Multiple View Reconstruction

Daniel Cremers Computer Science & Mathematics TU Munich

Spatially Dense Reconstruction

infinite-dimensional optimization

Overview

Multiview reconstruction Single view reconstruction

Super-res.textures

Realtime dense geometry

RGB-D scanning

Reconstruction on the fly

Overview

Multiview reconstruction Single view reconstruction

Super-res.textures

Reconstruction on the fly

Realtime dense geometry

Stereo-weighted Minimal Surfaces

Photoconsistency:

$$ho:\left(V\subset\mathbb{R}^{\mathsf{3}}
ight)
ightarrow$$
 [0, 1]

$$E(S) = \int_{S} \rho(s) \, ds$$

3D Reconstruction: *Faugeras, Keriven '98, Duan et al. '04* Segmentation: *Kichenassamy et al. '95, Caselles et al. '95*

Optimal solution is the empty set: $\arg\min_{S} E(S) = \emptyset$

Silhouette Consistent Reconstructions

Kolev et al., IJCV 2009, Cremers, Kolev, PAMI 2011

Silhouette Consistent Reconstructions

$$\sum_{S} \int_{S} \rho \, ds$$
s. t. $\pi_{i}(S) = S_{i} \, \forall i = 1, \dots, n$

$$u = 1_{int(S)}$$

$$\max_{U} \int_{V} \rho(x) |\nabla u(x)| \, dx$$
s. t. $u: V \rightarrow \{0, 1\} \quad u: V \rightarrow [0, 1]$

$$\int_{R_{ij}} u(x) \, dx \ge 1 \quad \text{if } j \in S_{i}$$

$$\int_{R_{ij}} u(x) \, dx = 0 \quad \text{if } j \notin S_{i}$$

<u>Proposition:</u> The set Σ of silhouette-consistent solutions is convex. *Kolev et al., IJCV 2009, Cremers, Kolev, PAMI 2011*

Reconstruction of Fine-scale Structures

Image data courtesy of Yasutaka Furukawa.

Reconstructing the Niobids Statues

Kolev, Cremers, ECCV '08, PAMI 2011

Action Reconstruction

Action Reconstruction

linear programs

convex programs

Klodt et al., ECCV '08, Nieuwenhuis et al. PAMI '13

Daniel Cremers

Multiple View Reconstruction

Convex Relaxation vs. Graph Cuts

graph cut (26-connected grid)

Klodt et al., ECCV '08

convex formulation (6-connected grid)

Daniel Cremers

graph cut

(6-connected grid)

Metrication Errors

Overview

Multiview reconstruction Single view reconstruction

Realtime dense geometry

Reconstruction on the fly

Daniel Cremers

Multiple View Reconstruction

Single View Reconstruction

Can we recover geometry from a single image? Yes: Shape-from-shading, shape-from-focus, shape from symmetry,... Solution: Fixed-volume silhouette-consistent minimal surface. $\min_{S} |S| \quad \text{s.t. Vol}(S) = V_0, \ \pi(S) = S_0$

Single View Reconstruction

Toeppe, Oswald, Rother, Cremers, ACCV 2010

Daniel Cremers

Multiple View Reconstruction

Computation time approximately 1 second on GPU.

Toeppe, Oswald, Rother, Cremers, ACCV 2010

Daniel Cremers

Multiple View Reconstruction

Single View Reconstruction

Toeppe, Oswald, Rother, Cremers, ACCV 2010

Modifying the Material Properties

Daniel Cremers

Multiple View Reconstruction

Single View Reconstruction

Toeppe, Oswald, Rother, Cremers, ACCV 2010

Single View Reconstruction

Toeppe, Oswald, Rother, Cremers, ACCV 2010*

* Best Paper Honorable Mention

In collaboration with Microsoft Research

Daniel Cremers

Multiple View Reconstruction

Overview

Multiview reconstruction Single view reconstruction

Super-res.textures

Reconstruction on the

Realtime dense geometry

Multiple View Reconstruction

Surface Evolution to Optimum

Super-Resolution Texture Map

Given all images $\mathcal{I}_i : \Omega_i \to \mathbb{R}^3$, determine the surface color $T : S \to \mathbb{R}^3$

Goldlücke, Cremers, ICCV '09, DAGM '09

Super-Resolution Texture Map

* Best Paper Award

Goldlücke, Cremers, ICCV '09, DAGM '09*

Super-Resolution Texture Map

Closeup of input image

Super-resolution texture * Best Paper

Goldlücke, Cremers, ICCV '09, DAGM '09*

Award

Daniel Cremers

Multiple View Reconstruction

Overview

Multiview reconstruction Single view reconstruction

Super-res.textures

Realtime dense geometry

Reconstruction on the fly

From Dense Flow to Dense Geometry

Input video

Optical flow field

$$\min_{u:\Omega\to\mathbb{R}^2}\int_{\Omega} |I_1(x)-I_2(x+u)|\,dx\,+\,J(u)$$

Horn & Schunck '81, Zach et al. DAGM '07, Wedel et al. ICCV '09

Much related work on structure and motion, stereo, and optic flow:

Fitzgibbon, Zisserman, ECCV '98 Jin, Favaro, Soatto, CVPR '00 Nister, ICCV '03 Davison, ICCV '03 Pollefeys et al., IJCV '04 Wang et al., 3DPVT '06 Zach et al., DAGM '07 Gallup et al. CVPR '07 Klein, Murray, ISMAR '07 Wedel et al., ICCV '09

Newcombe, Davisson, CVPR '10

Real-time calibration

Compute optic flow between consecutive images and use it to update a depth map.

PTAM (Klein, Murray ISMAR '07)

 π

 g_i

 $\boldsymbol{\mathcal{X}}$

ux

Brightness constancy:

 $I_0(x) \stackrel{!}{=} I_i \Big(\pi \Big(g_i(ux) \Big) \Big)$

$$\min_{u,v} \sum_{i} \int_{\Omega} \left| I_0(x) - I_i \left(\pi(g_i(u \cdot x)) \right) \right| \, dx + \int_{\Omega} \left| \nabla u(x) \right| \, dx$$

$$+\frac{1}{\theta}\int_{\Omega}(u-v)^2\,dx+\int_{\Omega}|\nabla v(x)|\,dx$$

Stuehmer, Gumhold, Cremers, DAGM '10

Daniel Cremers

Multiple View Reconstruction

Stuehmer, Gumhold, Cremers, DAGM '10

Stuehmer, Gumhold, Cremers, DAGM '10

1.8 fps

11.3 fps

24 fps

Stuehmer, Gumhold, Cremers, DAGM '10

Daniel Cremers

Multiple View Reconstruction

Overview

Multiview reconstruction Single view reconstruction

Super-res.textures

Realtime dense geometry

RGB-D scanning

Reconstruction on the fly

RGB-D Camera Tracking

Optimize dense photo-consistency:

$$\min_{\xi \in \mathbb{R}^6} \int_{\Omega} \left| I_0(x) - I_i(\pi(g_{\xi}(u \cdot x))) \right| dx$$

Steinbruecker et al. ICCV '11, Kerl et al., ICRA '13

Pose accuracy for increasing baseline

Steinbruecker et al. ICCV '11, Kerl et al., ICRA '13

CopyMe3D: Scanning and Printing Persons in 3D

Jürgen Sturm, Erik Bylow, Fredrik Kahl, Daniel Cremers

German Conference on Pattern Recognition (GCPR) September 2013

Download demo @ http://www.fablitec.com

Download demo @ http://www.fablitec.com

Overview

Multiview reconstruction Single view reconstruction

Super-resitextures

Reconstruction on the fly

Quadrocopters juggling Mueller, Lupashin, D'Andrea IROS '11 Swarms of quadcopters Kushleyev, Mellinger, Kumar RSS '12

- Controlled environment

Drawbacks:

- Marker points
- External sensors / mocap systems

Realworld Environments

Quadcopters

Onboard sensors:

- > front camera (320 x 240 @ 18fps)
- inertial measurement unit
- » ultrasound altimeter

Sensor Fusion

Open source mono-SLAM system PTAM (Klein & Murray '07)

Problems: Unreliable, no scale

Our contribution:

Enhanced reliability by incorporating IMU data

Maximum likelihood estimator for the scale using ultrasound altimeter & velocity estimates

Engel, Sturm, Cremers, IROS '12

Engel, Sturm, Cremers, IROS '12

Daniel Cremers

Multiple View Reconstruction

Reconstruction on the Fly

Bylow, Kerl, Sturm, Cremers, RSS '13

Reconstruction on the Fly

Bylow, Kerl, Sturm, Cremers, RSS '13

Reconstruction on the Fly

Bylow, Kerl, Sturm, Cremers, RSS '13

Daniel Cremers

Multiple View Reconstruction

Summary

Multiview reconstruction

super-res. textures

action reconstruction

