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How we get supervisory signals in 
“unsupervised” feature learning?

1. Reconstruction
2. Contrastive learning 
3. Association/correlation  (time, translation, etc.)



Questions and choices we face
1. Deterministic or probabilistic models? e.g. energy based 

models and autoencoders Vs RBMs, sparse coding, 
hierarchical Dirichlet processes, …

2. What inductive principles are appropriate and when? 
Maximum likelihood, Bayes, max-margin, score matching, 
ratio matching, pseudo-likelihood, contrastive divergence, 
method of moments, indirect inference, …

3. Static, discrete models or continuous-time dynamical 
systems?

4. Traditional AI (logic, search, constraints) or the ML approach?



How much data and model complexity?How much data and model complexity?

[Murphy, 2012]



Re-visiting logic, computational complexity and 
constraint satisfaction (2-SAT)

Consider the CNF expression S = C1 ∧ . . . ∧ Cm, where each clause Ci is a
disjunction of literals xi,1 ∨ . . .∨ xi,ki defined on propositional variables. When
each clause has two parents at most, the problem is known as 2-SAT.

Parrot =⇒ Bird ¬P ∨B
Bird =⇒ Flies ¬B ∨ F
F lies =⇒ Escapes ¬F ∨E
Flies =⇒ HasWings ¬F ∨H
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1. Verification: Does (P=1,B=1,F=1,E=1,H=1), i.e. (11111), satisfy this 2-SAT problem?

2. Verification: Does (10111) satisfy it?

3. Maximization: What is the maximum number of clauses that can be satisfied?

4. What is the number of possible assignments to (PBFEH)?

5. Counting: How many assignments satisfy this 2-SAT example?
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Counting: How many assignments satisfy this 2-SAT example
Approximate answer: Use the Monte Carlo Method.

i. Sample P, B, F, E and H by flipping a coin for each variable N times.
ii. For each sample of (PBFEH), check for satisfiability.
iii. The probability of satisfiability, P(S=1), is approximated as the 

number of satisfying samples divided by N.
iv. The expected number number of satisfiable samples n = P(S=1) 25.  



From max-2-SAT to energy models
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Assume some clauses are harder to 
satisfy than others. Introduce a 
weight (θ) to measure this.

To obtain the Energy of the system of 
binary variables, use X for a negated 
propositional variable and 1-X 
otherwise. Then sum over all clauses. E

B

P F

H

¬P ∨B −→
¬B ∨ F −→
¬F ∨ E −→
¬F ∨H −→

Introduce the notation
P = X1, B = X2, F = X3, E = X4, H = X5.
The total energy of the system is:

Ising 
model
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E = θ1P + θ2B + (θ3 + θ4)F − θ1PB − θ2BF − θ3FE − θ4FH
Let P = x1, B = x2, F = x3, E = x4 and H = x5

The energy can be written as:

E = −
5X
i=1

bixi −
5X
i=1

X
j>i

xiwijxj

In our case:



From max-2-SAT to Energy to Probability
Let us look at the energy of a few configurations, assuming all the θi = 1.
In this case the energy is simply:

E(x1, x2, . . . , x5) = x1 + x2 + 2x3 − x1x2 − x2x3 − x3x4 − x3x5

What is the lowest energy? When is it attained?
What is the maximum energy?
What should the most probable configuration be?

Boltzmann distribution



Ising models and the 2nd law of thermodynamics

 The Ising model describes many physical phenomena

 “The Ising model can be reinterpreted as a statistical model for the 
motion of atoms. A coarse model is to make space-time a lattice and 
imagine that each position either contains an atom or it doesn’t.”
Wikipedia Ising Model page.

 “The original motivation for the model was the phenomenon of 
magnetism.”

 Second law of thermodynamics and stability



On information and energy – Maxwell’s Demon
In this thought experiment, “an imaginary container is divided into two parts by 
an insulated wall, with a door that can be opened and closed by what came to 
be called “Maxwell’s Demon”. The hypothetical demon is only able to let the 
“hot” molecules of gas flow through to a favored side of the chamber, causing 
that side to appear to spontaneously heat up while the other side cools down.”

 Does this violate the 2nd law?

What is the relation of information and energy?



Nature seems to be very powerful at solving 
hard computational problems. 

Can we recruit nature to do computing?

Nature has limits!



But it is important that we follow nature’s 
guidelines for design!

The space of 1000 by 1000 black and white 
images is 





We might not be able to recruit nature to solve 
NP hard problems, but we can use it to speed-up 
problems that we currently struggle with: e.g. 
cryptography and neural computation

Geordie Rose, D-Wave Systems



Quantum annealing for deep learning

[Denil & dF, 2011]

Lateral connections



Hopfield networks and dynamics





Hopfield networks and dynamics



Hopfield networks and dynamics



Stochastic approximation



Stochastic approximation



MLE - definition
• The idea of Maximum Likelihood Estimation (MLE) is to find the
parameters θ that maximize the probability of the data D given these
parameters:

θ̂ := argmax
θ
log p(D|θ)

• MLE assumes that the data has been generated by a distribution p(D|θ0)
for some true parameter θ0.



MLE - properties
• For independent and identically distributed (i.i.d.) data from p(x|θ0),
the MLE minimizes the Kullback-Leibler divergence:

θ̂ = argmax
θ

nY
i=1

p(xi|θ)

= argmax
θ

nX
i=1

log p(xi|θ)

= argmax
θ

1
N

NX
i=1

log p(xi|θ)− 1
N

NX
i=1

log p(xi|θ0)

= argmax
θ

1
N

NX
i=1

log
p(xi|θ)
p(xi|θ0)

−→ argmin
θ

Z
log

p(xi|θ0)
p(xi|θ)

p(x|θ0)dx





MLE - properties
• Under smoothness and identifiability assumptions,
the MLE is consistent:

θ̂
p→ θ0

or equivalently,

plim(θ̂) = θ0

or equivalently,

lim
N→∞

P (|θ̂ − θ0| > α)→0

for every α.



MLE - properties

• The MLE is asymptotically normal. That is, as N →∞, we have:

θ̂ − θ0 =⇒ N(0, I−1)

where I is the Fisher Information matrix.

• It is asymptotically optimal or efficient. That is, asymptotically, it has
the lowest variance among all well behaved estimators. In particular it
attains a lower bound on the CLT variance known as the Cramer-Rao
lower bound.

• But what about issues like robustness and computation? Is MLE always
the right option?



Bias and variance

• Note that the estimator is a function of the data: θ̂ = g(D).

• Its bias is:
bias(θ̂) = Ep(D|θ0)(θ̂)− θ0 = θ̄ − θ0

• Its variance is:
V(θ̂) = Ep(D|θ0)(θ̂ − θ̄)2

• Its mean squared error is:

MSE = Ep(D|θ0)(θ̂ − θ0) = (θ̄ − θ0)
2 + Ep(D|θ0)(θ̂ − θ̄)2



MLE for the univariate Gaussian distribution
• In the case of iid data sampled from a univariate Gaussian, the log-
likelihood is given by

`(μ,σ2) =

NX
i=1

logN (xi|μ,σ2) = −
1

2σ2

NX
i=1

(xi − μ)2 − N

2
lnσ2 − N

2
ln(2π)

• To find the maximum of this function, we set the partial derivatives to 0
and solve. (We should check that the second derivative is positive.)

μ̂ =
1

N

NX
i=1

xi = x

σ̂2 =
1

N

NX
i=1

(xi − x)2 =
Ã
1

N

NX
i=1

x2i

!
− (x)2

• The quantities Pi xi,
P

i x
2
i and N are called the sufficient statistics

of the data, since they capture all the relevant information needed for
estimating the parameter.



MLE for the Bernoulli distribution
• We toss a coin N times and record the sequence of heads and tails, D =
(x1, x2, . . . , xN ). How do we estimate the probability of heads from this?

• The log-likelihood is given by

`(θ) =

NX
i=1

log Ber(xi|θ) =
NX
i=1

log
£
θxi(1− θ)1−xi

¤
= N1 log θ +N2 log(1− θ)

where N1 =
P

i xi is the number of heads and N2 =
P

i(1 − xi) is the
number of tails (these are the sufficient statistics).

• To find the MLE, we find the maximum of this expression as follows:

d`

dθ
=

N1
θ
− N2
1− θ

= 0

θ̂ =
N1

N1 +N2

where N1 +N2 = N .



MLE for binary logistic regression
• Recall that binary logistic regression has the form

p(yi|xi,w) = Ber(yi|sigm(wTxi))

where sigm(η) = 1/(1 + e−η) and yi ∈ {0, 1}. Let πi = sigm(wTxi).

• Then the negative log-likelihood of all the data is given by

J(w) = −
NX
i=1

log[π
I(yi=1)
i × (1− πi)

I(yi=0)]

= −
NX
i=1

[yi log πi + (1− yi) log(1− πi)]

This is also called the cross-entropy error function.



MLE for binary logistic regression
• The gradient and Hessian of J(w) are given by:

g(w) =
d

dw
J(w) =

X
i

(πi − yi)xi = XT (π − y)

H =
d

dw
g(w)T =

X
i

(∇wπi)xTi =
X
i

πi(1− πi)xix
T
i = X

Tdiag(πi(1− πi))X

• One can show that H is positive definite; hence the NLL is convex and
has a unique global minimum.

• To find this minimum, we will however have to learn a few things about
optimization.



Revision: Gradient and Hessian
• Let x be an n-dimensional vector, and f(x) a scalar-valued function. The
gradient vector of f with respect to x is the following vector:

∇xf(x) =

⎡⎢⎢⎢⎢⎣
∂f(x)
∂x1
∂f(x)
∂x2
...

∂f(x)
∂xn

⎤⎥⎥⎥⎥⎦
Derivative of a scalar product

∇x aTx = a

Derivative of a quadratic form

∇x xTAx = (A+AT )x

If A is symmetric, this becomes ∇xx
TAx = 2Ax.



• The Hessian matrix of a scalar valued function with respect to x, written
∇2xf(x) or simply as H, is the n× n matrix of partial derivatives,

∇2
xf(x) =

⎡⎢⎢⎢⎢⎢⎣
∂2f(x)
∂x21

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x22

· · · ∂2f(x)
∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂x2n

⎤⎥⎥⎥⎥⎥⎦
Obviously this is a symmetric matrix, since

∂2f(x)

∂xi∂xj
=

∂2f(x)

∂xj∂xi
.

• We can think of the Hessian as the gradient of the gradient, which can be
written as

H = ∇x(∇Tx f(x))

• For the quadratic form f(x) = xTAx, the gradient vector is (A+AT )x,
so the Hessian is A+AT . If A is symmetric, this is 2A.



Problems with MLE
• Computation can be expensive.

• It suffers from overfitting.

• It provides a point-estimate (best guess) of the parameters. I does not
give any measure of uncertainty in this guess.

• It migh not be the best option when the data generating mechanism is
outside the model class. Even if it finds the closest solution in terms of
KL divergence, other distance metrics might be more appropriate.



Consistent 

Maximum Likelihood Estimation is statistically consistent 
and efficient but is not computationally tractable for many 
models of interest like RBM’s, MRF’s, CRF’s due to the 
partition function.

Efficient Tractable



Consistent 

Efficient Tractable

Many more tractable estimators have been proposed: 
Pseudo/Composite-likelihood [Besag, 1975], ratio matching 
[Hyvärinen, 2007], generalized score matching [Lyu, 2009], 
non-local contrastive objectives [Vickrey, 2010], minimum 
Probability Flow [Sohl-Dickstein, 2010], …



Example: Restricted Boltzmann Machines

H1 H2 H3 H4

X1 X2 X3

K Hidden Units

D Visible Units

A Restricted Boltzmann 
Machine (RBM) is a 
Boltzmann Machine with a 
bipartite graph structure.  

Typically one layer of nodes 
are fully observed variables 
(the visible layer), while the 
other consists of latent 
variables (the hidden layer).



Example: Restricted Boltzmann Machines

The joint probability of the visible and hidden variables 
is defined through a bilinear energy function.



Example: Restricted Boltzmann Machines

The bipartite graph structure gives the RBM a special 
property: the visible variables are conditionally 
independent given the hidden variables and vice versa. 



Example: Restricted Boltzmann Machines

The marginal probability of the visible vector is 
obtained by summing out over all joint states of the 
hidden variables.



Example: Restricted Boltzmann Machines

This construction eliminates the latent, hidden 
variables, leaving a distribution defined in terms of the 
visible variables.

However, computing the normalizing constant 
(partition function) still has exponential complexity in 
D.



Stochastic Maximum Likelihood

Exact maximum likelihood learning is intractable in an 
RBM. Stochastic ML estimation can instead be applied, 
usually using a simple block Gibbs sampler.



Contrastive Divergence

The contrastive divergence principle results in a 
gradient that looks identical to stochastic maximum 
likelihood. The difference is that CD samples from the T-
step Gibbs distribution.



Pseudo-Likelihood

The principle of maximum pseudo-likelihood is based 
on optimizing a product of one-dimensional conditional 
densities under a log loss.



Ratio Matching

The ratio matching principle is very similar to pseudo-
likelihood, but is based on minimizing a squared 
difference between one dimensional conditional 
distributions.



Generalized Score Matching

The generalized score matching principle is similar to 
ratio matching, except that the difference between 
inverse one dimensional conditional distributions is 
minimized.



Gradient Comparison



Experiments: Log Likelihood

[Marlin, Swersky, Chen & dF, 2010]



Experiments: Classification Error

[Marlin, Swersky, Chen & dF, 2010]



Experiments: De-noising

[Marlin, Swersky, Chen & dF, 2010]



Theoretical results

Consistency: PL and RM are both asymptotically 
consistent when the model is well-specified.

Efficiency: Neither PL nor RM is strictly more 
efficient than the other. We have a partial 
understanding of the relationship between their 
asymptotic covariance matrices.

[Marlin & dF, 2011]



Discrete MRFs: Efficiency Simulations

PL 
Better

RM 
Better

Bound Width



Max-margin learning
We have seen several examples of the ranking loss 
in this summer school, e.g. semantic learning, NLP:

[Bordes, Glorot, Weston & Bengio, 2012]



Max-margin learning

The principle of contrasting is very useful for 
unsupervised feature learning.

But we must always choose a “negative set” with 
respect to which we contrast the “positive set” 
(the given data)

Can we optimize this process of choosing the 
negative set?



Let us again use an RBM as a running example



Max-margin learning

Make the data more probable than anything else

[Marlin 2010]



Max-margin learning
We write the constraint in terms of energy, 
introduce a margin  and slack variables :



Max-margin learning

This objective has an exponential number of 
constraints. We can obtain a linear number of 
constraints by contrasting against the 
configuration of lowest energy



Max-margin learning
A common trick is to rewrite the objective using a 
hinge loss:

So we get back to the ranking objective that Jason 
Weston and Yoshua Bengio introduced, but 
contrasting against a different “dataset”.



Is this discussion of statistical 
estimators of any relevance in 

the continuous case?

Discriminative autoencoders (neural 
nets devoid of probability) seem to do 

a reasonable job already



Unification and design



Probabilistic EBMs



Example: Gaussian-Bernoulli RBMs



Deterministic autoencoders



Vanilla 1-layer autoencoder





Score matching



Denoising autoencoders

[Vincent, 2011]



Recipe



Example 1: Gaussian-Bernoulli RBMs

[Swersky, Ranzato, Buchman, Marlin & dF 2011]



Example 2: mPoT model



Example 2: mPoT model

[Swersky, Ranzato, Buchman, Marlin & dF 2011]





Intuition



Learned covariance filters



K-means for feature learning

[Adam Coates, Honglak Lee & Andrew Ng 2009]



Learned bases (centroids)

[Adam Coates, Honglak Lee & Andrew Ng 2009]



Mapping image to feature vector

[Adam Coates, Honglak Lee & Andrew Ng 2009]



K-means for feature learning

[Adam Coates, Honglak Lee & Andrew Ng 2009]



On threshold features and sparse coding

[Denil & dF 2011]



Fast scalable feature methods

[Denil & dF 2011]



Fast scalable feature methods

[Denil & dF 2011]



t=0

t=2:4

t=0:4

Spatial pooling RBM

Temporal pooling RBM

Spatio-temporal feature learning

t=0:2

t=3 t=4t=2t=1

Temporal pooling RBM

Spatial pooling RBM

[Chen & dF 2010]



Spatio-temporal feature learning

[Chen & dF 2010]



Imagining so as to plan where to 
look and search

Observed gaze sequence

Model predictions

[Bo Chen & NdF 2010]



9

[Denil, Bazzani, Larochelle & dF, 2012]



h
Hidden activations

Foveated image

weights



Multi-fixation RBM 

h

a a

ht

t

[2]

t+1

t+1

h

Class label

action





GRID/PLACE CELLS: The black lines  show how 
a rat explored a large box in a fairly haphazard 
manner. The red dots are the neuron response  
obtained with an electrode inserted in the rat’s 
subcortex .

[Hafting et al 2005]





Multi-target trackingMulti-target tracking



Bayes net depiction

y

Nasty integral



Importance Sampling for 
Optimal Filtering / Tracking
Importance Sampling for 

Optimal Filtering / Tracking



One can Compute the 
Integrals Recursively in Time

One can Compute the 
Integrals Recursively in Time

Given the 
samples

from



Particle Filtering (SIS)Particle Filtering (SIS)



Particle Filtering (SIS)Particle Filtering (SIS)



Particle Filtering (SIR)Particle Filtering (SIR)



Particle Filtering CodeParticle Filtering Code



Simple ExampleSimple Example





Particle Methods More Generally Particle Methods More Generally 
The goal is to approximate a target distribution over a 
sequence of states                                            that is 
growing with “time” as well as the partition function.

We do this using sequential importance sampling (M&U, 49)

e.g. For filtering, we use:





Using Clever Proposals: e.g. Boosting, RFsUsing Clever Proposals: e.g. Boosting, RFs

[Okuma, Taleghani, dF, Little & Lowe 2004]



Use deep architectures as 
the observation models

h ht t+1

x encodes location, scale, speed, rotation, 
discrete states, …

xxt t+1

Goal: Estimate belief state b     = p(x    |h       )1:t+1t+1t+1





Sequential decision making and optimization

ht

t+1

xxt t+1

a t

bt

Rt

ht+1

a

bt+1

R

t+1action

reward

belief

state

policy



ht

t+1

xxt t+1

a t

bt

Rt

ht+1

a

bt+1

R

t+1action

reward

belief

state

policy

[2]
h

Class label



Pseudo-code

[Denil, Bazzani, Larochelle & dF, 2012]



Multi-target: Localization & invariance





Optimizing the reward
function, which is only
known point-wise. No 
need for derivatives. 



Control with Bayesian optimization

Digits Experiment:

Face Experiment:

115


