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Multiplicative noise removal on Frame coefficients [Durand, Fadili, Nikolova 09]

Multiplicative noise arises in various active imaging systems e.g. synthetic aperture radar

e Original image: S,
e One shot: X = Sonk

K K
e Data: X = % ’;1 Y =S, % ’;nk = Son where pdf(n) = Gamma density

e Log-data: v =logX =logS, +logn =ug+n

e Frame Coefficients: y = Wv = Wug + Wn

K:l

| K=1

(W curvelets)

-6 0

pdf(n) = pdf(nx) pdf(n)

Question 39 Please comment the noise distribution of Wn
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. . 0 if |y[i]| <T, . .
e Hard Thresholding: yr[i] = Vi € I, T > 0 (suboptimal).

y[i] otherwise

Ilz{ZEI . |y[’l,]|>T} and I():I\Il

e Restored coefficients: & = argmin F,(x) ({1 — TV energy)

Fy@) =20 Y |zl + X Y |zli] — yli]] + [Wa| v

'LEIO 'LGI]_

S = B exp (Wfa?) where ﬁv/ left inverse, B bias correction

Question 40  Explain the job the minimizer # of F, should do.

Question 41 What is the difference with the model on pp. 35-36 and why it is needed?

Some comparisons

e BS [Chesneau,Fadili,Starck 08]: Block-Stein thresholds the curvelet coefficients, =~
minimax(large class of images with additive noises), optimal threshold ¥ = 4.50524

e AA [Aubert,Aujol 08]: ¥ = — Log-Likelihood(X), ® =TV (X) (i.e. /& = MAP for %)

e SO [Shi,Osher 08]: relaxed inverse scale-space for %, (u) = ||v — u||3 + STV (u) ~ MAP(u)
Stopping rule: k* = max{k € N : Var(u® — u,) > Var(n)}.



Noisy Fields K =1 (512x512) SO: PSNR=9.59, MAE=196 AA: PSNR=15.74, MAE=76.66

o

¥ oy, W

BS: PSNR=22.52, MAE=35.22 Fields (original) Our: PSNR=22.89, MAE=33.67




Noisy K = 10 SO: PSNR=25.36, MAE=25.14  AA: PSNR=17.13, MAE=65.40

e

BS: PSNR=27.24, MAE=19.61 Fields (original) Our: PSNR=28.04, MAE=18.19




Noisy City K = 1 (512x512)  SO: PSNR=18.39, MAE=24.08

I . " '. - .\..-

BS: PSNR=22.25, MAE=13.96 City (original) Our: PSNR=22.64, MAE=13.39




Noisy K =4

~ -
.

BS: PSNR=24.92, MAE=9.87 City (original) Our: PSNR=25.84, MAE=9.09
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C. Clason, B. Jin, K. Kunisch
“Duality-based splitting for fast /1 — TV image restoration”, 2012,
http://math.uni-graz.at/optcon/projects/clason3/

Scanning transmission electron microscopy (2048 x 2048 image)

true image noisy image restoration
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¢, data-fidelity with concave regularization [Nikolova, Ng, Tam 12]

Fow) = Y Jasu — olil] + 8 w(IGjulla), /(0%) >0, @"(t) <0, ¥t >0
el JEJ
IZ{la"'aQ}a J:{la“'ar}

@ is strictly concave on [0, +00).

1 1%0 SO ZSO
a=4 a=0.9 o =2 5(i20823
t t " ;

0 10 0 10 0 10 0 10

Motivation

e This family of objective functions has never been considered before

e F, can be seen as an extension of L1 — TV

o
e U—(local) minimizer of /, == many ¢, j such that a;@ = v[t] and G;4 = 0



p—1

Minimizers of F,(u) = ||lu — v||1 + B Z e(|uli + 1] — u[i]])

=1
p(t) = %f_l for a« = 4
B e {78,---,156}
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8 € {157,--- ,400}

B €0.1x {16,---,30}

Data samples (00o0), Minimizer samples 4[i] (+4+).
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1—aof,a=0.1 8=25
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,a=4, =3
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(d) ()

Denoising: Data samples (0oo) are corrupted with Gaussian noise. Minimizer samples

uli] (+4-). Original (———). B—the largest value so that the gate at 71 survives.
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Constant pieces—solid black line.

Data points v|z| fitted exactly by the minimizer @ ().
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(41 —TV)

e(t)=t, B8=0.8

53

4, =13

o =

t

o t+17

closest to (/1 — TV)

(0%

the minimizer for p(t) =

the convex relaxation of £,
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On the figures, @ are global minimizers of £, (Viterbi algorithm)

Question 42  Can you sketch the main properties of the minimizers of F,?

Question 43  What seems being the role of the asymptotic of ?

Numerical evidence:

critical values 31, -+, 8, such that

e 5 € [Bi,Bir1) = the minimizer remains unchanged

o 3> B = the minimizer is simplified

Result proven (under conditions) for the minimizers of L; — TV [Chan, Esedoglu 2005]



Given v € R consider the function

U
Fo(w) = lu = vl + Bp(lul) for p(u) = 1o weR, B0

Question 44 Does F, have a global minimizer for any v? Explain.

Question 45  Determine ¢''(u) for u € R\ {0}.

Question 46 Show that Vv € R, any minimizer @ of F, obeys @ € {0,v}.

The reminder on p. 50 can help.

Question 47 Can you extend this result to the other ¢ on p. 627

68



e F, does have global minimizers, for any {a;}, for any v and for any g > 0.

e Let w be a (local) minimizer of F,. Set
Io = {ieI : a;a=v[i]}
Jo = {7 €edJ : Gjua =0}
4 is the unique point solving the liner system
a; 6 = vli] Vie I

Gia=0 VjedJdg
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Each pixel of a (local) minimizer @ of F, is involved in (at least)
one equation a;4 = v[i], or in (at least) one equation G;u = 0,

or in both types of equations.

e “Contrast invariance” of (local) minimizers

e The matrix with rows (ai,‘v’i < fo, G;,Vjy € fg) has full column rank

e All (local) minimizers of JF, are strict
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MR Image Reconstruction from Highly Undersampled Data

O-filling Fourier |- I5+TV Al +TV Our method

0.2 0.2 0.2

-0.15 -0.15 -0.15

Reconstructed images from 7% noisy randomly selected samples in the k-space.
at

Our method for gﬁ(t) = m
«
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MR Image Reconstruction from Highly Undersampled Data

Our method

O-filling Fourier

Reconstructed images from 5% noisy randomly selected samples in the k-space.
at

Our method for p(t) = 1
o




NI DEEL
NI MAITRE

NI CROQUETTES

Observed

Cartoon

1-TV
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NI DEEV
NI MAITRE
NI LROQUETTES

Our method, o(t) = -4
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7. Fully smoothed ¢; — TV

g Fo(u) = ¥(u,v) + B88(u), B>0 A V() = (1)
p _
U (u,v) = Z¢(U[Z] —v[t]) and ®(u) = Z¢(|qu|) p() = ¢l az)
\ 1=1 i / (041, 042) >0
{G; € R"*P} — forward discretization: ° Nid o IV
N4 Only vertical and horizontal differences: © & O © ® O
O O 0 O

N8 Diagonal differences are added.

(1, ) belong to the family of functions (-, ) : R — R satisfying

H1 For any a > 0 fixed, 0(-, ) is C522-continuous, even and 0" (t,a) > 0, Vt € R.

H2 For any a > 0 fixed, |#'(¢,«)| < 1 and for t > 0 fixed, it is strictly decreasing in o > 0

d
a >0 = lim 0'(t,a) =1 0 (t, o) = —6(t, )

t— o0 d

teR = lim ¢'(t,a) =1 and  lim 6'(¢t,a) =0.

a—0 a— 00

= JF, is a fully smoothed ¢; — TV energy.
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f1 Vi 4+«
t?2 + «
2 || alog (cosh <£>> tanh <£>
Q Q
g t
31 |t| — al 1+ —
t-atog (14+5) | o

Choices for 0(-, ) obeying H1 and H2. When « N\ 0, 0(-, «) becomes stiff near the origin.

-3 0 3 -3 0 3
_ 2 / _ 4
0(t) =VE+a  0(t) ==

Plots of f1 for &« = 0.05 (—) and for &« = 0.5 (— — —).




The minimizers 4

Real-valued original

of JF, can decrease the quantization noise
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[Nikolova, Wen, Chan 12]

e For any 8 >0, % (R?) has a unique minimizer function I/ : R? — RP which is C571.

Define G = | | | ] {g RV gli) = —glj] =1, i #j, glk] =0 if k ¢ {i,j}}

i=1j=1
All difference operators GG; belong to G.

Ng = U{UERP ; gU(v):O} and NIiOLpJ{UERp ; L{i(v):v[j]}

9c9g i=1j=1

Question 48 How to interpret the sets Ng and N7

e The sets Ng and Ny are closed in RP and obey
[LP(Ng)=0 and LP(N;)=0

The property is true for any 8 > 0 and (a1, az) > 0.
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e RP\ (Ng U Ny) is open and dense in RP.
The elements of (Ng U Ny) are highly exceptional in R?.

e The minimizers u of F, generically satisfy u[i] # @[j] for any (4, 7) such that ¢ # j and
ali] # vlj] for any (4, j).

The minimizers 4 of F, have pixel values that are different from
each other and different from any data pixel.

Question 49 Describe the precise consequences if /1 — TV is approximated

by a smooth function like £,.

Recall the illustration on p. 21 and the results in section 3 (p. 22) and section 4 (p. 29).
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Further... [Bauss, Nikolova, Steidl 13]

o For any o > 0 fixed, there is an inverse function (') " (-, 1) : (—1,1) — R which
is odd, C*~! and strictly increasing.

aq — ()" (y, aq) is also strictly increasing on (0, +c0), for any y € (0, 1).

o Set m := ||G||1. Then

A<l = |la—2v|e< @) (Bna1) VveERP

o Also, ||t —v|leo A ()" (Bn, 1) as az N\ 0.

[ We have a full control on the bound ||& — v||co- J

Question 50  Can you suggest applications where the properties of F, are important?
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Exact histogram specification
e v — input digital gray value m x n image / stored as an p = mn vector
o v[i]e{0,---,L—1} Vie{l,--- p} 8-bit image = L = 256
e Histogram of v: H, k] = %#{’U[z’] =k :ie{l,---,p}} Vke{0,---,L—1}
e Target histogram: (¢ = (¢[1],---,C[L])

e Goal of histogram specification (HS): convert v into @ so that Hy = (
order the pixels in v: i < j if v[i] < v[j]

i1 < < <] <= L)1 < < i

TV Vv

¢[1] ClL —1]

e lll-posed problem for digital (quantized) images since p > L

e An issue: obtain a meaningful total strict ordering of all pixels in v

Histogram equalization is a particular case of HS where (k| =p/L VYV ke {0,---L —1}



Histogram Equalization using Matlab sorting

Original black Matlab “sort”

Matlab “sort”
s

Uniform [0, ---,255]  Uniform [0, - - - ,255]
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Modern sorting algorithms

For any pixel v|i], extract K auxiliary information, ax[i], k € {1,--- , K, from v. Set ap := v. Then
i <7 if o[l <wlg] and arli] < ax|j] for some ke {0, ---,K}.
Local Mean Algorithm (LM) [Coltuc, Bolon, Chassery 06]

— If two pixels are equal and their local mean is the same, take a larger neighborhood.

— The procedure smooths edges and sorting often fails.

Wavelet Approach (WA) [Wan, Shi 07]
— Use wavelet coefficients from different subbands to order the pixels.

— Heavy and high level of failure.

Specialized variational approach (SVA) [Nikolova, Wen and Chan 12]
— Minimize F, for a parameter choice yielding ||i — v||cc < 0.1.

— Almost no failure, faithful order and fast algorithm. [Nikolova 13]

Some results using F, for color histogram specification

New fast color assignment algorithm. [Nikolova 13]

Comparison with the method of [Han, Yang, Lee 11]
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Original image HS by [Han Yang Lee 11]

059

err HS=0 le-3

corection 1 —> 5.65% corection 2 —> 0%
(6] 255 (¢} 255 0 255

Original image — (800 x 800 x 3).



Original image

et YRR

(0]

255

HS

by

[Han, Yang, Lee 11]

SR S -ﬂ i

(0]

Original image — 1000 x 1000 x 3.

Goal — enhance the snake.

e \
T

HS - ours

33

255



HS by [Han, Yang, Lee 11]

NN

(0] 255

(0] 255

0 255 (0]

Original image — 768 x 1024 x 3.

Goal — remove the flash effect.

255
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255



Knowledge on the features of the minimizers enables
new energies yielding appropriate solutions to be conceived

‘“ We’re in Act I of a digital revolution.’’

Jay Cassidy (film editor at Mathematical Technologies Inc.)

Thank you!
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