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Given an interface in  Rn,  call it  ,  of codimension one, 

Move it normal to itself under velocity  
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O & Sethian (1987) 

 

Also: Unreferenced papers by  

Dervieux, Thomassett, (1979, 1980). 

Some of the key ideas in obscure proceedings. 

 



Trivial fact 

Zero level contour  
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Merging is difficult 

         3D is difficult 

Reparametrization needed 

Advect (x)  1 if  x   

                     0 outside 

                 +  Merging ok 

-- Spurious discontinuity 

-- Hard to compute curvature. 



Phase field 

e.g. 

Mean Curvature 
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get curvature 

interface O() 

     width 



But x < ,  otherwise 

(Thm: MBO, phase field gives the wrong answer) 

Need adaptive grid, 

NO  in our approach. 



(1) Reinitialize 

         signed distance to   (SSO). 

(2)  vn  extends smoothly off of   (CMOS). 

(3)  Local level set (near interface)  || < . 

Easy to implement 

Near boundary singularities, 2 or 3D. 



Also 
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High order accurate ENO schemes for HJ equations 

(Kinks develop) 

[OSe] [OSh] 



Theoretical Justification 

 

Viscosity solutions for scalar 2nd order (or 1st order) 

Evolution eqns. 

 

Motion by mean curvature e.g. 
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ESS showed same as classical limit 
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f = 

as   0

Got e.g. motion of square by mean curvature. 



Level Set Dictionary 
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4.  Delta function on an interface 
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5.  Characteristic function  of (t) 
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6.  Surface integral of p(x,t) over  
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7.  Volume integral of p(x,t) over  

  dxHtxp )(),( 

8. Distance reinitialization d(x,t) = signed distance to 

      nearest point on  
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as    d  very fast near d = 0. 



9. Smooth extension of a quantity e.g.  vn on , off of . 

      Let  vn = p(x,t) 
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very fast near  d = 0. 

10.  Local level set method. 

Solve PDE within x  or so of  d = 0. 



11.  Fast marching method:  Tsitsiklis (1993) 

Rediscovered by (1995):  Helmsen P.C.D.,…, & Sethian 
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Use heap-sort, Godunov’s Hamiltonian (upwind, 

viscosity soln) 

 

Solve in  O(N log N) 

 

(First order accurate), jazzed up hyperbolic space 

Marching. 

 

For this problem, probably fastest. 

Although local level set more general & accurate. 



For more complicated Hamiltonians 
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H  convex in grad phi 

 

Can do a simple local update                using a new 

Formula of Tsai, et. al. (2001) 

 

Sweep in pre-ordained directions.  Converges rapidly.  No 

heap sort.  No large search and initialization regions. 

Zhao: “convergence theorem” in special cases. 
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Now, with Kao, Jiang & O, can do a very simple sweeping 

method in very general cases. 


