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What this is about

Extend feature learning to model relations.
“mapping units”, “bi-linear models”, “energy-models”, “complex
cells”, “spatio-temporal features”, “covariance features”, “bi-linear
classification”, “quadrature features”, “gated Boltzmann machine”,
“mcrbm”, ...
Feature learning beyond object recognition
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Local features for recognition

Object recognition started to work very well.
The main reason is the use of local features.
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Bag-Of-Features

Bag-Of-Features
1 Find interest points.
2 Crop patches around interest points.
3 Represent each patch with a sparse local descriptor (“features”).
4 Add all local descriptors to obtain a global descriptor for the

image.
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Convolutional

Convolutional
1 Crop patches along a regular grid (dense or not).
2 Represent each patch with a local descriptor.
3 Concatenate all descriptors in a very large vector.
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Classification

high-rise

?

cathedral

f2

f1

After computing representations, use logistic regression, SVM,
NN, ...
There are various extensions, like fancy pooling, etc.
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Extracting local features

f1

fn

How to extract local features.
Engineer them. SIFT, HOG, LBP, etc.
Learn them from image data→ deep learning
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Feature learning

z(y) = sigmoid(W Ty)

y(z) = Wz

yj

z

zk

y

wjk

Feature learning

W = argmin
W

∑
α

‖yα − y
(
z
(
yα
))
‖2
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Feature learning models

yj

z

zk

y

wjk p(yj |z) = sigmoid
(∑

k

wjkzk
)

p(zk|y) = sigmoid
(∑

j

wjkyj
)

Restricted Boltzmann machine (RBM)

p(y, z) = 1
Z exp

(∑
jk wjkyjzk

)
Learning: Maximum likelihood/contrastive divergence.
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Feature learning models

zk

yj

wkj

ajk

y

ŷ

ŷj

zk = sigmoid
(∑

j

ajkyj
)

yj =
∑
k

wjkzk

Autoencoder
Add inference parameters.
Learning: Minimize reconstruction error.
Add a sparsity penalty or corrupt inputs during training (Vincent et
al., 2008).
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Feature learning models

yj

z

y

zk

wjk

yj =
∑
k

wjkzk

Independent Components Analysis (ICA)
Learning: Make responses sparse, while keeping filters sensible

min
W
‖WTy‖1

s.t. WTW = I
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Feature Learning Works

(CIFAR) (NORB)
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Manifold perspective

z

y
f(z) g(y)
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Beyond object recognition

Can we do more with Feature Learning than recognize things?

Brains can do much more than recognize objects.
Many vision tasks go beyond object recognition.
In surprisingly many of them, the relationship between images
carries the relevant information.
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Correspondences in Computer Vision

Correspondence is one of the most ubiquitous problems in
Computer Vision.

Some correspondence tasks in Vision
Tracking
Stereo
Geometry
Optical Flow
Invariant Recognition
Odometry
Action Recognition
Contours, Within-image structure
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Heider and Simmel

Adding frames is not just about adding proportionally more
information.
The relationships between frames contain additional information,
that is not present in any single frame.
See Heider and Simmel, 1944: Any single frame shows a bunch
of geometric figures. The motions reveal the story.
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Random dot stereograms

You can see objects even when images contain no features.
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Learning features to model correspondences

If correspondences matter in vision, can we learn them?

?

x y

z
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Learning features to model correspondences

We can, if we let latent
variables act like gates, that
dynamically change the
connections between fellow
variables.

zk

xi

yj
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Learning features to model correspondences

Learning and inference
(slightly) different from
learning without.
We can set things up, such
that inference is almost
unchanged. Yet, the meaning
of the latent variables will be
entirely different.

zk

xi

yj
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Learning features to model correspondences

Multiplicative interactions allow
hidden variables to blend in a
whole “sub”-network.
This leads to a qualitatively
quite different behaviour from
the common, bi-partite feature
learning models.

zk

xi

yj
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Multiplicative interactions

Brief history of gating
“Mapping units” (Hinton; 1981), “dynamic mappings” (v.d.
Malsburg; 1981)
Binocular+Motion Energy models (Adelson, Bergen; 1985),
(Ozhawa, DeAngelis, Freeman; 1990), (Fleet et al., 1994)
Higher-order neural nets, “Sigma-Pi-units”
Routing circuits (Olshausen; 1994)
Bi-linear models (Tenenbaum, Freeman; 2000), (Grimes, Rao;
2005), (Olshausen; 2007)
Subspace SOM (Kohonen, 1996)
ISA, topographic ICA (Hyvarinen, Hoyer; 2000), (Karklin, Lewicki;
2003): Higher-order within image structure
(2006 –) GBM, mcRBM, GAE, convISA, applications...
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Mapping units 1981

(Hinton, 1981)
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Example application: Action recognition

(Hollywood 2)

(Marszałek et al., 2009)
Convolutional GBM (Taylor et al., 2010)
hierarchical ISA (Le, et al., 2011)
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Mocap

(Taylor, Hinton; 2009), (Taylor,
et al.; 2010)
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Gated MRFs

(Ranzato et al., 2010)
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Analogy making
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Invariance

aperture feature similarities image similarities

0

0
1

1 2

2
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Sparse coding of images pairs?

?

x y

z

How to extend sparse coding to model relations?
Sparse coding on the concatenation?
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Sparse coding on the concatenation ?

A case study: Translations of binary, one-d images.
Suppose images are random and can change in one of three
ways:

Example Image x: Possible Image y:
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Sparse coding on the concatenation ?

A hidden variable that collects evidence for a shift to the right.
What if the images are random or noisy?
Can we pool over more than one pixel?

zk
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Sparse coding on the concatenation ?

Obviously not, because now the hidden unit would get equally
happy if it would see the non-shift (second pixel from the left).
The problem: Hidden variables act like OR-gates, that accumulate
evidence.

zk

?
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Cross-products

Intuitively, what we need instead are logical ANDs, which can
represent coincidences (eg. Zetzsche et al., 2003, 2005).
This amounts to using the outer product L := outer(x,y):

We can unroll this matrix, and let this be the data:
zk

wijk
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Cross-products

Each component Lij of the outer-product matrix will constitute
evidence for exactly one type of shift.
Hiddens pool over products of pixels.
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A different view: Families of manifolds

y

x

Feature learning reveals the (local) manifold structure in data.
When y is a transformed version of x, we can still think of y as
being confined to a manifold, but it will be a conditional manifold.
Idea: Learn a model for y, but let parameters be a function of x.
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Conditional inference

yj

xi

x y

z

zk

Inferring z

If we use a linear function, wjk(x) =
∑

iwijkxi, we get

zk =
∑
j

wjkyj =
∑
j

(∑
i

wijkxi
)
yj =

∑
ij

wijkxiyj

Inference via bilinear function of the inputs.
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Conditional inference

yj

xi

x y

z

zk

Inferring y

To infer y:

yj =
∑
k

wjkzk =
∑
k

(∑
i

wijkxi
)
zk =

∑
ik

wijkxizk

Inference via bilinear function of x, z.
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Input-modulated filters

yj

xi

x y

z

zk

This is feature learning with input-dependent weights.
Input pixels can vote for features in the output image.
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A different visualization

yjxi

zk

z

x y

A hidden can blend in one slice W··k of the parameter tensor.
A slice does linear regression in “pixel space”.
So for binary hiddens, this is a mixture of 2K image warps.
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Learning is predictive coding

yj

xi

x y

z

zk

Predictive sparse coding
The cost for a training pair (x,y) is:∑

j

(
yj −

∑
ik

wijkxizk)
2

Training as usual: Infer z, update W . (Tenenbaum, Freeman;
2000), (Grimes, Rao; 2005), (Olshausen; 2007), (Memisevic,
Hinton; 2007)
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Example: Gated Boltzmann machine

yj

xi

x y

z

zk

Three-way RBM (Memisevic, Hinton; 2007)

E(x,y, z) =
∑
ijk

wijkxiyjzk

p(y, z|x) = 1
Z(x) exp

(
E(x,y, z)

)
, Z(x) =

∑
y,z exp

(
E(x,y, z)

)
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Z(x) exp

(
E(x,y, z)

)
, Z(x) =

∑
y,z exp

(
E(x,y, z)

)
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Example: Gated Boltzmann machine

yj

xi

x y

z

zk

Three-way RBM (Memisevic, Hinton; 2007)

p(zk|x,y) = sigmoid(
∑
ij

Wijkxiyj)

p(yj |x, z) = sigmoid(
∑
ik

Wijkxizk)
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Example: Gated auto-encoder

xi
zzk

yj y

ŷj ŷ

x

Gated autoencoders
Turn encoder and decoder weights into functions of x.
Learning the same as in a standard auto-encoder for y.
The model is still a DAG, so back-prop works exactly like in a
standard autoencoder. (Memisevic, 2011)
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Toy example: Conditionally trained “Hidden
flow-fields”
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Toy example: Conditionally trained “Hidden
flow-fields”, inhibitory connections
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Toy example: Learning optical flow

xtestx y z y(xtest, z)
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“Combinatorial flowfields”

xtestx y z y(xtest, z)
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Joint training

yjxi

zk

z

x y

Conditional training makes it hard to answer questions like:
“How likely are the given images transforms of one another?”
To answer questions like these, we require a joint image model,
p(x,y|z), given mapping units.
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Joint training

yjxi

zk

z

x y

E(x,y, z) =
∑
ijk

wijkxiyjzk

p(x,y, z) =
1

Z
exp

(
E(x,y, z)

)
Z =

∑
x,y,z

exp
(
E(x,y, z)

)

Use three-way sampling in a Gated Boltzmann Machine (Susskind
et al., 2011).
Can apply this to matching tasks (more later).
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Use three-way sampling in a Gated Boltzmann Machine (Susskind
et al., 2011).
Can apply this to matching tasks (more later).
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Joint training

xi
zzk

yj y

ŷj ŷ

x

For the autoencoder we can use a simple hack:
Add up two conditional costs:∑

j

(
yj −

∑
ik wijkxizk)

2+
∑

i

(
xi −

∑
jk wijkyjzk)

2

Force parameters to transform in both directions.
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Joint training

yj
zzk

xi x

x̂i

y

x̂

For the autoencoder we can use a simple hack:
Add up two conditional costs:∑
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(
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2

Force parameters to transform in both directions.
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Pool over products

Take-home message
To gather evidence for a transformation,

let hidden units compute the sum over products of input components.
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