

15 vacuuming

8 washing dishes

9 moving dishes

liquid 2 drinking water/bottle

3 drinking water/tap

solid '{ 14 making cold food/snack

vatching TV

17 using computer

18 using cell

Pirsivash & Ramanan CVPR12
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Table 1: AMAT Compound Tasks and Task Components

. Cut “Meat”

1. Pick up knife and fork*
2. Cut “meat” (Play-Doh)*t
3. Fork to mouth

. Foam “Sandwich”

4. Pick up foam ““sandwich”

5. “Sandwich’ to mouth

Eat With Spoon

6. Pick up spoon

7. Pick up dried kidney bean with spoon
8. Spoon to mouth

. Drink From Mug

9. Grasp mug handle
10. Mug to mouth

. Comb Hair

11. Pick up comb
12. Comb hairt

. Open Jar

13. Grasp jar top*
14. Screw jar top open*

. Tie Shoelace

15. Tie shoelace*t

Use Telephone

16. Phone received to ear
17. Press phone number




Challenge 1: how we do know what to label?

Actions vs goal-directed behaviors

Chase vs follow
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Challenge 2: how we do obtain interesting data?

Script 1t, using actors Use real but “boring” data
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Challenge 2: how we do obtain interesting data?

Egocentric/wearable cameras
Pirsivash & Ramanan CVPR12

“Functional” ADLs
Easy to capture variety-rich data
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Challenge 2: how we do obtain interesting data?

Egocentric/wearable cameras
Pirsivash & Ramanan CVPR12

“Functional” ADLs
Easy to capture variety-rich data
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Challenge 3: how we do produce detailed annotations?

Crowdsource labeling

for the entire video. I Instructions + New Object

car 12 LA
| U Outside of view frame
ded or obstructed
| Parked
¥ Driving
I Reversing
s« Person 11 L
' Outside aof view frame
I Occluded or obstructed
~ Walking
_| Running
) Standing
Car 10 L
I Qutside of view frame
I Oceluded or abstructed
| Parked
| Driving
¥ Reversing
Car9 LA
Ul Qutside of view frame -
Rewind Play

Disable Resize? Hide Boxes? Hide Labels? Slower  Slow Mormal Fast # Save Work

Vondrick et al “VATIC” ECCV10, NIPS11, IICV 13
Lessons: Interface design matters
Use experts, not the crowd
Active annotation helps
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Roadmap

Data/benchmark analysis

Spatiotemporal features

Spatiotemporal models
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Spacetime features

Simple approach: just use spatial features

Surprisingly (and annoyingly) effective

h‘. o W — _,3.'-' o — .'l

rr bt Pl

Build a bank of static-image detectors (of poses, objects, ....)
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Exploiting motion

Spatiotemporal interest points (STIPS)

[Laptev 2005]
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XYT descriptor evaluation

Detection (AP)

Harris3D Cuboids Hessian Dense

o HOG3D 43.7% 45.7% 41.3% 45.3%
2

2 HOG/HOF 45.2% 46.2% 46.0% 47.4%

g HOG 32.8% 39.4% 36.2% 39.4%

g HOF 43.3% 42.9% 43.0% 45.5%

Cuboids - 45.0% - -

E-SURF - - 38.2% -

Thursday, August 8, 2013

[Wang, Ullah, Kliser, Laptev, Schmid, 2009]



Capturing the “right” temporal motion

'.

Image motion confounds camera translation,
object translation, and nonrigid deformations
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Capturing the “right” temporal motion

Image motion confounds camera translation,
object translation, and nonrigid deformations

Stabilized camera Stabilized object Stabilized camera + object
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Motion features for detection 1n videos

= = = 91% Shapelet
86% Poselnv
= = = 80% LatSvm-V1
74% FtrMine
73% HikSvm
68% HOG
= = = 58% MultiFtr
—68% HogLbp
63% LatSvm-V2
= = 62% Pls
= = §60% FeatSynth
57% FPDW
= = 56% ChnFtrs
= 54% Crosstalk
51% MultiFtr+Motion
48% MultiResC
= m 37% SDtBoost
— 36% SDISVM

(0]
—
©
et
)]
R
S

107 107 10°
false positives per image

Caltech Pedestrian Benchmark; reduce miss rate from 48% to 36%

Park et al CVPR13
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Roadmap

Data/benchmark analysis

' Motion Features

I Tracking I

Spatiotemporal features

Spatiotemporal models
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Why do we need to track?

Spacetime window maybe “shearing”
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Why do we need to track?

Spacetime window maybe “shearing”
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Tracking

Immense literature

S(x,z) = local templates + spatial relations + temporal relations

Historically, last term has been focus of tracking community

Given zi, predict ze+1 with P(z+/|z:)

e.g., particle filtering, Isard & Blake



Extreme form of problem:
multi-object tracking
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Estimate number of tracks and their extent

Do not assume manual initialization
Estimate birth and death of each track
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Tracking by detection
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Detect candidates
Link detections over time into tracks
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Multi-object tracking as integer/linear programming

View as combinatorial problem of what detections to turn on/off

Jiang et al CVPRO7
Zhang et al CVPROS
Berclaz et al PAMI2011
Andriyenko and Schindler ECCV10
Pirsiavash, Ramanan, Fowlkes CVPR11
Butt and Collins CVPR13
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Trellis Graph

O O
O O O
O O @, O
of window

Pairwise cost of transition

Use dynamic programming (DP) to find single track
(e.g., Vitterbi algorithm)
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Trellis Graph Lo
alirwise cost

S Birth cost
/ Death cost
7 1 [ XON% o

Shortest path from S to T = best variable-length track

Still can use DP
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Min-cost flow problem

(generalization of min-cut / max-flow)

Zhang, Li, Nevatia
0 CVPROS

Cost of a K-unit flow = sum of flow along each edge * cost

1) Capacity along each edge is 1
2) Sum of flow into a node = sum of flow out
(ensures non-overlapping tracks)
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Exact solution for K>1

Problem: once we instantiate a track, we cannot edit it

Solution: compute shortest path on residual graph
augmented with reserve edges

— ©
— \ — *}
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e —

[ ——

—

New tracks can “suck flow” out of existing tracks

Keep repeating until next instantiated track increases cost
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Okay... so what about tracking articulations?

Which one 1s correct?
What should a single-image pose estimation alg. output?
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N-best decoding

Generate N high-scoring candidates with simple
(tree) model, and evaluate with complex model

Popular in speech, but why not vision?

Pixel
locations

head torso leg
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N-best decoding

Generate N high-scoring candidates with simple
(tree) model, and evaluate with complex model

Popular in speech, but why not vision?

Pixel
locations

head torso leg
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-best maximal decoding

N-best with “NMS” or “mode-finding”

Park and Ramanan, ICCV11
Yadollahpour et al. ECCV12
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N-best maximal decoding

Pixel
locations

head torso leg

Intuition: backtrack from all part “max-marginals”, not just root

(can we done without any noticeable increase in computation)

Park and Ramanan, ICCV 2011
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N-best maximal decoding

Park & Ramanan, “N-best decoders for part models” ICCV 2011

Philosophy: Delay hard decisions as much as possible

Candidate interest:points
Candidate paris

Candidate poses
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Maximal poses from a single frame

Correct one picked out by temporal context (tracker)
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Aside: other ways of representing uncertainty

Log-linear
conditional models

ir
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Tracking by articulated detection

.

Problem: linking up these detections won’t work
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Recall: Why 1s finding people difficult?

s BRI PR

occlusion & clutter
Classic “nuisance factors” in image recognition
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Recall: Why 1s finding people difficult?
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Classic “nuisance factors” in image recognition
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Tracking by repeated detection
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Tracking as model-building
[

ORourke & Badler 80

Hogg 83 Ramanan et al.
Rehg & Kanade 95 PAMI 07

lIoffe & Forsyth 01

Toyama & Blake 01

Sigal et al. 04

A generic object template must be invariant

We want to build a model of the object as we track it
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Track through occlusions
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Discriminative clothing models

d.

2002 World Series

motion blur &interlacing
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Track long footage (10,000 frames)

L::' | " (,; 3 N 5 s o D:DD

extreme pose motion blur fast movement
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Olympic woes

silver, not gold —> al} @
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Olympic woes

silver, not gold —> [iad}

Kwan led after the short program. In the long program, skating to Lyra Angelica by the
British composer William Awyn, the 17-year-old turned in a clean, if cautious, effort.
Kwan didn't make a major error -- with only one slight wobble on a triple jump -- earning

her a solid row of 5.9s on presentation from the judges. As flowers rained upon the ice from
her fans, the gold medal, it seemed, was hers. Still, her conservative routine earned five 5.7s

for technical merit, and the door was opened, however slight, for Lipinski.
http://espn.go.com/classic/biography/s/Kwan_Michelle.html
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The culprit
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The culprit

]
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Unexpected/unlikely motions often very important
The motion prior P(z:+:|z:) may smooth out such subtleties
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Tracking multiple people

Independently track each figure

« <% oREE

Ramanan & Forsyth
CVPR 03

Clothing appearance 1s no longer a nuisance

@ 5 B

person Deva Bryan John
detector detector detector detector
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Roadmap

Data/benchmark analysis

Spatiotemporal features

Spatiotemporal models
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Spatiotemporal models

Data-driven

Thursday, August 8, 2013

\ G /Walk

Model-driven
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Data-driven action recognition

3D motion
library

{run,walk, wave, etc.}

_|_

annotated
video

original video 2D track
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Data-driven action recognition

3D motion
library

{run,walk, wave, etc.}

_|_

= Motion Synthesizerl 2

match 1/2 second clips of motion ‘

annotated
video

original video 2D track
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(High-level)
spatiotemporal
models

Pipeline surprisingly rare (e.g., doesn’t work on TrecVid)
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Recognizing structured actions

Making tea from a wearable camera
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A
tart boilin Do other things : :
i 1561 T 0 OMCT TAINg Pour 1n cup Drink tea
water (while waiting)
start wait steep time
boiling water tea leaves
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How do we capture long-term structure?

°-o-¢

Markov models
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What’s magic behind semi-markov models?

O-0-®
A

Walk
Stand

Crouch
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Semi-markov models
R

start wait steep time
boiling water tea leaves
WalkO
Walk Walk1
Stand Walk2
Crouch Stand0
t1 2 3 Stand 1

tl 2 t3

Add counting states and force sparse transitions (Walk0 to Walk1)
Counting state costs can model arbitrary priors over segment lengths
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How do we capture long-term structure?

recursively enumerable

context-sensitive

context-free

Exploit models for language

sentence

TN

noun-phrase verb-phrase

T VAR

article adjective noun verb adverb

i eyt iglplois et Guithdly™

Context-free grammar
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gramimar

www. PROMIENPEZPC.GLT.PL
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“background”
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Clean&Jerk action =[ |
Snatch action =
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Example parse

Zhu et al time
Bobick et al
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A look back

Data/benchmark analysis

Spatiotemporal features

Spatiotemporal models
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