Multiview Feature Learning

Roland Memisevic

Frankfurt, Montreal

Tutorial at IPAM 2012

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012 1 / 163

Outline

Introduction

- Feature Learning
- Correspondence in Computer Vision
- Multiview feature learning

Learning relational features

- Encoding relations
- Learning

Factorization, eigen-spaces and complex cells

- Factorization
- Eigen-spaces, energy models, complex cells

4 Applications and extensions

- Applications and extensions
- Conclusions

Outline

Introduction

Feature Learning

- Correspondence in Computer Vision
- Multiview feature learning

Learning relational features

- Encoding relations
- Learning

Factorization, eigen-spaces and complex cells

- Factorization
- Eigen-spaces, energy models, complex cells

Applications and extensions

- Applications and extensions
- Conclusions

- Extend feature learning to model relations.
- "mapping units", "bi-linear models", "energy-models", "complex cells", "spatio-temporal features", "covariance features", "bi-linear classification", "quadrature features", "gated Boltzmann machine", "mcrbm", ...
- Feature learning beyond object recognition

- Extend feature learning to model relations.
- "mapping units", "bi-linear models", "energy-models", "complex cells", "spatio-temporal features", "covariance features", "bi-linear classification", "quadrature features", "gated Boltzmann machine", "mcrbm", ...
- Feature learning beyond object recognition

Local features for recognition

• Object recognition started to work very well.

The main reason is the use of local features.

Roland Memisevic (Frankfurt, Montreal)

Local features for recognition

- Object recognition started to work very well.
- The main reason is the use of local features.

Bag-Of-Features

Find interest points.

- Orop patches around interest points.
- ③ Represent each patch with a sparse local descriptor ("features").
- Add all local descriptors to obtain a global descriptor for the image.

Roland Memisevic (Frankfurt, Montreal)

Bag-Of-Features

- Find interest points.
- Orop patches around interest points.
- ③ Represent each patch with a sparse local descriptor ("features").
- Add all local descriptors to obtain a global descriptor for the image.

Roland Memisevic (Frankfurt, Montreal)

Bag-Of-Features

- Find interest points.
- Orop patches around interest points.
- Represent each patch with a sparse local descriptor ("features").
 - Add all local descriptors to obtain a global descriptor for the image.

Roland Memisevic (Frankfurt, Montreal)

Bag-Of-Features

- Find interest points.
- Orop patches around interest points.
- Represent each patch with a sparse local descriptor ("features").
- Add all local descriptors to obtain a global descriptor for the image.

Bag-Of-Features

- Find interest points.
- Orop patches around interest points.
- Represent each patch with a sparse local descriptor ("features").
- Add all local descriptors to obtain a global descriptor for the image.

Roland Memisevic (Frankfurt, Montreal)

Convolutional

Convolutional

Provide the sector of the s

Concatenate all descriptors in a very large vector.

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Convolutional

Convolutional

- Crop patches along a regular grid (dense or not).
- Represent each patch with a local descriptor.
 - Concatenate all descriptors in a very large vector.

< ロ > < 同 > < 三 > < 三

Convolutional

Convolutional

- Crop patches along a regular grid (dense or not).
- Represent each patch with a local descriptor.
- Concatenate all descriptors in a very large vector.

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

- After computing representations, use logistic regression, SVM, NN, ...
- There are various extensions, like fancy pooling, etc.

Extracting local features

How to extract local features.

• Engineer them. SIFT, HOG, LBP, etc.

• Learn them from image data ightarrow deep learning

Extracting local features

- How to extract local features.
- Engineer them. SIFT, HOG, LBP, etc.
- Learn them from image data ightarrow deep learning

Extracting local features

- How to extract local features.
- Engineer them. SIFT, HOG, LBP, etc.
- Learn them from image data \rightarrow deep learning

Feature learning

$$oldsymbol{W} = rgmin_{oldsymbol{W}} \sum_lpha \|oldsymbol{y}^lpha - oldsymbol{y}ig(oldsymbol{z}(oldsymbol{y}^lpha)ig)\|^2$$

Roland Memisevic (Frankfurt, Montreal)

Feature learning models

$$p(y_j|\boldsymbol{z}) = \operatorname{sigmoid}\left(\sum_k w_{jk} z_k\right)$$

$$p(z_k|\boldsymbol{y}) = \operatorname{sigmoid}\left(\sum_j w_{jk} y_j\right)$$

Restricted Boltzmann machine (RBM)

•
$$p(\boldsymbol{y}, \boldsymbol{z}) = \frac{1}{Z} \exp\left(\sum_{jk} w_{jk} y_j z_k\right)$$

• Learning: Maximum likelihood/contrastive divergence.

Feature learning models

$$z_k = \text{sigmoid}\left(\sum_j a_{jk} y_j\right)$$
$$y_j = \sum_k w_{jk} z_k$$

Autoencoder

- Add inference parameters.
- Learning: Minimize reconstruction error.
- Add a sparsity penalty or *corrupt inputs during training* (Vincent et al., 2008).

Feature learning models

$$y_j = \sum_k w_{jk} z_k$$

Independent Components Analysis (ICA)

• Learning: Make responses sparse, while keeping filters sensible

$$\min_{W} \|W^{\mathrm{T}}\boldsymbol{y}\|_{1}$$
s.t. $W^{\mathrm{T}}W = I$

Roland Memisevic (Frankfurt, Montreal)

(CIFAR)

Tutorial at IPAM 2012 13 / 163

Manifold perspective

Roland Memisevic (Frankfurt, Montreal)

14 / 163

Outline

Introduction

- Feature Learning
- Correspondence in Computer Vision
- Multiview feature learning

Learning relational features

- Encoding relations
- Learning

Factorization, eigen-spaces and complex cells

- Factorization
- Eigen-spaces, energy models, complex cells

Applications and extensions

- Applications and extensions
- Conclusions

Can we do more with Feature Learning than recognize things?

- Brains can do much more than recognize objects.
- Many vision tasks go beyond object recognition.
- In surprisingly many of them, the relationship between images carries the relevant information.

Can we do more with Feature Learning than recognize things?

- Brains can do much more than recognize objects.
- Many vision tasks go beyond object recognition.
- In surprisingly many of them, the relationship *between* images carries the relevant information.

• **Correspondence** is one of the most ubiquitous problems in Computer Vision.

Some correspondence tasks in Vision

- Tracking
- Stereo
- Geometry
- Optical Flow
- Invariant Recognition
- Odometry
- Action Recognition
- Contours, Within-image structure

★ ∃ →

• **Correspondence** is one of the most ubiquitous problems in Computer Vision.

Some correspondence tasks in Vision

- Tracking
- Stereo
- Geometry
- Optical Flow
- Invariant Recognition
- Odometry
- Action Recognition
- Contours, Within-image structure

4 ∃ > 4

• **Correspondence** is one of the most ubiquitous problems in Computer Vision.

Some correspondence tasks in Vision

- Tracking
- Stereo
- Geometry
- Optical Flow
- Invariant Recognition
- Odometry
- Action Recognition
- Contours, Within-image structure

• **Correspondence** is one of the most ubiquitous problems in Computer Vision.

Some correspondence tasks in Vision

- Tracking
- Stereo
- Geometry
- Optical Flow
- Invariant Recognition
- Odometry
- Action Recognition
- Contours, Within-image structure

4 E b

• **Correspondence** is one of the most ubiquitous problems in Computer Vision.

Some correspondence tasks in Vision

- Tracking
- Stereo
- Geometry
- Optical Flow
- Invariant Recognition
- Odometry
- Action Recognition
- Contours, Within-image structure

• **Correspondence** is one of the most ubiquitous problems in Computer Vision.

Some correspondence tasks in Vision

- Tracking
- Stereo
- Geometry
- Optical Flow
- Invariant Recognition
- Odometry
- Action Recognition
- Contours, Within-image structure

• **Correspondence** is one of the most ubiquitous problems in Computer Vision.

Some correspondence tasks in Vision

- Tracking
- Stereo
- Geometry
- Optical Flow
- Invariant Recognition
- Odometry
- Action Recognition
- Contours, Within-image structure

• **Correspondence** is one of the most ubiquitous problems in Computer Vision.

Some correspondence tasks in Vision

- Tracking
- Stereo
- Geometry
- Optical Flow
- Invariant Recognition
- Odometry
- Action Recognition
- Contours, Within-image structure
Correspondences in Computer Vision

• **Correspondence** is one of the most ubiquitous problems in Computer Vision.

Some correspondence tasks in Vision

- Tracking
- Stereo
- Geometry
- Optical Flow
- Invariant Recognition
- Odometry
- Action Recognition
- Contours, Within-image structure

Heider and Simmel

- Adding frames is not just about adding proportionally more information.
- The relationships between frames contain additional information, that is not present in any single frame.
- See *Heider and Simmel, 1944:* Any single frame shows a bunch of geometric figures. The motions reveal the story.

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Random dot stereograms

• You can see objects even when images contain *no* features.

Outline

Introduction

- Feature Learning
- Correspondence in Computer Vision
- Multiview feature learning

Learning relational features

- Encoding relations
- Learning

Factorization, eigen-spaces and complex cells

- Factorization
- Eigen-spaces, energy models, complex cells

Applications and extensions

- Applications and extensions
- Conclusions

Learning features to model correspondences

• If correspondences matter in vision, can we learn them?

• We can, if we let latent variables act like *gates*, that dynamically change the connections between fellow variables.

- Learning and inference (slightly) different from learning without.
- We can set things up, such that inference is almost unchanged. Yet, the *meaning* of the latent variables will be entirely different.

- Multiplicative interactions allow hidden variables to blend in a whole "sub"-network.
- This leads to a qualitatively quite different behaviour from the common, bi-partite feature learning models.

- "Mapping units" (Hinton; 1981), "dynamic mappings" (v.d. Malsburg; 1981)
- Binocular+Motion Energy models (Adelson, Bergen; 1985), (Ozhawa, DeAngelis, Freeman; 1990), (Fleet et al., 1994)
- Higher-order neural nets, "Sigma-Pi-units"
- Routing circuits (Olshausen; 1994)
- Bi-linear models (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007)
- Subspace SOM (Kohonen, 1996)
- ISA, topographic ICA (Hyvarinen, Hoyer; 2000), (Karklin, Lewicki; 2003): Higher-order within image structure
- (2006 –) GBM, mcRBM, GAE, convISA, applications...

э.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- "Mapping units" (Hinton; 1981), "dynamic mappings" (v.d. Malsburg; 1981)
- Binocular+Motion Energy models (Adelson, Bergen; 1985), (Ozhawa, DeAngelis, Freeman; 1990), (Fleet et al., 1994)
- Higher-order neural nets, "Sigma-Pi-units"
- Routing circuits (Olshausen; 1994)
- Bi-linear models (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007)
- Subspace SOM (Kohonen, 1996)
- ISA, topographic ICA (Hyvarinen, Hoyer; 2000), (Karklin, Lewicki; 2003): Higher-order within image structure
- (2006 –) GBM, mcRBM, GAE, convISA, applications...

э.

- "Mapping units" (Hinton; 1981), "dynamic mappings" (v.d. Malsburg; 1981)
- Binocular+Motion Energy models (Adelson, Bergen; 1985), (Ozhawa, DeAngelis, Freeman; 1990), (Fleet et al., 1994)
- Higher-order neural nets, "Sigma-Pi-units"
- Routing circuits (Olshausen; 1994)
- Bi-linear models (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007)
- Subspace SOM (Kohonen, 1996)
- ISA, topographic ICA (Hyvarinen, Hoyer; 2000), (Karklin, Lewicki; 2003): Higher-order within image structure
- (2006 –) GBM, mcRBM, GAE, convISA, applications...

э.

- "Mapping units" (Hinton; 1981), "dynamic mappings" (v.d. Malsburg; 1981)
- Binocular+Motion Energy models (Adelson, Bergen; 1985), (Ozhawa, DeAngelis, Freeman; 1990), (Fleet et al., 1994)
- Higher-order neural nets, "Sigma-Pi-units"
- Routing circuits (Olshausen; 1994)
- Bi-linear models (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007)
- Subspace SOM (Kohonen, 1996)
- ISA, topographic ICA (Hyvarinen, Hoyer; 2000), (Karklin, Lewicki; 2003): Higher-order within image structure
- (2006 –) GBM, mcRBM, GAE, convISA, applications...

э.

- "Mapping units" (Hinton; 1981), "dynamic mappings" (v.d. Malsburg; 1981)
- Binocular+Motion Energy models (Adelson, Bergen; 1985), (Ozhawa, DeAngelis, Freeman; 1990), (Fleet et al., 1994)
- Higher-order neural nets, "Sigma-Pi-units"
- Routing circuits (Olshausen; 1994)
- Bi-linear models (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007)
- Subspace SOM (Kohonen, 1996)
- ISA, topographic ICA (Hyvarinen, Hoyer; 2000), (Karklin, Lewicki; 2003): Higher-order within image structure
- (2006 –) GBM, mcRBM, GAE, convISA, applications...

3

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

- "Mapping units" (Hinton; 1981), "dynamic mappings" (v.d. Malsburg; 1981)
- Binocular+Motion Energy models (Adelson, Bergen; 1985), (Ozhawa, DeAngelis, Freeman; 1990), (Fleet et al., 1994)
- Higher-order neural nets, "Sigma-Pi-units"
- Routing circuits (Olshausen; 1994)
- Bi-linear models (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007)
- Subspace SOM (Kohonen, 1996)
- ISA, topographic ICA (Hyvarinen, Hoyer; 2000), (Karklin, Lewicki; 2003): Higher-order within image structure
- (2006 –) GBM, mcRBM, GAE, convISA, applications...

3

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

- "Mapping units" (Hinton; 1981), "dynamic mappings" (v.d. Malsburg; 1981)
- Binocular+Motion Energy models (Adelson, Bergen; 1985), (Ozhawa, DeAngelis, Freeman; 1990), (Fleet et al., 1994)
- Higher-order neural nets, "Sigma-Pi-units"
- Routing circuits (Olshausen; 1994)
- Bi-linear models (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007)
- Subspace SOM (Kohonen, 1996)
- ISA, topographic ICA (Hyvarinen, Hoyer; 2000), (Karklin, Lewicki; 2003): Higher-order within image structure
- (2006 –) GBM, mcRBM, GAE, convISA, applications...

3

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

- "Mapping units" (Hinton; 1981), "dynamic mappings" (v.d. Malsburg; 1981)
- Binocular+Motion Energy models (Adelson, Bergen; 1985), (Ozhawa, DeAngelis, Freeman; 1990), (Fleet et al., 1994)
- Higher-order neural nets, "Sigma-Pi-units"
- Routing circuits (Olshausen; 1994)
- Bi-linear models (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007)
- Subspace SOM (Kohonen, 1996)
- ISA, topographic ICA (Hyvarinen, Hoyer; 2000), (Karklin, Lewicki; 2003): Higher-order within image structure
- (2006 –) GBM, mcRBM, GAE, convISA, applications...

= na(~

Mapping units 1981

(Hinton, 1981)

Tutorial at IPAM 2012 26 / 163

э

<ロ> <回> <回> <回> < 回</p>

Mapping units 1981

(Hinton, 1981)

Roland Memisevic (Frankfurt, Montreal)

Tutorial at IPAM 2012 26 / 163

э

<ロ> <回> <回> <回> < 回</p>

Example application: Action recognition

(Hollywood 2)

(Marszałek et al., 2009)

- Convolutional GBM (Taylor et al., 2010)
- hierarchical ISA (Le, et al., 2011)

Input layer Output layer (e.g. data at time t-1:t-N) (e.g. data at time t)

Training	Test	Baseline	MoCorr [28]	GPLVM [13]	CMFA-VB [13]	CRBM	imCRBM-10
S1+S2+S3	S 1	129.18±19.47	140.35	-	-	55.43±0.79	54.27 ± 0.49
S1	S 1		-	-	-	48.75 ± 3.72	58.62 ± 3.87
S1+S2+S3	S2	162.75±15.36	149.37	-	-	99.13±22.98	69.28 ± 3.30
S2	S2		-	88.35 ± 25.66	68.67±24.66	47.43 ± 2.86	67.02 ± 0.70
S1+S2+S3	S 3	180.11±24.02	156.30	-	-	70.89 ± 2.10	43.40 ± 4.12
S3	S 3		-	87.39±21.69	69.59±22.22	49.81±2.19	51.43 ± 0.92

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012

28 / 163

Gated MRFs

• (Ranzato et al., 2010)

< A >

- ∃ →

Analogy making

Tutorial at IPAM 2012 30 / 163

æ

< □ > < 同

aperture feature similarities

image similarities

э

Outline

Introduction

- Feature Learning
- Correspondence in Computer Vision
- Multiview feature learning

Learning relational features

- Encoding relations
- Learning

3 Factorization, eigen-spaces and complex cells

- Factorization
- Eigen-spaces, energy models, complex cells

4 Applications and extensions

- Applications and extensions
- Conclusions

3 B

Outline

Introduction

- Feature Learning
- Correspondence in Computer Vision
- Multiview feature learning

Learning relational features

- Encoding relations
- Learning

Factorization, eigen-spaces and complex cells

- Factorization
- Eigen-spaces, energy models, complex cells

Applications and extensions

- Applications and extensions
- Conclusions

Sparse coding of images pairs?

• How to extend sparse coding to model relations?

• Sparse coding on the *concatenation*?

Sparse coding of images pairs?

- How to extend sparse coding to model relations?
- Sparse coding on the *concatenation*?

- A case study: Translations of binary, one-d images.
- Suppose images are random and can change in **one of three** ways:

- H - N

Sparse coding on the concatenation ?

• A hidden variable that collects evidence for a shift to the right.

- What if the images are random or noisy?
- Can we pool over more than one pixel?

Sparse coding on the concatenation ?

- A hidden variable that collects evidence for a shift to the right.
- What if the images are random or noisy?
- Can we pool over more than one pixel?

- A hidden variable that collects evidence for a shift to the right.
- What if the images are random or noisy?
- Can we pool over more than one pixel?

Sparse coding on the concatenation ?

- Obviously not, because now the hidden unit would get equally happy if it would see the non-shift (second pixel from the left).
- The problem: Hidden variables act like OR-gates, that accumulate evidence.

Cross-products

- Intuitively, what we need instead are logical ANDs, which can represent *coincidences* (eg. Zetzsche et al., 2003, 2005).
- This amounts to using the outer product L := outer(x, y):

• We can unroll this matrix, and let this be the data:

- Each component *L_{ij}* of the outer-product matrix will constitute evidence for exactly *one* type of shift.
- Hiddens pool over products of pixels.

- Each component *L_{ij}* of the outer-product matrix will constitute evidence for exactly *one* type of shift.
- Hiddens pool over products of pixels.

- Each component *L_{ij}* of the outer-product matrix will constitute evidence for exactly *one* type of shift.
- Hiddens pool over products of pixels.

A different view: Families of manifolds

- Feature learning reveals the (local) manifold structure in data.
- When *y* is a transformed version of *x*, we can still think of *y* as being confined to a manifold, but it will be a **conditional manifold**.
- Idea: Learn a model for y, but let parameters be a function of x.

Conditional inference

Inferring z

• If we use a linear function, $w_{jk}(x) = \sum_i w_{ijk} x_i$, we get

$$z_k = \sum_j w_{jk} y_j = \sum_j \left(\sum_i w_{ijk} x_i\right) y_j = \sum_{ij} w_{ijk} x_i y_j$$

• Inference via **bilinear** function of the inputs.

Conditional inference

Inferring \overline{y}

• To infer y:

$$y_j = \sum_k w_{jk} z_k = \sum_k \left(\sum_i w_{ijk} x_i\right) z_k = \sum_{ik} w_{ijk} x_i z_k$$

• Inference via **bilinear** function of x, z.

Roland Memisevic (Frankfurt, Montreal)

Input-modulated filters

- This is feature learning with input-dependent weights.
- Input pixels can vote for features in the output image.

A different visualization

- A hidden can blend in one *slice* $W_{\cdot\cdot k}$ of the parameter tensor.
- A slice does linear regression in "pixel space".
- So for binary hiddens, this is a **mixture of** 2^K **image warps**.

43 / 163

Outline

Introduction

- Feature Learning
- Correspondence in Computer Vision
- Multiview feature learning

Learning relational features

- Encoding relations
- Learning

Factorization, eigen-spaces and complex cells

- Factorization
- Eigen-spaces, energy models, complex cells

Applications and extensions

- Applications and extensions
- Conclusions

3 B

Learning is predictive coding

Predictive sparse coding

• The cost for a training pair (x, y) is:

$$\sum_{j} \left(y_j - \sum_{ik} w_{ijk} x_i z_k \right)^2$$

Training as usual: Infer z, update W. (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007), (Memisevic, Hinton; 2007)

Roland Memisevic (Frankfurt, Montreal)

Example: Gated Boltzmann machine

Three-way RBM (Memisevic, Hinton; 2007)

$$E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = \sum_{ijk} w_{ijk} x_i y_j z_k$$

 $p(\boldsymbol{y}, \boldsymbol{z} | \boldsymbol{x}) = \frac{1}{Z(\boldsymbol{x})} \exp\left(E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})\right), Z(\boldsymbol{x}) = \sum_{\boldsymbol{y}, \boldsymbol{z}} \exp\left(E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})\right)$

Roland Memisevic (Frankfurt, Montreal)

Example: Gated Boltzmann machine

Three-way RBM (Memisevic, Hinton; 2007)

$$E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = \sum_{ijk} w_{ijk} x_i y_j z_k$$

 $p(\boldsymbol{y}, \boldsymbol{z} | \boldsymbol{x}) = \frac{1}{Z(\boldsymbol{x})} \exp\left(E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})\right), Z(\boldsymbol{x}) = \sum_{\boldsymbol{y}, \boldsymbol{z}} \exp\left(E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})\right)$

Roland Memisevic (Frankfurt, Montreal)

Example: Gated Boltzmann machine

Three-way RBM (Memisevic, Hinton; 2007)

$$p(z_k | \boldsymbol{x}, \boldsymbol{y}) = \text{sigmoid}(\sum_{ij} W_{ijk} x_i y_j)$$
$$p(y_j | \boldsymbol{x}, \boldsymbol{z}) = \text{sigmoid}(\sum_{ik} W_{ijk} x_i z_k)$$

Roland Memisevic (Frankfurt, Montreal)

Example: Gated auto-encoder

Gated autoencoders

- Turn encoder and decoder weights into functions of x.
- Learning the same as in a standard auto-encoder for *y*.
- The model is still a DAG, so back-prop works *exactly* like in a standard autoencoder. (Memisevic, 2011)

< ロ > < 同 > < 三 > < 三 >

Toy example: Conditionally trained "Hidden flow-fields"

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012 48 / 163

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Toy example: Conditionally trained "Hidden flow-fields", inhibitory connections

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012

49 / 163

< ロ > < 同 > < 回 > < 回 > .

Toy example: Learning optical flow

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012

50 / 163

3

"Combinatorial flowfields"

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012 51 / 163

Joint training

- Conditional training makes it hard to answer questions like:
- "How likely are the given images transforms of one another?"
- To answer questions like these, we require a joint image model, p(x, y|z), given mapping units.

$$E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = \sum_{ijk} w_{ijk} x_i y_j z_k$$
$$p(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = \frac{1}{Z} \exp \left(E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \right)$$
$$Z = \sum_{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}} \exp \left(E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \right)$$

• Use three-way sampling in a Gated Boltzmann Machine (Susskind et al., 2011).

1

• Can apply this to *matching* tasks (more later).

$$E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = \sum_{ijk} w_{ijk} x_i y_j z_k$$
$$p(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = \frac{1}{Z} \exp \left(E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \right)$$
$$Z = \sum_{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}} \exp \left(E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \right)$$

• Use three-way sampling in a Gated Boltzmann Machine (Susskind et al., 2011).

1

• Can apply this to *matching* tasks (more later).

• For the autoencoder we can use a simple hack:

• Add up two conditional costs:

$$\sum_{j} \left(y_j - \sum_{ik} w_{ijk} x_i z_k \right)^2 + \sum_{i} \left(x_i - \sum_{jk} w_{ijk} y_j z_k \right)^2$$

• Force parameters to transform in both directions.

• For the autoencoder we can use a simple hack:

• Add up two conditional costs:

$$\sum_{j} \left(y_j - \sum_{ik} w_{ijk} x_i z_k \right)^2 + \sum_{i} \left(x_i - \sum_{jk} w_{ijk} y_j z_k \right)^2$$

• Force parameters to transform in both directions.

Take-home message

To gather evidence for a transformation, let hidden units compute the <u>sum over products</u> of input components.