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Multiplicative noise removal on Frame coefficients [Durand, Fadili, Nikolova 09]

Multiplicative noise arises in various active imaging systems e.g. synthetic aperture radar

• Original image: So

• One shot: Σk = Soηk

• Data: Σ =
1

K

K∑
k=1

Σk = So
1

K

K∑
k=1

ηk = So η where pdf(η) = Gamma density

• Log-data: v = logΣ = log So + log η = u0 + n

• Frame Coefficients: y = Wv = Wu0 +Wn (W curvelets)

0 5 −6 0 2 −1 0 1 1 2 −1 0 1 −1 0 1

K=1

η = η1

K=1 K=1 K=10 K=10 K=10

pdf(η) = pdf(ηk) pdf(n) pdf
(
Wn

)
pdf(η) pdf(n) pdf

(
Wn

)
Question 39 Please comment the noise distribution of Wn
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• Hard Thresholding: yT [i] =

{
0 if |y[i]| 6 T,

y[i] otherwise
∀i ∈ I, T > 0 (suboptimal).

I1 = {i ∈ I : |y[i]| > T} and I0 = I \ I1

• Restored coefficients: x̂ = argmin
x

Fy(x) (ℓ1 − TV energy)

Fy(x) = λ0

∑
i∈I0

∣∣x[i]∣∣ + λ1

∑
i∈I1

∣∣x[i] − y[i]
∣∣ + ∥W̃x∥TV

Ŝ = B exp
(
W̃ x̂

)
, where W̃ left inverse, B bias correction

Question 40 Explain the job the minimizer x̂ of Fy should do.

Question 41 What is the difference with the model on pp. 35-36 and why it is needed?

Some comparisons

• BS [Chesneau,Fadili,Starck 08]: Block-Stein thresholds the curvelet coefficients, ≈
minimax(large class of images with additive noises), optimal threshold T = 4.50524

• AA [Aubert,Aujol 08]: Ψ = − Log-Likelihood(Σ), Φ = TV(Σ) (i.e. Fv ≡ MAP for Σ)

• SO [Shi,Osher 08]: relaxed inverse scale-space for Fv(u) = ∥v − u∥22 + βTV(u) ≈ MAP(u)

Stopping rule: k∗ = max{k ∈ IN : Var(u(k) − uo) > Var(n)}.
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Noisy Fields K = 1 (512×512) SO: PSNR=9.59, MAE=196 AA: PSNR=15.74, MAE=76.66

BS: PSNR=22.52, MAE=35.22 Fields (original) Our: PSNR=22.89, MAE=33.67
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Noisy K = 10 SO: PSNR=25.36, MAE=25.14 AA: PSNR=17.13, MAE=65.40

BS: PSNR=27.24, MAE=19.61 Fields (original) Our: PSNR=28.04, MAE=18.19
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Noisy City K = 1 (512×512) SO: PSNR=18.39, MAE=24.08 AA: PSNR=22.18, MAE=13.71

BS: PSNR=22.25, MAE=13.96 City (original) Our: PSNR=22.64, MAE=13.39
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Noisy K = 4 SO: PSNR=24.40, MAE=10.76 AA: PSNR=24.55, MAE=10.06

BS: PSNR=24.92, MAE=9.87 City (original) Our: PSNR=25.84, MAE=9.09
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C. Clason, B. Jin, K. Kunisch

“Duality-based splitting for fast ℓ1 − TV image restoration”, 2012,

http://math.uni-graz.at/optcon/projects/clason3/

Scanning transmission electron microscopy (2048× 2048 image)

true image noisy image restoration
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ℓ1 data-fidelity with concave regularization [Nikolova, Ng, Tam 12]�
�

�
�

Fv(u) =
∑
i∈I

∣∣aiu− v[i]
∣∣ + β

∑
j∈J

φ(∥Gju∥2), φ′(0+) > 0, φ′′(t) < 0, ∀t > 0

I = {1, · · · , q} , J = {1, · · · , r}

φ is strictly concave on [0,+∞).

φ(t)
α t

α t + 1
1 − αt, α∈(0, 1) ln(αt + 1) (t + ε)α, α∈(0, 1), ε>0 (· · · )
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1

t

α = 4
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1

t

φ

α = 0.5

0 10

2

t

φ

α = 2

0 10

2

t

φ

α = 0.3
ε = 0.02

Motivation

• This family of objective functions has never been considered before

• Fv can be seen as an extension of L1− TV

• û—(local) minimizer of Fv
?

=⇒ many i, j such that aiû = v[i] and Gjû = 0
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Minimizers of Fv(u) = ∥u − v∥1 + β

p−1∑
i=1

φ(|u[i + 1] − u[i]|)

φ(t) = αt
αt+1

for α = 4 φ(t) = ln(αt + 1) for α = 2

71

0

10

71

0

5

β ∈ {78, · · · , 156} β ∈ 0.1 × {10, · · · , 14}

71

0

10

71

0

5

β ∈ {157, · · · , 400} β ∈ 0.1 × {16, · · · , 30}
Data samples (◦◦◦), Minimizer samples û[i] (+++).



64
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(a) φ(t) = α t
α t+1 , α = 4, β = 3 (b) φ(t) = 1− αt, α = 0.1, β = 2.5

5 20 53 71

0

10

5 20 53 71

0

10

(c) φ(t) = ln(αt+ 1), α = 2, β = 1.3 (d) φ(t) = (t+ 0.1)α, α = 0.5, β = 1.4

Denoising: Data samples (◦◦◦) are corrupted with Gaussian noise. Minimizer samples

û[i] (+++). Original (−−−). β—the largest value so that the gate at 71 survives.
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Zooms
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53 71

(a) (b) (c) (d)
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12.5

Constant pieces—solid black line.

Data points v[i] fitted exactly by the minimizer û (�).
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5 20 53 71
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φ(t) = t, β = 0.8 (ℓ1 − TV) the minimizer for φ(t) = α t
α t+1

, α = 4, β = 3

the convex relaxation of Fv closest to (ℓ1 − TV)

0

10

5 20 53 71

0

10

error for φ(t) = α t
α t+1

, α = 4, β = 3 φ(t) = α t
α t+1 , α = 4, β = 3

∥original− û∥∞ = 0.24 original ∈ [0, 12], data v ∈ [−0.6, 12.9]



67

On the figures, û are global minimizers of Fv (Viterbi algorithm)

Question 42 Can you sketch the main properties of the minimizers of Fv?

Question 43 What seems being the role of the asymptotic of φ?

Numerical evidence:

critical values β1, · · · , βn such that

• β ∈ [βi, βi+1) ⇒ the minimizer remains unchanged

• β > βi+1 ⇒ the minimizer is simplified

Result proven (under conditions) for the minimizers of L1 − TV [Chan, Esedoglu 2005]
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Given v ∈ R consider the function

Fv(u) = |u− v|+ βφ(|u|) for φ(u) =
αu

1 + αu
u ∈ R, β > 0

Question 44 Does Fv have a global minimizer for any v? Explain.

Question 45 Determine φ′′(u) for u ∈ R \ {0}.

Question 46 Show that ∀ v ∈ R, any minimizer û of Fv obeys û ∈ {0, v}.

The reminder on p. 50 can help.

Question 47 Can you extend this result to the other φ on p. 62?
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• Fv does have global minimizers, for any {ai}, for any v and for any β > 0.

• Let û be a (local) minimizer of Fv. Set

Î0 = {i ∈ I : aiû = v[i]}
Ĵ0 = {j ∈ J : Gjû = 0}

û is the unique point solving the liner system aiû = v[i] ∀i ∈ Î0

Gjû = 0 ∀j ∈ Ĵ0

�
�

�
�

Each pixel of a (local) minimizer û of Fv is involved in (at least)

one equation aiû = v[i], or in (at least) one equation Gjû = 0,

or in both types of equations.

• “Contrast invariance” of (local) minimizers

• The matrix with rows
(
ai,∀i ∈ Î0, Gj, ∀j ∈ Ĵ0

)
has full column rank

• All (local) minimizers of Fv are strict
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MR Image Reconstruction from Highly Undersampled Data

0-filling Fourier ∥ · ∥22+TV ∥ · ∥1+TV Our method
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0
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−0.15

0

0.2

−0.15

0

0.2

Reconstructed images from 7% noisy randomly selected samples in the k-space.

Our method for φ(t) =
αt

αt+ 1
.
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MR Image Reconstruction from Highly Undersampled Data

0-filling Fourier ∥ · ∥22+TV ∥ · ∥1+TV Our method
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−0.06

0

0.08

Reconstructed images from 5% noisy randomly selected samples in the k-space.

Our method for φ(t) =
αt

αt+ 1
.
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Cartoon

Observed ℓ1-TV Our method, φ(t) = αt
αt+1
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7. Fully smoothed ℓ1 − TV�

�

�

�
Fv(u) = Ψ(u, v) + βΦ(u), β > 0

Ψ(u, v) =

p∑
i=1

ψ(u[i] − v[i]) and Φ(u) =
∑
i

φ(|Giu|)

ψ(·) .= ψ(·, α1)

φ(·) .= φ(·, α2)

(α1, α2) > 0

{Gi ∈ R1×p} – forward discretization:

N4 Only vertical and horizontal differences;

N8 Diagonal differences are added.

i
Ni4sic c ccc

c si Ni8c c cc c cc c c

(ψ,φ) belong to the family of functions θ(·, α) : R → R satisfying

H1 For any α > 0 fixed, θ(·, α) is Cs>2-continuous, even and θ′′(t, α) > 0, ∀ t ∈ R.

H2 For any α > 0 fixed, |θ′(t, α)| < 1 and for t > 0 fixed, it is strictly decreasing in α > 0

α > 0 ⇒ lim
t→∞

θ′(t, α) = 1 θ′(t, α)
.
=

d

dt
θ(t, α)

t ∈ R ⇒ lim
α→0

θ′(t, α) = 1 and lim
α→∞

θ′(t, α) = 0 .

⇒ Fv is a fully smoothed ℓ1 − TV energy.
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θ θ′

f1
√
t2 + α

t√
t2 + α

f2 α log

(
cosh

(
t

α

))
tanh

(
t

α

)
f3 |t| − α log

(
1 +

|t|
α

)
t

α+ |t|

Choices for θ(·, α) obeying H1 and H2. When α ↘ 0, θ(·, α) becomes stiff near the origin.

−3 0 3

3

−3 0 3

−1

0

1

−1 0 1

−5

0

5

θ(t) =
√
t2 + α θ′(t) = t√

t2+α
(θ′)

−1
(y) = y

√
α

1−y2

Plots of f1 for α = 0.05 (—–) and for α = 0.5 (−−−).
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The minimizers û of Fv can decrease the quantization noise

Real-valued original v quantized on {0, · · · , 15} Restored û
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[Nikolova, Wen, Chan 12]

• For any β > 0, Fv(Rp) has a unique minimizer function U : Rp → Rp which is Cs−1.

Define G .
=

p∪
i=1

p∪
j=1

{
g ∈ R1×p : g[i] = −g[j] = 1, i ̸= j, g[k] = 0 if k ̸∈ {i, j}

}
All difference operators Gi belong to G.

NG
.
=

∪
g∈G

{
v ∈ Rp : g U(v) = 0

}
and NI

.
=

p∪
i=1

p∪
j=1

{
v ∈ Rp : Ui(v) = v[j]

}

Question 48 How to interpret the sets NG and NI?

• The sets NG and NI are closed in Rp and obey

Lp(NG) = 0 and Lp(NI) = 0

The property is true for any β > 0 and (α1, α2) > 0.
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• Rp \ (NG ∪NI) is open and dense in Rp.

The elements of (NG ∪NI) are highly exceptional in Rp.

• The minimizers û of Fv generically satisfy û[i] ̸= û[j] for any (i, j) such that i ̸= j and

û[i] ̸= v[j] for any (i, j).

�



�
	The minimizers û of Fv have pixel values that are different from

each other and different from any data pixel.

Question 49 Describe the precise consequences if ℓ1 − TV is approximated

by a smooth function like Fv.

Recall the illustration on p. 21 and the results in section 3 (p. 22) and section 4 (p. 29).
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Further... [Bauss, Nikolova, Steidl 13]

• For any α1 > 0 fixed, there is an inverse function (ψ′)
−1

(·, α1) : (−1, 1) → R which

is odd, Cs−1 and strictly increasing.

α1 7→ (ψ′)
−1

(y, α1) is also strictly increasing on (0,+∞), for any y ∈ (0, 1).

• Set η := ∥G∥1. Then

βη < 1 ⇒ ∥û− v∥∞ 6 (ψ′)
−1 (

βη, α1

)
∀ v ∈ Rp

• Also, ∥û− v∥∞ ↗ (ψ′)
−1 (

βη, α1

)
as α2 ↘ 0.

�� ��We have a full control on the bound ∥û− v∥∞.

Question 50 Can you suggest applications where the properties of Fv are important?
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Exact histogram specification

• v – input digital gray value m× n image / stored as an p
.
= mn vector

• v[i] ∈ {0, · · · , L− 1} ∀ i ∈ {1, · · · , p} 8-bit image ⇒ L = 256

• Histogram of v: Hv[k] =
1
p#

{
v[i] = k : i ∈ {1, · · · , p}

}
∀ k ∈ {0, · · · , L− 1}

• Target histogram: ζ = (ζ[1], · · · , ζ[L])

• Goal of histogram specification (HS): convert v into û so that Hû = ζ

order the pixels in v: i ≺ j if v[i] < v[j]

i1 ≺ i2 ≺ · · · ≺ iζ[1]︸ ︷︷ ︸ ≺ · · · ≺ ip−ζ[L]+1 ≺ · · · ≺ ip︸ ︷︷ ︸
ζ[1] ζ[L− 1]

• Ill-posed problem for digital (quantized) images since p≫ L

• An issue: obtain a meaningful total strict ordering of all pixels in v

Histogram equalization is a particular case of HS where ζ[k] = p/L ∀ k ∈ {0, · · ·L− 1}
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Histogram Equalization using Matlab sorting

Original black Matlab “sort”

Sand Matlab “sort” Our ordering

0 255 Uniform [0, · · · , 255] Uniform [0, · · · , 255]
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Modern sorting algorithms

For any pixel v[i], extract K auxiliary information, ak[i], k ∈ {1, · · · ,K, from v. Set a0 := v. Then

i ≺ j if v[i] 6 v[j] and ak[i] < ak[j] for some k ∈ {0, · · · ,K}.

Local Mean Algorithm (LM) [Coltuc, Bolon, Chassery 06]

− If two pixels are equal and their local mean is the same, take a larger neighborhood.

− The procedure smooths edges and sorting often fails.

Wavelet Approach (WA) [Wan, Shi 07]

− Use wavelet coefficients from different subbands to order the pixels.

− Heavy and high level of failure.

Specialized variational approach (SVA) [Nikolova, Wen and Chan 12]

− Minimize Fv for a parameter choice yielding ∥û− v∥∞ / 0.1.

− Almost no failure, faithful order and fast algorithm. [Nikolova 13]

Some results using Fv for color histogram specification

New fast color assignment algorithm. [Nikolova 13]

Comparison with the method of [Han, Yang, Lee 11]
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Original image HS by [Han, Yang, Lee 11] HS - ours

0 255 0 255 0 255

0.
5 

 9

corection 1 −> 5.65%  corection 2 −> 0%     err HS=0 1e−3

Original image – (800× 800× 3).



83

Original image HS by [Han, Yang, Lee 11] HS - ours

0 255 0 255 0 255

Original image – 1000× 1000× 3.

Goal – enhance the snake.
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Original image HS by [Han, Yang, Lee 11] HS - ours

0 255

60
.8

7

0 255

63
.5

4

0 255

48
.0

1

0 255

0.
02

43

0 255

0.
5 

 9

corection 2 −> 83.2%     err HS=0 1e−3

0 255

0.
5 

 9

corection 1 −> 0.0917%  corection 2 −> 0%     err HS=0 1e−3

Original image – 768× 1024× 3.

Goal – remove the flash effect.
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�



�
	Knowledge on the features of the minimizers enables

new energies yielding appropriate solutions to be conceived

‘‘ We’re in Act I of a digital revolution.’’

Jay Cassidy (film editor at Mathematical Technologies Inc.)

Thank you!




