Multiview Feature Learning

Roland Memisevic

Frankfurt, Montreal

Tutorial at IPAM 2012

Outline

(1) Introduction

- Feature Learning
- Correspondence in Computer Vision
- Multiview feature learning
(2) Learning relational features
- Encoding relations
- Learning
(3) Factorization, eigen-spaces and complex cells
- Factorization
- Eigen-spaces, energy models, complex cells
(4) Applications and extensions
- Applications and extensions
- Conclusions

Outline

(1) Introduction

- Feature Learning
- Correspondence in Computer Vision
- Multiview feature learning
(2) Learning relational features
- Encoding relations
- Learning
(3) Factorization, eigen-spaces and complex cells
- Factorization
- Eigen-spaces, energy models, complex cells

4 Applications and extensions

- Applications and extensions
- Conclusions

What this is about

- Extend feature learning to model relations.
- "mapping units", "bi-linear models", "energy-models", "complex cells", "spatio-temporal features", "covariance features", "bi-linear classification", "quadrature features", "gated Boltzmann machine", "mcrbm", ...
- Feature learning beyond object recognition

What this is about

- Extend feature learning to model relations.
- "mapping units", "bi-linear models", "energy-models", "complex cells", "spatio-temporal features", "covariance features", "bi-linear classification", "quadrature features", "gated Boltzmann machine", "mcrbm", ...
- Feature learning beyond object recognition

Local features for recognition

- Object recognition started to work very well.
- The main reason is the use of local features.

Local features for recognition

- Object recognition started to work very well.
- The main reason is the use of local features.

Bag-Of-Features

Bag-Of-Features

(1) Find interest points.
(2) Crop patches around interest points.
(3) Represent each patch with a sparse local descriptor ("features").

4 Add all local descriptors to obtain a global descriptor for the
image.

Bag-Of-Features

Bag-Of-Features

(1) Find interest points.
(2) Crop patches around interest points.
(3) Represent each patch with a sparse local descriptor ("features").
(4) Add all local descriptors to obtain a global descriptor for the image.

Bag-Of-Features

Bag-Of-Features

(1) Find interest points.
(2) Crop patches around interest points.
(3) Represent each patch with a sparse local descriptor ("features").

- Add all local descriptors to obtain a global descriptor for the image.

Bag-Of-Features

$$
\left(\begin{array}{c}
f_{1}^{1} \\
\bullet \\
\vdots \\
f_{n}^{1}
\end{array}\right)+1 \quad \bullet \cdot \cdots \cdot \cdots+\left(\begin{array}{c}
f_{1}^{M} \\
\bullet \\
\vdots \\
f_{n}^{M}
\end{array}\right)
$$

Bag-Of-Features

(1) Find interest points.
(2) Crop patches around interest points.
(3) Represent each patch with a sparse local descriptor ("features").
(4) Add all local descriptors to obtain a global descriptor for the image.

Bag-Of-Features

$$
\left(\begin{array}{c}
f_{1}^{1} \\
\bullet \\
\vdots \\
f_{n}^{1}
\end{array}\right)+1 \quad \bullet \cdot \cdots \cdot \cdots+\left(\begin{array}{c}
f_{1}^{M} \\
\bullet \\
\vdots \\
f_{n}^{M}
\end{array}\right)
$$

Bag-Of-Features

(1) Find interest points.
(2) Crop patches around interest points.
(3) Represent each patch with a sparse local descriptor ("features").
(4) Add all local descriptors to obtain a global descriptor for the image.

Convolutional

Convolutional

(1) Crop patches along a regular grid (dense or not).
(2) Represent each patch with a local descriptor.

Convolutional

Convolutional

(1) Crop patches along a regular grid (dense or not).
(2) Represent each patch with a local descriptor.
(3) Concatenate all descriptors in a very large vector.

Convolutional

Convolutional

(1) Crop patches along a regular grid (dense or not).
(2) Represent each patch with a local descriptor.
(3) Concatenate all descriptors in a very large vector.

Classification

- After computing representations, use logistic regression, SVM, NN, ...
- There are various extensions, like fancy pooling, etc.

Extracting local features

- How to extract local features.
- Engineer them. SIFT, HOG, LBP, etc.
- Learn them from image data \rightarrow deep learning

Extracting local features

- How to extract local features.
- Engineer them. SIFT, HOG, LBP, etc.
- Learn them from image data \rightarrow deep learning

Extracting local features

- How to extract local features.
- Engineer them. SIFT, HOG, LBP, etc.
- Learn them from image data \rightarrow deep learning

Feature learning

$$
\begin{aligned}
& \boldsymbol{z}(\boldsymbol{y})=\operatorname{sigmoid}\left(\boldsymbol{W}^{\mathrm{T}} \boldsymbol{y}\right) \\
& \boldsymbol{y}(\boldsymbol{z})=\boldsymbol{W} \boldsymbol{z}
\end{aligned}
$$

Feature learning

$$
\boldsymbol{W}=\underset{\boldsymbol{W}}{\arg \min } \sum_{\alpha}\left\|\boldsymbol{y}^{\alpha}-\boldsymbol{y}\left(\boldsymbol{z}\left(\boldsymbol{y}^{\alpha}\right)\right)\right\|^{2}
$$

Feature learning models

Restricted Boltzmann machine (RBM)

- $p(\boldsymbol{y}, \boldsymbol{z})=\frac{1}{Z} \exp \left(\sum_{j k} w_{j k} y_{j} z_{k}\right)$
- Learning: Maximum likelihood/contrastive divergence.

Feature learning models

$$
\begin{gathered}
z_{k}=\operatorname{sigmoid}\left(\sum_{j} a_{j k} y_{j}\right) \\
y_{j}=\sum_{k} w_{j k} z_{k}
\end{gathered}
$$

Autoencoder

- Add inference parameters.
- Learning: Minimize reconstruction error.
- Add a sparsity penalty or corrupt inputs during training (Vincent et al., 2008).

Feature learning models

$$
y_{j}=\sum_{k} w_{j k} z_{k}
$$

Independent Components Analysis (ICA)

- Learning: Make responses sparse, while keeping filters sensible

$$
\begin{array}{ll}
\min _{W} & \left\|W^{\mathrm{T}} \boldsymbol{y}\right\|_{1} \\
\text { s.t. } & W^{\mathrm{T}} W=I
\end{array}
$$

Feature Learning Works

Manifold perspective

Outline

(1) Introduction

- Feature Learning
- Correspondence in Computer Vision
- Multiview feature learning
(2) Learning relational features
- Encoding relations
- Learning
(3) Factorization, eigen-spaces and complex cells
- Factorization
- Eigen-spaces, energy models, complex cells

4 Applications and extensions

- Applications and extensions
- Conclusions

Beyond object recognition

Can we do more with Feature Learning than recognize things?

- Brains can do much more than recognize objects.
- Many vision tasks go beyond object recognition.
- In surprisingly many of them, the relationship between images carries the relevant information.

Beyond object recognition

Can we do more with Feature Learning than recognize things?

- Brains can do much more than recognize objects.
- Many vision tasks go beyond object recognition.
- In surprisingly many of them, the relationship between images carries the relevant information.

Correspondences in Computer Vision

- Correspondence is one of the most ubiquitous problems in Computer Vision.

Some correspondence tasks in Vision

- Tracking
- Stereo
- Geometry
- Optical Flow
- Invariant Recognition
- Odometry
- Action Recognition
- Contours, Within-image structure

Correspondences in Computer Vision

- Correspondence is one of the most ubiquitous problems in Computer Vision.

Some correspondence tasks in Vision

- Tracking
- Stereo
- Geometry
- Optical Flow
- Invariant Recognition
- Odometry
- Action Recognition
- Contours, Within-image structure

Correspondences in Computer Vision

- Correspondence is one of the most ubiquitous problems in Computer Vision.

Some correspondence tasks in Vision

- Tracking
- Stereo
- Geometry
- Optical Flow
- Invariant Recognition
- Odometry
- Action Recognition
- Contours, Within-image structure

Correspondences in Computer Vision

- Correspondence is one of the most ubiquitous problems in Computer Vision.

Some correspondence tasks in Vision

- Tracking
- Stereo
- Geometry
- Optical Flow
- Invariant Recognition
- Odometry
- Action Recoç nition
- Contours, Within-image structure

Correspondences in Computer Vision

- Correspondence is one of the most ubiquitous problems in Computer Vision.

Some correspondence tasks in Vision

- Tracking
- Stereo
- Geometry
- Optical Flow
- Invariant Recognition
- Odometry
- Action Recognition
- Contours, Within-image structure

Correspondences in Computer Vision

- Correspondence is one of the most ubiquitous problems in Computer Vision.

Some correspondence tasks in Vision

- Tracking
- Stereo
- Geometry
- Optical Flow
- Invariant Recognition
- Odometry
- Action Recognition
- Contours, Within-image structure

Correspondences in Computer Vision

- Correspondence is one of the most ubiquitous problems in Computer Vision.

Some correspondence tasks in Vision

- Tracking
- Stereo
- Geometry
- Optical Flow
- Invariant Recognition
- Odometry
- Action Recognition
- Contours, Within-image structure

Correspondences in Computer Vision

- Correspondence is one of the most ubiquitous problems in Computer Vision.

Some correspondence tasks in Vision

- Tracking
- Stereo
- Geometry
- Optical Flow
- Invariant Recognition
- Odometry
- Action Recognition
- Contours, Within-image structure

Correspondences in Computer Vision

- Correspondence is one of the most ubiquitous problems in Computer Vision.

Some correspondence tasks in Vision

- Tracking
- Stereo
- Geometry
- Optical Flow
- Invariant Recognition
- Odometry
- Action Recognition
- Contours, Within-image structure

Heider and Simmel

- Adding frames is not just about adding proportionally more information.
- The relationships between frames contain additional information, that is not present in any single frame.
- See Heider and Simmel, 1944: Any single frame shows a bunch of geometric figures. The motions reveal the story.

Random dot stereograms

- You can see objects even when images contain no features.

Outline

(1) Introduction

- Feature Learning
- Correspondence in Computer Vision
- Multiview feature learning
(2) Learning relational features
- Encoding relations
- Learning
(3) Factorization, eigen-spaces and complex cells
- Factorization
- Eigen-spaces, energy models, complex cells

4 Applications and extensions

- Applications and extensions
- Conclusions

Learning features to model correspondences

- If correspondences matter in vision, can we learn them?

Learning features to model correspondences

- We can, if we let latent variables act like gates, that dynamically change the connections between fellow variables.

Learning features to model correspondences

- Learning and inference (slightly) different from learning without.
- We can set things up, such that inference is almost unchanged. Yet, the meaning of the latent variables will be entirely different.

Learning features to model correspondences

- Multiplicative interactions allow hidden variables to blend in a whole "sub"-network.
- This leads to a qualitatively quite different behaviour from the common, bi-partite feature learning models.

Multiplicative interactions

Brief history of gating

- "Mapping units" (Hinton; 1981), "dynamic mappings" (v.d. Malsburg; 1981)
- Binocular+Motion Energy models (Adelson, Bergen; 1985), (Ozhawa, DeAngelis, Freeman; 1990), (Fleet et al., 1994)
- Higher-order neural nets, "Siama-Pi-units"
- Routing circuits (Olshausen; 1994)
- Bi-linear models (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007)
- Subspace SOM (Kohonen, 1996)
- ISA, topographic ICA (Hyvarinen, Hoyer; 2000), (Karklin, Lewicki; 2003): Higher-order within image structure
- (2006 -) GBM, mcRBM, GAE, convISA, applications...

Multiplicative interactions

Brief history of gating

- "Mapping units" (Hinton; 1981), "dynamic mappings" (v.d. Malsburg; 1981)
- Binocular+Motion Energy models (Adelson, Bergen; 1985), (Ozhawa, DeAngelis, Freeman; 1990), (Fleet et al., 1994)
- Higher-order neural nets, "Sigma-Pi-units"
- Routing circuits (Olshausen; 1994)
- Bi-linear models (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007)
- Subspace SOM (Kohonen, 1996)
- ISA, topographic ICA (Hyvarinen, Hoyer; 2000), (Karklin, Lewicki; 2003): Higher-order within image structure
- (2006 -) GBM, mcRBM, GAE, convISA, applications..

Multiplicative interactions

Brief history of gating

- "Mapping units" (Hinton; 1981), "dynamic mappings" (v.d. Malsburg; 1981)
- Binocular+Motion Energy models (Adelson, Bergen; 1985), (Ozhawa, DeAngelis, Freeman; 1990), (Fleet et al., 1994)
- Higher-order neural nets, "Sigma-Pi-units"
- Routing circuits (Olshausen; 1994)
- Bi-linear models (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007)
- Subspace SOM (Kohonen, 1996)
- ISA, topographic ICA (Hyvarinen, Hoyer; 2000), (Karklin, Lewicki; 2003): Higher-order within image structure
- (2006 -) GBM, mcRBM, GAE, convISA, applications..

Multiplicative interactions

Brief history of gating

- "Mapping units" (Hinton; 1981), "dynamic mappings" (v.d. Malsburg; 1981)
- Binocular+Motion Energy models (Adelson, Bergen; 1985), (Ozhawa, DeAngelis, Freeman; 1990), (Fleet et al., 1994)
- Higher-order neural nets, "Sigma-Pi-units"
- Routing circuits (Olshausen; 1994)
- Bi-linear models (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007)
- Subspace SOM (Kohonen, 1996)
- ISA, topographic ICA (Hyvarinen, Hoyer; 2000), (Karklin, Lewicki; 2003): Higher-order within image structure
- (2006 -) GBM, mcRBM, GAE, convISA, applications..

Multiplicative interactions

Brief history of gating

- "Mapping units" (Hinton; 1981), "dynamic mappings" (v.d. Malsburg; 1981)
- Binocular+Motion Energy models (Adelson, Bergen; 1985), (Ozhawa, DeAngelis, Freeman; 1990), (Fleet et al., 1994)
- Higher-order neural nets, "Sigma-Pi-units"
- Routing circuits (Olshausen; 1994)
- Bi-linear models (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007)
- Subspace SOM (Kohonen, 1996)
- ISA, topographic ICA (Hyvarinen, Hoyer; 2000), (Karklin, Lewicki; 2003): Higher-order within image structure - (2006 -) GBM, mcRBM, GAE, convISA, applications..

Multiplicative interactions

Brief history of gating

- "Mapping units" (Hinton; 1981), "dynamic mappings" (v.d. Malsburg; 1981)
- Binocular+Motion Energy models (Adelson, Bergen; 1985), (Ozhawa, DeAngelis, Freeman; 1990), (Fleet et al., 1994)
- Higher-order neural nets, "Sigma-Pi-units"
- Routing circuits (Olshausen; 1994)
- Bi-linear models (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007)
- Subspace SOM (Kohonen, 1996)

ISA, topographic ICA (Hyvarinen, Hoyer; 2000), (Karklin, Lewicki; 2003): Higher-order within image structure - (2006 -) GBM, mcRBM, GAE, convISA, applications..

Multiplicative interactions

Brief history of gating

- "Mapping units" (Hinton; 1981), "dynamic mappings" (v.d. Malsburg; 1981)
- Binocular+Motion Energy models (Adelson, Bergen; 1985), (Ozhawa, DeAngelis, Freeman; 1990), (Fleet et al., 1994)
- Higher-order neural nets, "Sigma-Pi-units"
- Routing circuits (Olshausen; 1994)
- Bi-linear models (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007)
- Subspace SOM (Kohonen, 1996)
- ISA, topographic ICA (Hyvarinen, Hoyer; 2000), (Karklin, Lewicki; 2003): Higher-order within image structure
\square

Multiplicative interactions

Brief history of gating

- "Mapping units" (Hinton; 1981), "dynamic mappings" (v.d. Malsburg; 1981)
- Binocular+Motion Energy models (Adelson, Bergen; 1985), (Ozhawa, DeAngelis, Freeman; 1990), (Fleet et al., 1994)
- Higher-order neural nets, "Sigma-Pi-units"
- Routing circuits (Olshausen; 1994)
- Bi-linear models (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007)
- Subspace SOM (Kohonen, 1996)
- ISA, topographic ICA (Hyvarinen, Hoyer; 2000), (Karklin, Lewicki; 2003): Higher-order within image structure
- (2006 -) GBM, mcRBM, GAE, convISA, applications...

Mapping units 1981

(Hinton, 1981)

Mapping units 1981

(Hinton, 1981)

Example application: Action recognition

(Hollywood 2)
(Marszałek et al., 2009)

- Convolutional GBM (Taylor et al., 2010)
- hierarchical ISA (Le, et al., 2011)

Мосар

- (Taylor, Hinton; 2009), (Taylor, et al.; 2010)

Training	Test	Baseline	MoCorr [28]	GPLVM [13]	CMFA-VB [13]	CRBM	imCRBM-10
S1+S2+S3	S1	129.18 ± 19.47	140.35	-	-	55.43 ± 0.79	$\mathbf{5 4 . 2 7} \pm \mathbf{0 . 4 9}$
S1	S1		-	-	-	$\mathbf{4 8 . 7 5} \pm \mathbf{3 . 7 2}$	58.62 ± 3.87
S1+S2+S3	S2	162.75 ± 15.36	149.37	-	-	99.13 ± 22.98	$\mathbf{6 9 . 2 8} \pm \mathbf{3 . 3 0}$
S2	S2		-	88.35 ± 25.66	68.67 ± 24.66	$\mathbf{4 7 . 4 3} \pm \mathbf{2 . 8 6}$	67.02 ± 0.70
S1+S2+S3	S3	180.11 ± 24.02	156.30	-	-	70.89 ± 2.10	$\mathbf{4 3 . 4 0} \pm \mathbf{4 . 1 2}$
S3	S3		-	87.39 ± 21.69	69.59 ± 22.22	$\mathbf{4 9 . 8 1} \pm \mathbf{2 . 1 9}$	51.43 ± 0.92

Gated MRFs

- (Ranzato et al., 2010)

Analogy making

Invariance

aperture feature similarities

image similarities

Outline

(1) Introduction

- Feature Learning
- Correspondence in Computer Vision
- Multiview feature learning
(2) Learning relational features
- Encoding relations
- Learning
(3) Factorization, eigen-spaces and complex cells
- Factorization
- Eigen-spaces, energy models, complex cells
(4) Applications and extensions
- Applications and extensions
- Conclusions

Outline

(1) Introduction

- Feature Learning
- Correspondence in Computer Vision
- Multiview feature learning
(2) Learning relational features
- Encoding relations
- Learning

3 Factorization, eigen-spaces and complex cells

- Factorization
- Eigen-spaces, energy models, complex cells

4 Applications and extensions

- Applications and extensions
- Conclusions

Sparse coding of images pairs?

- How to extend sparse coding to model relations?
- Sparse coding on the concatenation?

Sparse coding of images pairs?

- How to extend sparse coding to model relations?
- Sparse coding on the concatenation?

Sparse coding on the concatenation ?

- A case study: Translations of binary, one-d images.
- Suppose images are random and can change in one of three ways:

Example Image \boldsymbol{x} :

Possible Image \boldsymbol{y} :

Sparse coding on the concatenation?

- A hidden variable that collects evidence for a shift to the right.
- What if the images are random or noisy?
- Can we pool over more than one pixel?

Sparse coding on the concatenation ?

- A hidden variable that collects evidence for a shift to the right.
- What if the images are random or noisy?
- Can we pool over more than one pixel?

Sparse coding on the concatenation ?

- A hidden variable that collects evidence for a shift to the right.
- What if the images are random or noisy?
- Can we pool over more than one pixel?

Sparse coding on the concatenation ?

- Obviously not, because now the hidden unit would get equally happy if it would see the non-shift (second pixel from the left).
- The problem: Hidden variables act like OR-gates, that accumulate evidence.

Cross-products

- Intuitively, what we need instead are logical ANDs, which can represent coincidences (eg. Zetzsche et al., 2003, 2005).
- This amounts to using the outer product $L:=\operatorname{outer}(\boldsymbol{x}, \boldsymbol{y})$:

- We can unroll this matrix, and let this be the data:

Cross-products

- Each component $L_{i j}$ of the outer-product matrix will constitute evidence for exactly one type of shift.
- Hiddens pool over products of pixels.

Cross-products

- Each component $L_{i j}$ of the outer-product matrix will constitute evidence for exactly one type of shift.
- Hiddens pool over products of pixels.

Cross-products

- Each component $L_{i j}$ of the outer-product matrix will constitute evidence for exactly one type of shift.
- Hiddens pool over products of pixels.

A different view: Families of manifolds

- Feature learning reveals the (local) manifold structure in data.
- When \boldsymbol{y} is a transformed version of \boldsymbol{x}, we can still think of \boldsymbol{y} as being confined to a manifold, but it will be a conditional manifold.
- Idea: Learn a model for \boldsymbol{y}, but let parameters be a function of \boldsymbol{x}.

Conditional inference

Inferring z

- If we use a linear function, $w_{j k}(\boldsymbol{x})=\sum_{i} w_{i j k} x_{i}$, we get

$$
z_{k}=\sum_{j} w_{j k} y_{j}=\sum_{j}\left(\sum_{i} w_{i j k} x_{i}\right) y_{j}=\sum_{i j} w_{i j k} x_{i} y_{j}
$$

- Inference via bilinear function of the inputs.

Conditional inference

Inferring y

- To infer \boldsymbol{y} :

$$
y_{j}=\sum_{k} w_{j k} z_{k}=\sum_{k}\left(\sum_{i} w_{i j k} x_{i}\right) z_{k}=\sum_{i k} w_{i j k} x_{i} z_{k}
$$

- Inference via bilinear function of x, z.

Input-modulated filters

- This is feature learning with input-dependent weights.
- Input pixels can vote for features in the output image.

A different visualization

- A hidden can blend in one slice $W_{. . k}$ of the parameter tensor.
- A slice does linear regression in "pixel space".
- So for binary hiddens, this is a mixture of 2^{K} image warps.

Outline

(1) Introduction

- Feature Learning
- Correspondence in Computer Vision
- Multiview feature learning
(2) Learning relational features
- Encoding relations
- Learning
(3) Factorization, eigen-spaces and complex cells
- Factorization
- Eigen-spaces, energy models, complex cells

4 Applications and extensions

- Applications and extensions
- Conclusions

Learning is predictive coding

Predictive sparse coding

- The cost for a training pair $(\boldsymbol{x}, \boldsymbol{y})$ is:

$$
\sum_{j}\left(y_{j}-\sum_{i k} w_{i j k} x_{i} z_{k}\right)^{2}
$$

- Training as usual: Infer \boldsymbol{z}, update W. (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007), (Memisevic, Hinton; 2007)

Example: Gated Boltzmann machine

Three-way RBM (Memisevic, Hinton; 2007)

$$
\begin{gathered}
E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=\sum_{i j k} w_{i j k} x_{i} y_{j} z_{k} \\
p(\boldsymbol{y}, \boldsymbol{z} \mid \boldsymbol{x})=\frac{1}{Z(\boldsymbol{x})} \exp (E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})), Z(\boldsymbol{x})=\sum_{\boldsymbol{y}, \boldsymbol{z}} \exp (E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}))
\end{gathered}
$$

Example: Gated Boltzmann machine

Three-way RBM (Memisevic, Hinton; 2007)

$$
\begin{gathered}
E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=\sum_{i j k} w_{i j k} x_{i} y_{j} z_{k} \\
p(\boldsymbol{y}, \boldsymbol{z} \mid \boldsymbol{x})=\frac{1}{Z(\boldsymbol{x})} \exp (E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})), Z(\boldsymbol{x})=\sum_{\boldsymbol{y}, \boldsymbol{z}} \exp (E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}))
\end{gathered}
$$

Example: Gated Boltzmann machine

Three-way RBM (Memisevic, Hinton; 2007)

$$
\begin{aligned}
& p\left(z_{k} \mid \boldsymbol{x}, \boldsymbol{y}\right)=\operatorname{sigmoid}\left(\sum_{i j} W_{i j k} x_{i} y_{j}\right) \\
& p\left(y_{j} \mid \boldsymbol{x}, \boldsymbol{z}\right)=\operatorname{sigmoid}\left(\sum_{i k} W_{i j k} x_{i} z_{k}\right)
\end{aligned}
$$

Example: Gated auto-encoder

Gated autoencoders

- Turn encoder and decoder weights into functions of \boldsymbol{x}.
- Learning the same as in a standard auto-encoder for \boldsymbol{y}.
- The model is still a DAG, so back-prop works exactly like in a standard autoencoder. (Memisevic, 2011)

Toy example: Conditionally trained "Hidden flow-fields"

Toy example: Conditionally trained "Hidden flow-fields", inhibitory connections

Toy example: Learning optical flow

"Combinatorial flowfields"

Joint training

- Conditional training makes it hard to answer questions like:
- "How likely are the given images transforms of one another?"
- To answer questions like these, we require a joint image model, $p(\boldsymbol{x}, \boldsymbol{y} \mid \boldsymbol{z})$, given mapping units.

Joint training

$$
\begin{gathered}
E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=\sum_{i j k} w_{i j k} x_{i} y_{j} z_{k} \\
p(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=\frac{1}{Z} \exp (E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})) \\
Z=\sum_{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}} \exp (E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}))
\end{gathered}
$$

- Use three-way sampling in a Gated Boltzmann Machine (Susskind et al., 2011).
- Can apply this to matching tasks (more later).

Joint training

$$
\begin{gathered}
E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=\sum_{i j k} w_{i j k} x_{i} y_{j} z_{k} \\
p(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=\frac{1}{Z} \exp (E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})) \\
Z=\sum_{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}} \exp (E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}))
\end{gathered}
$$

- Use three-way sampling in a Gated Boltzmann Machine (Susskind et al., 2011).
- Can apply this to matching tasks (more later).

Joint training

- For the autoencoder we can use a simple hack:
- Add up two conditional costs:

$$
\sum_{j}\left(y_{j}-\sum_{i k} w_{i j k} x_{i} z_{k}\right)^{2}+\sum_{i}\left(x_{i}-\sum_{j k} w_{i j k} y_{j} z_{k}\right)^{2}
$$

- Force parameters to transform in both directions.

Joint training

- For the autoencoder we can use a simple hack:
- Add up two conditional costs:

$$
\sum_{j}\left(y_{j}-\sum_{i k} w_{i j k} x_{i} z_{k}\right)^{2}+\sum_{i}\left(x_{i}-\sum_{j k} w_{i j k} y_{j} z_{k}\right)^{2}
$$

- Force parameters to transform in both directions.

Pool over products

Take-home message

To gather evidence for a transformation, let hidden units compute the sum over products of input components.

