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Using 3D cues 

Martial Hebert 

 

Carnegie Mellon University 

foreground 

road 

tree 
building 
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foreground 

road 

tree building 

Set of feature 

vectors 

Training data 

Input image 

Learning/

inference 

Close 
Not 

Close 

[Example from D. Hoiem] 
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D. Hoiem, A. A. Efros, and M. Hebert. Putting Objects in Perspective. International 

Journal of Computer Vision, Vol. 80, No. 1, October, 2008.  

Geometric context 

S.Y. Bao, M. Sun, S.Savarese. Toward Coherent Object Detection And Scene 

Layout Understanding. CVPR 2010. 

Geometric context 
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foreground 

road 

tree building 

Set of feature of 

vectors 

+ additional 

structure (e.g., 

geometry, relations) 

Reasoning 

Training data + 

Geometry, relational 

information, physical 

constraints, domain 

knowledge 

Input image 

Learning/

inference 

Questions 

• How to estimate geometric properties from 

an image? 

• How to incorporate geometric constraints? 

 

• How to combine reasoning tools with 

statistical classification/regression tools? 
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• Guzman (SEE), 1968 

• Yakimovsky & Feldman, 1973 

• Hansen & Riseman (VISIONS), 
1978 

• Barrow & Tenenbaum 1978 

• Brooks (ACRONYM), 1979 

• Ohta & Kanade, 1978 

 

[Ohta & Kanade 1978] 

Qualitative Explicit/Quantitative 

Bottom up classifiers More explicit constraint+reasoning 

Chronology 
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Qualitative 
More quantitative  

more precise Explicit 

Region labels + Boundaries 

and objects 

Stronger geometric 

constraints from 

domain knowledge 

Reasoning on 

aspects and 

poses 

3D point clouds 

First attempt: Estimate surface labels 

[D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface 

layout from an image. IJCV, 75(1):151–172, 2007] 
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Training data 

Input 

[Example from 

Hoiem] 
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Classification 

Example 

Support Vertical Sky 

V-Left V-Center V-Right V-Porous V-Solid 
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• Learning from image features to depth + MRF: A. Saxena, S. H. Chung, and A. Y. Ng. 3-D 

depth reconstruction from a single still image. IJCV, 76, 2007. 

• Make3D: Learning 3D Scene Structure from a Single Still Image: A. Saxena, M. Sun and A. Y. 

Ng. TPAMI, 2010. 

 

 

MRF on superpixels  Depth map 

• Unary potentials: 

• Depth prediction from  local features+ co-occurrence of superpixels over 

multiple segmentations 

• Binary potentials: 

• Colinearity along edges 

• Connectivity along neighboring superpixels  

• Co-planarity along neighboring superpixels  

• Is a more precise representation possible? 

 

• For example:  

– We would like to include reasoning about 

interposition (relations between object relative 

to a viewpoint induced by occlusion 

boundaries) 

– We would like to include constraints about 

object semantics (when known) 
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Qualitative 
More quantitative  

more precise Explicit 

Region labels + Boundaries 

and objects 

Stronger geometric 

constraints from 

domain knowledge 

Reasoning on 

aspects and 

poses 

3D point clouds 

Using occlusion cues: Depth 

ordering and depth estimation 
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Surfaces Occlusions 

Objects and Viewpoint 

Surface Maps 

Depth, Boundaries 

Viewpoint/Size 

Reasoning 

Separate cues 

Input Surfaces 

Objects/Horizon Occlusion Boundaries Example from 

D. Hoiem 
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Combined reasoning 

Input Surfaces 

Objects and Horizon Occlusion Boundaries Example from 

D. Hoiem 
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• Semantic labels provide strong constraints on local surface 
orientation  

• Semantic labels also provide an estimate of relative depth ordering 
and occlusion relations  

 

 

• Outline: 
1. Estimate labels from image features 

2. Estimate point-wise depth (with depth constraints from labels) 

3. Estimate local orientations (with orientation constraints from labels) 

Input  I Label 

estimates L 

Depth 

estimates D 

Superpixels 

S 

B. Liu, S. Gould, D. Koller. Single image depth estimation 

from predicted semantic labels. CVPR 2010 
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Comments 

• Plus: 

– Scene geometry (surface geometry and 

object relations) estimated from image data 

– Scene geometry used explicitly in scene 

understanding 

• Minus: 

– Still mostly bottom-up classification approach 

– No use of domain constraints or constraints 

governing the physical world 

Qualitative 
More quantitative  

more precise Explicit 

Region labels + Boundaries 

and objects 

Stronger geometric 

constraints from 

domain knowledge 

Reasoning on 

aspects and 

poses 

3D point clouds 
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Example 

• Using constraints induced by man-made 

environments in interpreting images 

• Examples: Manhattan world, limited 

vocabulary of object configurations, etc. 

2

4

5

6

7

8

Constraint: Manhattan world assumption 
• Three dominant directions corresponding to 

three “orthogonal” vanishing points 

ii vKn 1

01  

i

TT

jij vKKvnn
p 

J. Coughlan and A. Yuille. Manhattan world: Compass direction from a 

single image by bayesian inference.  In Proceedings ICCV, 1999. 

J. Kosecka andW. Zhang. Video compass. In Proceedings of  

European Conference on Computer Vision, pages 657 – 673, 2002. 

C. Rother. A new approach to vanishing point detection in architectural 

environments. IVC, 20, 2002. 
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We need to design 4 things 

• Parameterization: y 

 

• Features: x 

 

• Scoring/hypothesis evaluation: 

                   yo = argmaxy f(x,y,w) 

 

• A way to sample, or generate hypotheses y 

 

 

H. Wang, S. Gould, D. Koller. Discriminative 

learning with latent variables for cluttered indoor 

scene understanding. ECCV 2010. 
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Features 

• Features: x 

– Surface layout (see earlier) 

– Lines, regions,… 

– Orientation maps 

– Junctions 

 

Orientation maps: Sweep algorithm 

s 

v 

v 

D. Lee, T. Kanade, M. Hebert. Geometric Reasoning for Single 

Image Structure Recovery. CVPR09.  
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p is of orientation    if  

it is in one     

It is in one 

It is in none of  

s 
s 

s s 

Scoring the hypotheses 

• Structured prediction 

V. Hedau, D. Hoiem, D.Forsyth, “Recovering the Spatial Layout of Cluttered 

Rooms,” International Conference on Computer Vision (ICCV), 2009. 

A.G. Shwing, T. Hazan, M. Pollefeys, R. Urtasun, “Efficient Structured Prediction for 

3D Indoor Scene Understanding,” Computer Vision and Pattern Recognition 

(CVPR), 2012. 

yo = argmaxy w
Tj(x,y) 
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Vanishing  

points 

in input 

image 

Many initial  

layout 

hypotheses 

y 

x 
Score = 

output of 

predictor 

f(x,y,w) 

[Example from Hedau et al.] 

Data for evaluating y 

Lines Faces 

Label confidences 

from classifier 
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Definition of mapping function 

f(x,y,w) = wTj(x,y) 

Learned 

weight vector 

Feature vector 

measuring 

agreement 

between lines, 

faces and labels 

j(x,y)= Relative sum of 

lengths of line segments in 

each face agreeing with 

labels from appearance-

based classifiers 
[Example from Hedau et al.] 

Learning 

Loss function: 

- Distance between centroids of true and estimated faces 

- Overlap between true and estimated faces 

- Number of missing faces 

True: yi Estimated: y 

D(yi,y) [Example from Hedau et al.] 
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Lines 

Labels 

Layout 

Lines 

Labels 

Layout 

More detailed interpretation: Clutter 

vs. free space 

Example from  H. Wang 
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f(x,y,h;w) = wTj(x,y,h) 

Clutter mask 
228-dim feature vector 

• Measures how the fraction of each face 

not in clutter agrees with y 

• Measures the fraction of the faces not 

in clutter 

H. Wang, S. Gould, D. Koller. Discriminative Learning with Latent Variables for Cluttered 

Indoor Scene Understanding. In Communications of the ACM, 2013. 

We need to design 4 things 

• Parameterization: y 

 

• Features: x 

 

• Scoring/hypothesis evaluation: 

                   yo = argmaxy f(x,y,w) 

 

• A way to sample, or generate hypotheses y 
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1 

2 

3 

4 

5 

1 

Integral geometry trick 

𝜑𝑓 𝑥, 𝑦 = Sum of features over 

facet f (geometric context, 

orientation map, edges,junctions,…) 
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𝜑1 𝑥, 𝑦 =  

𝐴 𝑥, 𝑦2, 𝑦4  −𝐴(𝑥, 𝑦1, 𝑦4) 

Integral geometry trick 

𝜑1 𝑥, 𝑦 = 𝐴 𝑥, 𝑦2, 𝑦4 − 𝐴(𝑥, 𝑦1, 𝑦4) 

 

2nd order potential 

1 

A.G. Schwing, T. Hazan, M. Pollefeys, R. Urtasun. Efficient Structured 

prediction for 3D Indoor Scene Understanding. CVPR 2012. 

A. Schwing, T. Hazan, M. Pollefeys and R. Urtasun. Efficient Structured 

Prediction with Latent Variables for General Graphical Models. ICML 

2012. 
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Qualitative 
More quantitative  

more precise 

Region labels + Boundaries 

and objects 

Stronger geometric 

constraints from 

domain knowledge 

+ more constraints 

Explicit 

Integrating more constraints 

• Constraints 

– Volumetric constraints 

 

• Techniques 

– Structured prediction 
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Constraints: Solid objects must 

satisfy volumetric/physical constraints 

• Finite volume 

 

• Spatial exclusion 

 

 

• Containment 

D. Lee, A.  Gupta, M. Hebert, and T. Kanade. Estimating Spatial Layout of 

Rooms using Volumetric Reasoning about Objects and Surfaces. Advances 

in Neural Information Processing Systems (NIPS), Vol. 24, 2011. 

 yxf ,

Image 

Labeling: Indicator vector of 

scene configurations + object 

hypothesis 

][ 11 mn oorry 
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     ywyxwyxf
TT j j ,,

Features of the scene 

configuration to evaluate 

constraint violations 

Penalty term for incompatible 

configurations 

Compatibility of image 

data with geometric 

configuration  

Features from image 

(surface labels, 

vanishing points, etc.) 

     ywyxwyxf
TT j j ,,

• Inference: 

 

 

• Training 

– Use structured SVM to estimate w 

),(maxarg* yxfy
y
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UIUC 10% 

Integrating more constraints 

• Constraints 

– Volumetric constraints 

 

 

• Techniques 

– Structured prediction 

– Sampling 
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Representation 

•  q = set of all parameters describing scene 

and camera parameters 

q = (r,c) 

c = ,j,f 

Camera model 

r = (rb,n,o1,..,on) 

Scene model 

r = (x,y,z,w,h,l,g) 

Scene layout: 

One block + 

orientation  

o = (x,y,z,w,h,l) 

Object model: block 

L. Del Pero, J. Guan, E. Brau, J. Schlecht, K. Barnard. Sampling Bedrooms. 

CVPR 2011. 

Score function 
• E = edge points in input image 

•  q = hypothesis 

 

 

 

 

• Sampling:   

Sample hypothesis by  

MCMC sampling of  

                P(q|E) ~ P(E|q)P(q) 


k

k

N

miss

N

bg xeeeEp missbg )()|( q

Unmatched  

Input edges 

Unmatched  

Model edges 

xk 

How well edge point 

matches model line 
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Sampling: Diffusion moves 
• Diffusion moves change some part of q 

• Multiple types of moves used in random order 

Sample room boundary 

Change r = (x,y,z,w,h,l,g) 

  

Sample camera  

Change c = ,j,f 

  
Sample object parameters 

Change o = (x,y,z,w,h,l)   

Sample over a block edge 

only 

[Example from DelPero et al.] 

Sampling: Jump moves 
• Continuous parameters only so far 

• Number of objects is fixed in q 
• We need to sample over the possible number of objects 

 

• Jump proposal generated based on corner features 

• A corner feature can generate a new block or a new layout 

Propose layout Propose frame  Propose block 

[Example from DelPero et al.] 
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• Shows how to search through hypotheses using MCMC sampling 

• No training 

• Samples through continuous (sizes, etc.) and discrete (# objects) 
parameters 

• Recovers camera parameters as well 

 

 

• http://civs.ucla.edu/old/MCMC/MCMC_tutorial.htm 

Full fit 

Focal length estimation Blocks explain occlusions 

[Example from DelPero et al.] 

3D geometry refinement 

• Two (related) problems: 

– Discrepancy between 2D 

and 3D error evaluation 

– Large errors in object 

placement 

V. Hedau, D. Hoiem, D. Forsyth. Thinking Inside the Box: Using Appearance Models 

and Context Based on Room Geometry. ECCV 2010. 

V. Hedau, D. Hoiem, D. Forsyth. Recovering Free Space of Indoor Scenes from a 

Single Image. CVPR 2012. 
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• Possible approach: 
– Error evaluation directly in 3D: Free space 

estimation 

– Pose refinement by contact estimation 
• For each object 

– Search through micro-hypothesis by varying location of 
vertices 

– Score using SVM to classify contact/non-contact 
[Example from 

Hoiem et al.] 

• Possible approach: 
– Error evaluation directly in 3D: Free space 

estimation 

– Pose refinement by contact estimation 
• For each object 

– Search through micro-hypothesis by varying location of 
vertices 

– Score using SVM to classify contact/non-contact 
[Example from 

Hoiem et al.] 
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V. Hedau, D. Hoiem, D. 

Forsyth. Recovering Free 

Space of Indoor Scenes 

from a Single Image. 

Computer Vision and 

Pattern Recognition 

(CVPR). 2012. 

[Example from 

Hoiem et al.] 

Integrating more constraints 

• Constraints 

– Volumetric constraints 

– Physical constraints 

 

• Techniques 

– Structured prediction 

– Sampling 

– Search through hypothesis space 
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Front-Right Front-Left Frontal 

Left-Right Left-Occluded Right-Occluded 

Porous Solid 

Bag of Segments 

A. Gupta, A. Efros, and M. Hebert. Blocks World Revisited: Image Understanding Using Qualitative 

Geometry and Mechanics. ECCV 2010. 

B. Zheng, Y. Zhao, J.C. Yu, K. Ikeuchi, S-C. Zhu. Beyond Point Clouds: Scene Understanding by 

Reasoning Geometry and Physics. CVPR 2013. 

Surface Layout Density Map 

Front-Right Front-Left Frontal 

Left-Right Left-Occluded Right-Occluded 

Porous Solid 

Bag of Segments 

Surface Layout Density Map 

A. Gupta, A. Efros, and M. Hebert. Blocks World Revisited: Image Understanding Using Qualitative 

Geometry and Mechanics. ECCV 2010. 

B. Zheng, Y. Zhao, J.C. Yu, K. Ikeuchi, S-C. Zhu. Beyond Point Clouds: Scene Understanding by 

Reasoning Geometry and Physics. CVPR 2013. 
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Physical constraints 

A. Gupta, A. Efros, and M. Hebert. Blocks World 

Revisited: Image Understanding Using Qualitative 

Geometry and Mechanics. ECCV 2010. 

B. Zheng, Y. Zhao, J.C. Yu, K. Ikeuchi, S-C. Zhu. 

Beyond Point Clouds: Scene Understanding by 

Reasoning Geometry and Physics. CVPR 2013. 

Z. Jia, A. Gallagher, A. Saxena, T.Chen. 3D-Based 

Reasoning with Support and Stability. CVPR 2013. 

Integrating more constraints 

• Constraints 

– Volumetric constraints 

– Physical constraints 

– Relative placement 

 

• Techniques 

– Structured prediction 

– Sampling 

– Search through hypothesis space 
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Using relative placement statistics 

Gaussian distribution estimated from prior data 

Sampling technique as before but incorporating the priors 

[Example from Del Pero] 

Using relative placement statistics 

• Is it worth it? 

 

 

 

 

• Yes but still simplified representation of 

the prior distribution (independent 

distributions of a few parameters) 

L. Del Pero, J. Bowdish, D. Fried, B. Kermgard, E. Hartley and K. Barnard. 

Bayesian Geometric Modeling of Indoor Scenes. CVPR 2012. 

L. Del Pero, J. Bowdish, B. Kermgard, E. Hartley, K. Barnard. Understanding 

Bayesian Roooms Using Composite 3D Object Models. CVPR 2013. 
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Generalization to groups of 

objects (geometric phrases) 

Training 

Testing W. Choi, Y.-W. Chao, C. Pantofaru, and S. Savarese. Understanding 

Indoor Scenes using 3D Geometric Phrases. CVPR 2013. 

Integrating more constraints 

• Constraints 

– Volumetric constraints 

– Physical constraints 

– Relative placement 

– Functional constraints 

 

• Techniques 

– Structured prediction 

– Sampling 

– Search through hypothesis space 
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Even more constraints: 

Functional 

J.J. Gibson. The Theory of Affordances. Lawrence Erlbaum, 1977. 

Y.Z. Zhao, S-C. Zhu. Scene Parsing by Integrating 

Function, Geometry, and Appearance Models. CVPR 

2013. 

Y. Jiang, H. Koppula, A. Saxena. Hallucinated Humans 

as the Hidden Context for Labeling 3D Scenes. CVPR 

2012. 

1. Structural model function-

geometry-appearance 

2. Estimate distributions from 

training data 

3. Sample using model 
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Qualitative 
More quantitative  

more precise 

Region labels + Boundaries 

and objects 

Stronger geometric 

constraints from 

domain knowledge 

+ more constraints 3D point clouds 

+ sparse/partial 

3D data 

+ other 

constraints 

+ (large) prior 

data 

Summary 

• Estimating qualitative geometry from input image 

• Combining geometric cues with interpretation 

• Incorporating more and more constraints 
– Volumetric 

– Physical  

– Relative placement 

– Functional 

 

 

• Classifiers/regressors + multiple segmentations 

• Sampling techniques 

• Search through discrete hypothesis space 

• Structured prediction 

• Grammars 

• Using (large) prior data 
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Summary 

• Estimating qualitative geometry from input image 

• Combining geometric cues with interpretation 

• Incorporating more and more constraints 
– Volumetric 

– Physical  

– Relative placement 

– Functional 

 

 

• Classifiers/regressors + multiple segmentations 

• Sampling techniques 

• Search through discrete hypothesis space 

• Structured prediction 

• Grammars 

• Using (large) prior data 

 

How to represent (3D, imprecise) spatial information? 

How to generate hypotheses? 

How to score hypotheses? 

How to search through hypotheses? 


