WHY THE WORLD LOVES THE LEVEL SET METHOD (AND RELATED) METHODS

Stan Osher

Mathematics Department UCLA sjo@math.ucla.edu

and

Level Set Systems, Inc. 1058 Embury St. Pacific Palisades, CA 90272-2501 sjo@levelset.com Google: "Level Set Method"

\approx 53,000,000 responses

Osher-Sethian original paper (1988) Now cited \approx 9,000 times (google scholar)

Book

S. Osher & R.P. Fedkiw

Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag (2002)

<u>Also</u>

S. Osher & N. Paragios (Eds)

Geometric Level Set Methods in Imaging, Vision & Graphics

Springer-Verlag (2003)

<u>Also</u> Course at SIGGRAPH (2004) Los Angeles, August 2004

Springer

Given an interface in \mathbb{R}^n , call it Γ , of codimension one,

Move it normal to itself under velocity \vec{v}

 $\vec{v} = \vec{v}$ (x, geometry, external physics)

O & Sethian (1987)

Also: Unreferenced papers by Dervieux, Thomassett, (1979, 1980).

Some of the key ideas in obscure proceedings.

Trivial fact

Zero level contour

$$\phi(x,t) = 0$$
$$\frac{d}{dt}\phi(x(t),t) = 0$$
$$\varphi_t + \vec{v} \cdot \vec{\nabla}\varphi = 0$$

Normal to
$$\Gamma: \vec{n} = \frac{\nabla \varphi}{|\nabla \varphi|}$$

$$\varphi_t + v_n | \vec{\nabla} \varphi | = 0$$
$$v_n = \vec{v} \cdot \frac{\vec{\nabla} \varphi}{|\vec{\nabla} \varphi|}$$

Tracking:

 $\equiv 0$ outside

+ Merging ok

- -- Spurious discontinuity
- -- Hard to compute curvature.

Phase field

e.g.

Mean Curvature

$$u_t = \Delta u - \frac{1}{\varepsilon} f_u$$

get curvature

interface $O(\varepsilon)$

width

But $\Delta x < \varepsilon$, otherwise

(Thm: MBO, phase field gives the wrong answer)

Need adaptive grid,

<u>NO ε </u> in our approach.

(1) Reinitialize

 $\phi \rightarrow$ signed distance to Γ (SSO).

- (2) $v_n \rightarrow$ extends smoothly off of Γ (CMOS).
- (3) Local level set (near interface) $|\varphi| < \varepsilon$.

Easy to implement

Near boundary singularities, 2 or 3D.

Also

$$v_{n} = v_{n}(\vec{n}), \quad v_{n}(\vec{n}) = \gamma \left(\frac{\nabla \varphi}{|\nabla \varphi|}\right)$$
$$\varphi_{t} + |\nabla \varphi| \gamma \left(\frac{\nabla \varphi}{|\nabla \varphi|}\right) = 0$$

High order accurate ENO schemes for HJ equations(Kinks develop)[OSe] [OSh]

Theoretical Justification

Viscosity solutions for scalar 2nd order (or 1st order) Evolution eqns.

Motion by mean curvature e.g.

$$\varphi_t = |\nabla \varphi| \nabla \cdot \frac{\nabla \varphi}{|\nabla \varphi|}$$

ESS showed same as classical limit

$$u_t = \Delta u - \frac{1}{\varepsilon} f_u$$

as $\varepsilon \downarrow 0$

Got e.g. motion of square by mean curvature.

Level Set Dictionary

 $\Gamma(t) \{ x \mid \varphi(x,t) = 0 \}$ $\Omega(t) b d d \qquad \text{by} \qquad \Gamma(t)$ $\Omega(t) = \{ x \mid \varphi(x,t) < 0 \}$

Unit normal

1.

2.

3.

$$\vec{n} = +\frac{\vec{\nabla}\varphi}{|\vec{\nabla}\varphi|}$$

Mean curvature

$$\kappa = \nabla \cdot \left(\frac{\vec{\nabla} \varphi}{|\vec{\nabla} \varphi|} \right)$$

4. Delta function on an interface

 $\delta(\varphi) |\nabla \varphi|$

5. Characteristic function χ of $\Omega(t)$

$$\chi = H(-\varphi)$$

$$H(x) \equiv 1 \quad \text{if} \quad x > 0$$

$$H(x) \equiv 0 \quad \text{if} \quad x < 0$$

6. Surface integral of p(x,t) over Γ

$$\int_{R^n} p(x,t)\delta(\varphi) \,|\,\nabla\varphi\,|\,dx$$

7. Volume integral of p(x,t) over Ω

$$\int p(x,t)H(-\varphi)dx$$

8. Distance reinitialization d(x,t) = signed distance to nearest point on Γ

$$|\nabla d| = 1 \quad d < 0 \quad \text{in} \quad \Omega, \quad d > 0 \quad \text{in} \quad \Omega^{c}$$
$$d = 0 \quad \text{on} \quad \Gamma$$
$$\frac{\partial \psi}{\partial \tau} + \operatorname{sign} \varphi(|\nabla \psi| - 1) = 0$$

as
$$\tau \uparrow \psi \rightarrow d$$
 very fast near $d = 0$.

9. Smooth extension of a quantity e.g. v_n on Γ , off of Γ .

Let $v_n = p(x,t)$

$$\frac{\partial q}{\partial \tau} + (\operatorname{sign} \varphi) \left(\frac{\nabla \varphi}{|\nabla \varphi|} \cdot \nabla q \right) = 0$$
$$q(x,0) = p(x,t)$$

very fast near d = 0.

10. Local level set method.

Solve PDE within $6\Delta x$ or so of d = 0.

11. Fast marching method: Tsitsiklis (1993)

Rediscovered by (1995): Helmsen P.C.D.,..., & Sethian

$$\varphi_t + v_n(\vec{x}) | \nabla \varphi | = 0$$
$$v_n > 0$$

Use heap-sort, Godunov's Hamiltonian (upwind, viscosity soln)

Solve in $O(N \log N)$

(First order accurate), jazzed up hyperbolic space Marching.

For this problem, probably fastest.

Although local level set more general & accurate.

For more complicated Hamiltonians

$$H(\vec{x}, \nabla \varphi) = c(\vec{x}) > 0$$

H convex in grad phi

Can do a simple *local* update $0 \\ 0 \\ 0 \\ 0 \\ 0$ using a new Formula of Tsai, et. al. (2001)

Sweep in pre-ordained directions. Converges rapidly. No heap sort. No large search and initialization regions. Zhao: "convergence theorem" in special cases.

Now, with Kao, Jiang & O, can do a very simple sweeping method in very general cases.