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Two convex optimization problems 

      minimization seeks a sparse solution to an underdetermined linear 
          system of equations: 
 
 
 
 
 
 
 
Robust PCA expresses an input data matrix as a sum of a  
      low-rank matrix      and a sparse matrix     . 
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Two noise-aware variants 

Basis pursuit denoising seeks a sparse near-solution to an 
underdetermined linear system: 
 
 
 
 
 
 
 
Noise-aware Robust PCA approximates an input data matrix as a sum of a  
      low-rank matrix      and a sparse matrix     . 
 



CHRYSLER SETS STOCK SPLIT, HIGHER DIVIDEND

Chrysler Corp said its board declared a three-for-two stock split in the

form of a 50 pct stock dividend and raised the quarterly dividend by

seven pct.

The company said the dividend was raised to 37.5 cts a share from

35 cts on a pre-split basis, equal to a 25 ct dividend on a post-split

basis.

Chrysler said the stock dividend is payable April 13 to holders of

record March 23 while the cash dividend is payable April 15 to holders

of record March 23. It said cash will be paid in lieu of fractional shares.

With the split, Chrysler said 13.2 mln shares remain to be purchased

in its stock repurchase program that began in late 1984. That program

now has a target of 56.3 mln shares with the latest stock split.

Chrysler said in a statement the actions "re°ect not only our out-

standing performance over the past few years but also our optimism

about the company's future."

Many possible applications … 

… if we can solve these core optimization problems  
accurately, efficiently, and scalably.  

 



Key challenges: nonsmoothness and scale 

Nonsmoothness: structure-inducing regularizers  
    such as                     are not differentiable: 
 

   Great for structure recovery … 
        … challenging for optimization. 
 
 
 
Scale … typical problems involve                       unknowns, or more.  
 
 
Classical interior point methods (e.g., SeDuMi, SDPT3): great convergence  
  rate (linear or better), but                              cost per iteration. High accuracy for  
  small problems. 
 
First-order (gradient-like) algorithms: slower (sublinear) convergence rate, but  
  very cheap iterations.  Moderate accuracy even for large problems.  
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Why care? Practical impact of algorithm choice 

Time required to solve a 1,000 x 1,000 matrix recovery problem: 

Algorithm Accuracy Rank # iterations time (sec) 

IT  5.99e-006 50 101,268 8,550 119,370.3 

DUAL  8.65e-006 50 100,024 822 1,855.4 

APG 5.85e-006 50 100,347 134 1,468.9 

APGP  5.91e-006 50 100,347 134 82.7 

EALMP  2.07e-007 50 100,014 34 37.5 

IALMP  3.83e-007 50 99,996 23 11.8 

Four orders of magnitude improvement, just by choosing the right 
algorithm to solve the convex program.  
 

This is the difference between theory that will have impact “someday” 
and practical computational techniques that can be applied right now… 



This lecture: Three key techniques 

Proximal gradient methods: coping with nonsmoothness 
 

Optimal first-order methods: accelerating convergence 
 

Augmented Lagrangian methods: handling constraints 

For more depth / breadth, please see the references at the end of    
    these slides or Lieven Vandenberghe’s lectures this afternoon! 

In this hour lecture, we will focus on three recurring ideas that allow  
  us to address the challenges of nonsmoothness and scale: 



Why worry about nonsmoothness? 

The best uniform rate of convergence for first-order methods*  for  
    minimizing              depends very strongly on smoothness: 
 
 
 
  Function class   Minimax suboptimality 
   

  smooth            convex, differentiable 

  nonsmooth         convex 

* Such as gradient descent. See e.g., Nesterov, “Introductory Lectures on Convex Optimization” 



 

Can we exploit special structure of                     to get accuracy 
comparable to gradient descent (for smooth functions) ? 

Why worry about nonsmoothness? 

The best uniform rate of convergence for first-order methods*  for  
    minimizing              depends very strongly on smoothness: 
 
 
 
  Function class   Minimax suboptimality 
   

  smooth            convex, differentiable 

  nonsmooth         convex 

For                                    , need                        iter. for worst nonsmooth                                                          



What does gradient descent do, anyway? 

Consider                      ,  with    convex, differentiable, and            -Lipschitz. 
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   At each iteration, the gradient descent minimizes a (separable) quadratic  
    approximation to the objective function, formed at       .  
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Quadratic approximation to      around       : 
 
 
 
 
Key observation: 
 

   At each iteration, the gradient descent minimizes a (separable) quadratic  
    approximation to the objective function, formed at       .  
 
Rate for gradient descent: 
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Borrowing the approximation idea… 
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Just approximate the smooth part:  
 
 
 
 
 
 

… and then minimize to get the next iterate: 
 
 
 
 
 
This is called a proximal gradient algorithm. 



Proximal gradient algorithm 

                                    ,   with     convex differentiable,            -Lipschitz. 
 
 
 
 
 
 
 
Converges at the same rate as gradient descent: 
 
 
 

Efficient whenever we can easily solve the proximal problem 
 
 
 

   i.e., minimize      plus a separable quadratic.  

 
 

        Proximal Gradient: 
 
 



Prox. operators for structure-inducing norms 

For                          ,                       is given by soft thresholding 
 

  the elements of    : 
 
 
This operator shrinks all of the elements of     towards zero: 
 
 
 
 
 
 
 
It can be computed in linear time  (very efficient).  



Prox. operators for structure-inducing norms 

For                          ,                       is given by soft thresholding 
 

  the elements of    : 
 
 
For                             ,                       is given by soft thresholding 
 

  the singular values of      :  for                        ,  
 
 
 
Again efficient (same cost as a singular value decomposition).  
 
Similar expressions exist for other structure inducing norms. 
 



Summing up: proximal gradient 

                                    ,   with     convex differentiable,            -Lipschitz. 
 
 
 
 
 
 
 
Converges at the same rate as gradient descent: 
 
 
 
 

Efficient whenever we can easily solve the proximal problem 
 
 
 

This is the case for many structure-inducing norms.  

 
 

        Proximal Gradient: 
 
 



What have we accomplished so far? 

  Function class       Suboptimality 
   

  smooth            convex, differentiable 

  

   smooth + structured nonsmooth: 
  

                       +                                                     convex, 

  nonsmooth         convex 

 

Still a gap between convergence rate of proximal gradient, 
    and the optimal                rate for smooth    .   

 

Can we close this gap?   



Why is the gradient method suboptimal? 

For smooth     , gradient descent is also suboptimal…  
   intuitively, for badly conditioned functions it may “chatter”: 
 
 
         Gradient descent  
 
 
 



Why is the gradient method suboptimal? 

For smooth     , gradient descent is also suboptimal…  
   intuitively, for badly conditioned functions it may “chatter”: 
 
 
         Gradient descent  
 
 
 
The heavy ball method treats the iterate as a point mass with momentum,  
   and hence, a tendency to continue moving in direction                       : 
 
 
         Heavy ball 



Nesterov’s optimal method 

Shares some intuition with heavy ball, but not identical. 
 
Heavy ball :                                                      
 
Nesterov :  
 
 
  

     with a very special choice of        to ensure the optimal rate: 



 
 
 
 

Again form a separable quadratic upper bound, but now at       : 
 
 
 
Again,  replace the gradient step with minimization of the upper bound: 
 
 
 
 
 
 
 

 
Making the same special choice                                                   , we obtain 
  

   an accelerated proximal gradient algorithm. 
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What about smooth + nonsmooth? 

nonsmooth smooth 



Accelerated proximal gradient algorithm 

                                    ,   with     convex, differentiable,            -Lipschitz. 
 
 
 
 
 
 
 
 
 
 
Converges at the same rate as Nesterov’s optimal gradient method: 
 
 
 

Again, efficient whenever we can easily solve the proximal problem 
 
 

 
 

      Accelerated Proximal Gradient: 
 
 

                Repeat 
 

 
 

                                  with                      and                              . 



What have we accomplished so far? 

  Function class       Suboptimality 
   

  smooth            convex, differentiable 

  

   smooth + structured nonsmooth: 
  

                       +                                                     convex, 

  nonsmooth         convex 

 

For composite functions                  , with     smooth,  
if      has an efficient proximal operator, we achieve  

the same (optimal) rate as if       was smooth.   



Consider the equality constrained problem  
 
 
 
Continuation: solve a sequence of unconstrained problems of form 
 
 
 

    with                 . Solutions converge to the solution to       . 
 
 

Big downside: conditioning.  For                                         , the gradient is 
  

        -Lipschitz, with                             As                 , the unconstrained  
 

    problems get harder and harder to solve. 
 
 
Is there a better-structured way to enforce equality constraints? 
 
 

What about constraints? 



 
 
The Lagrangian is  
 
 
 
 

The method of multipliers solves        by seeking a saddle point of       :  
 
 
 
 
 
Convergent as long as          convex, lower semicontinuous (ess. always). 
 

The method of multipliers 



 
 
The augmented Lagrangian is  
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Convergent as long as          convex, lower semicontinuous (ess. always). 
 

The method of multipliers 

Extra penalty term 



 
 
The augmented Lagrangian is  
 
 
 
 

The method of multipliers solves        by seeking a saddle point of       :  
 
 
 
 
 

Classical method [Hestenes ‘69, Powell ‘69], see also [Bertsekas ‘82]. 
 
Solves a sequence of unconstrained problems: 
 
Penalty parameter      can be constant (better conditioning)  
   increasing for (faster convergence).  

The method of multipliers 



 
 
The augmented Lagrangian is  
 
 
 
 

The method of multipliers solves        by seeking a saddle point of       :  
 
 
 
 
 
Solves a sequence of unconstrained problems: 
 
 

Penalty parameter              can be constant (avoids  ill-conditioning) ,  
   or increasing for (faster convergence).  
 

The method of multipliers 



Solves, e.g.,                                                 ,   with      convex, lsc.  
 
 
 
 
 
 
 
 

Classical method [Hestenes ‘69, Powell ‘69], see also [Bertsekas ‘82].  
 
Avoids conditioning problems with the continuation / penalty method. 
 
Under very general conditions        converges to a dual optimal point,   
 

                                            ,  and                                                           .  
 

       [Rockafellar ‘73, Eckstein ‘12] . 

Summing up: Method of multipliers 

 
 

      Method of multipliers (augmented Lagrangian) 
 



What have we accomplished so far? 

Consider the robust PCA problem 
 
 
 
Augmented Lagrangian 
 
 
 
The method of multipliers is 
 
 
 
 

Each iteration is a large nonsmooth optimization problem… 
 
 

Is there special structure we can exploit to simplify the iterations?  



Special structure: Separable objectives 

 
 
Aug. Lagrangian: 
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Special structure: Separable objectives 

 
 
Aug. Lagrangian: 
 
Minimizing        with respect to      is easy:  
 
 
 

Minimizing        with respect to      is also easy: 
 
 
 

Why not just alternate? 
 
 
 
 



More generally: Alternating Directions MoM 

Aug. Lagrangian: 

Alternating Directions Method of Multipliers (ADMM) 



Alternating Directions MoM 

Aug. Lagrangian: 

Alternating Directions Method of Multipliers (ADMM) 

Convergence:  if          closed, proper, convex functions, and      has a  
    saddle point, then …       converges to a dual optimal point,  
                                                         

                                  and                                                                                       .                                                                                                     
 
Convergence rate                , in a certain sense [He+Yuan ‘11].  



Linearized Alternating Directions MoM 

Aug. Lagrangian: 
 
ADMM:  
 
 
 
 
 

Linearized ADMM:   just take a proximal gradient step… 
 
 
 
 
 
Much more efficient if      has a simple proximal operator.  

Complicated if 



Linearized Alternating Directions MoM 

Aug. Lagrangian: 
 
 
 
 
 
 
 
 
 

See, e.g., [S. Ma 2012]. Convergent if                                          . 
 

Handles problems with more than two terms, e.g.,                    . 
 

Now can take advantage of two types of special structure  …  
    separability of the objective and prox capability of        .  
 

Linearized ADMM 



Finally, what have we accomplished? 

Time required to solve a 1,000 x 1,000 robust PCA problem: 

Algorithm Accuracy Rank # iterations time (sec) 

IT  5.99e-006 50 101,268 8,550 119,370.3 

DUAL  8.65e-006 50 100,024 822 1,855.4 

APG 5.85e-006 50 100,347 134 1,468.9 

APGP  5.91e-006 50 100,347 134 82.7 

EALMP  2.07e-007 50 100,014 34 37.5 

IALMP  3.83e-007 50 99,996 23 11.8 

Four orders of magnitude improvement, just by choosing the right 
algorithm to solve the convex program: 
 

 Proximal gradient       Accelerated proximal gradient        ALM        ADMoM 

THIS  
LECTURE 



Recap and Conclusions 

Key challenges of nonsmoothness and scale can be mitigated by using 
special structure in sparse and low-rank optimization problems: 
 

       Efficient proximity operators        proximal gradient methods 
 

       Separable objectives       alternating directions methods 
 
 

Efficient moderate-accuracy solutions for very large problems.  
 

       Special tricks can further improve specific cases (factorization for low-rank) 
 
 

Techniques in this literature apply quite broadly. 
 

       Extremely useful tools for creative problem formulation / solution. 
 
 

Fundamental theory guiding engineering practice: 
 

       What are the basic principles and limitations? 
       What specific structure in my problem can allow me to do better? 



To read more… 
Problem complexity and lower bounds: 
   Nesterov – Introductory Lectures on Convex Optimization: A Basic Course 2004 
   Nemirovsky – Problem Complexity and Method Efficiency in Convex Optimization 
 
Proximal gradient methods: 
 
Accelerated gradient methods: 
   Nesterov – A method of solving a convex programming problem with convergence rate O(1/k^2), 1983 
   Tseng – On Accelerated Proximal Gradient Methods for Convex-Concave Optimization, 2008 
   Beck+Teboulle – A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, 2009 
 
Augmented Lagrangian: 
   Hestenes – Multiplier and gradient methods, 1969 
   Powell – A method for nonlinear constraints in minimization problems, 1969 
   Rockafellar – Augmented Lagrangians and the Proximal Point Algorithm in Convex Programming, 1973 
   Bertsekas – Constrained Optimization and Lagrange Multiplier Methods, 1982 
 
Alternating directions: 
   Glowinski+Marocco – Sur l’approximation, par elements finis d’ordre un, et la resolution, par … 1975 
   Gabay+Mercier –  A dual algorithm for the solution of nonlinear variational problems … 1976 
   Eckstein+Bertsekas – On the Douglas-Rachford splitting method and the proximal point … 1992 
   Boyd et. al. – Distributed optimization and statistical learning via the alternating directions …  2010 
   Eckstein – Augmented Lagrangian and Alternating Directions Methods for Convex Optimization 2012 
 


