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Two convex optimization problems  

      minimization seeks a sparse solution to an underdetermined linear 
          system of equations: 
 
 
 
 
 
 
 
Robust PCA expresses an input data matrix as a sum of a  
      low -rank  matrix      and a sparse matrix     . 
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Two noise -aware variants  

Basis pursuit denoising  seeks a sparse near-solution to an 
underdetermined linear system: 
 
 
 
 
 
 
 
Noise-aware Robust PCA approximates an input data matrix as a sum of a  
      low -rank  matrix      and a sparse matrix     . 
 



CHRYSLER SETS STOCK SPLIT, HIGHER DIVIDEND

Chrysler Corp said its board declared a three-for-two stock split in the

form of a 50 pct stock dividend and raised the quarterly dividend by

seven pct .

The company said the dividend was raised to 37.5 cts a share from

35 cts on a pre-split basis, equal to a 25 ct dividend on a post -split

basis.

Chrysler said the stock dividend is payable April 13 to holders of

record March 23 while the cash dividend is payable April 15 to holders

of record March 23. It said cash will be paid in lieu of fract ional shares.

With the split , Chrysler said 13.2 mln shares remain to be purchased

in its stock repurchase program that began in late 1984. That program

now has a target of 56.3 mln shares with the latest stock split .

Chrysler said in a statement the act ions " re° ect not only our out -

standing performance over the past few years but also our opt imism

about the company's future."

,ÈÕàɯ×ÖÚÚÐÉÓÌɯÈ××ÓÐÊÈÛÐÖÕÚɯȱ 

ȱɯif we can solve these core optimization problems  
accurately , efficiently , and scalably .  

 



Key challenges: nonsmoothness and scale 

Nonsmoothness : structure-inducing regularizers  
    such as                     are not differentiable : 
 

   &ÙÌÈÛɯÍÖÙɯÚÛÙÜÊÛÜÙÌɯÙÌÊÖÝÌÙàɯȱ 
        ȱɯÊÏÈÓÓÌÕÎÐÕÎɯÍÖÙɯÖ×ÛÐÔÐáÈÛÐÖÕȭ 
 
 
 
Scale ȱɯÛà×ÐÊÈÓɯ×ÙÖÉÓÌÔÚɯÐÕÝÖÓÝÌɯɯɯɯɯɯɯɯɯɯɯɯɯɯɯɯɯɯɯɯɯɯɯunknowns , or more.  
 
 
Classical interior point methods (e.g., SeDuMi, SDPT3): great convergence  
  rate (linear or better), but                              cost per iteration. High accuracy for  
  small problems. 
 
First -order (gradient -like) algorithms : slower (sublinear) convergence rate, but  
  very cheap iterations.  Moderate accuracy even for large problems.  
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Why care? Practical impact of algorithm choice  

Time required to solve a 1,000 x 1,000 matrix recovery problem: 

Algorithm Accuracy Rank # iterations time (sec) 

IT  5.99e-006 50 101,268 8,550 119,370.3 

DUAL  8.65e-006 50 100,024 822 1,855.4 

APG 5.85e-006 50 100,347 134 1,468.9 

APGP  5.91e-006 50 100,347 134 82.7 

EALMP  2.07e-007 50 100,014 34 37.5 

IALMP  3.83e-007 50 99,996 23 11.8 

Four orders of magnitude improvement , just by choosing the right 
algorithm to solve the convex program.  
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This lecture: Three key techniques  

Proximal gradient methods: coping with nonsmoothness 
 

Optimal first -order methods: accelerating convergence 
 

Augmented Lagrangian  methods: handling constraints 

For more depth / breadth, please see the references at the end of    
    these slides or Lieven 5ÈÕËÌÕÉÌÙÎÏÌɀÚ lectures this afternoon! 

In this hour lecture, we will focus on three recurring ideas that allow  
  us to address the challenges of nonsmoothness and scale: 



Why worry about nonsmoothness? 

The best uniform rate of convergence for first -order methods *  for  
    minimizing              depends very strongly on smoothness: 
 
 
 
  Function class   Minimax  suboptimality  
   

  smooth            convex, differentiable  

  nonsmooth         convex 

* Such as gradient descent. See e.g., NesterovȮɯɁ(ÕÛÙÖËÜÊÛÖÙàɯ+ÌÊÛÜÙÌÚɯÖÕɯ"ÖÕÝÌßɯ.×ÛÐÔÐáÈÛÐÖÕɂ 



 

Can we exploit special structure of                     to get accuracy 
comparable to gradient descent (for smooth functions) ? 

Why worry about nonsmoothness? 

The best uniform rate of convergence for first -order methods *  for  
    minimizing              depends very strongly on smoothness: 
 
 
 
  Function class   Minimax  suboptimality  
   

  smooth            convex, differentiable  

  nonsmooth         convex 

For                                    , need                        iter. for worst nonsmooth                                                           



What does gradient descent do, anyway?  

Consider                      ,  with    convex, differentiable, and            -Lipschitz . 
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What does gradient descent do, anyway?  

Consider                      ,  with    convex, differentiable, and            -Lipschitz . 
 
 

        Gradient descent:  
 
 
 

Quadratic approximation to      around       :  
 
 
 
 
Key observation:  
 

   At each iteration, the gradient descent minimizes a (separable) quadratic  
    approximation to the objective function, formed at       .  
 
 



What does gradient descent do, anyway?  

Consider                      ,  with    convex, differentiable, and            -Lipschitz . 
 
 

        Gradient descent:  
 
 
 

Quadratic approximation to      around       :  
 
 
 
 
Key observation:  
 

   At each iteration, the gradient descent minimizes a (separable) quadratic  
    approximation to the objective function, formed at       .  
 
Rate for gradient descent:  
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Just approximate the smooth part:  
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Just approximate the smooth part:  
 
 
 
 
 
 

ȱɯÈÕËɯÛÏÌÕɯminimize to get the next iterate:  
 
 
 
 
 
This is called a proximal gradient algorithm . 



Proximal gradient algorithm  

                                    ,   with     convex differentiable,            -Lipschitz . 
 
 
 
 
 
 
 
Converges at the same rate as gradient descent: 
 
 
 

Efficient whenever we can easily solve the proximal problem  
 
 
 

   i.e., minimize      plus a separable quadratic.  

 
 

        Proximal Gradient:  
 
 



Prox. operators for structure -inducing norms  

For                          ,                       is given by soft thresholding  
 

  the elements of    : 
 
 
This operator shrinks all of the elements of     towards zero: 
 
 
 
 
 
 
 
It can be computed in linear time  (very efficient).  



Prox. operators for structure -inducing norms  

For                          ,                       is given by soft thresholding  
 

  the elements of    : 
 
 
For                             ,                       is given by soft thresholding  
 

  the singular values of      :  for                        ,  
 
 
 
Again efficient (same cost as a singular value decomposition).  
 
Similar expressions exist for other structure inducing norms.  
 



Summing up: proximal gradient  

                                    ,   with     convex differentiable,            -Lipschitz . 
 
 
 
 
 
 
 
Converges at the same rate as gradient descent: 
 
 
 
 

Efficient whenever we can easily solve the proximal problem  
 
 
 

This is the case for many structure -inducing norms.  

 
 

        Proximal Gradient:  
 
 



What have we accomplished so far?  

  Function class       Suboptimality  
   

  smooth            convex, differentiable  

  

   smooth + structured nonsmooth: 
  

                       +                                                     convex, 

  nonsmooth         convex 

 

Still a gap between convergence rate of proximal gradient, 
    and the optimal                rate for smooth    .   

 

Can we close this gap?   



Why is the gradient method suboptimal?  
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The heavy ball method treats the iterate as a point mass with momentum,  
   and hence, a tendency to continue moving in direction                       : 
 
 
         Heavy ball  



-ÌÚÛÌÙÖÝɀÚ optimal method  

Shares some intuition with heavy ball, but not identical.  
 
Heavy ball :                                                      
 
Nesterov :  
 
 
  

     with a very special choice of        to ensure the optimal rate: 



 
 
 
 

Again form a separable quadratic upper bound, but now at       : 
 
 
 
Again,  replace the gradient step with minimization of the upper bound:  
 
 
 
 
 
 
 

 
Making the same special choice                                                   , we obtain 
  

   an accelerated proximal gradient algorithm.  
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Making the same special choice                                                   , we obtain 
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What about smooth + nonsmooth ? 

nonsmooth smooth 



Accelerated proximal gradient algorithm  

                                    ,   with     convex, differentiable,            -Lipschitz . 
 
 
 
 
 
 
 
 
 
 
Converges at the same rate as -ÌÚÛÌÙÖÝɀÚ optimal gradient method : 
 
 
 

Again, efficient whenever we can easily solve the proximal problem  
 
 

 
 

      Accelerated Proximal Gradient:  
 
 

                Repeat 
 

 
 

                                  with                      and                              . 



What have we accomplished so far?  

  Function class       Suboptimality  
   

  smooth            convex, differentiable  

  

   smooth + structured nonsmooth: 
  

                       +                                                     convex, 

  nonsmooth         convex 

 

For composite functions                  , with     smooth,  
if      has an efficient proximal operator , we achieve  

the same (optimal) rate as if       was smooth.   



Consider the equality constrained  problem  
 
 
 
Continuation: solve a sequence of unconstrained problems of form 
 
 
 

    with                 . Solutions converge to the solution to       . 
 
 

Big downside : conditioning .  For                                         , the gradient is 
  

        -Lipschitz , with                             As                 , the unconstrained  
 

    problems get harder and harder to solve. 
 
 
Is there a better-structured way to enforce equality constraints?  
 
 

What about constraints?  



 
 
The Lagrangian  is  
 
 
 
 

The method of multipliers solves        by seeking a saddle point of       :  
 
 
 
 
 
Convergent as long as          convex, lower semicontinuous (ess. always). 
 

The method of multipliers  


