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Feedforward processing

• Coarse initial base representation

- Enables rapid object detection/recognition 
(‘what is there?’)

- Insufficient for object localization
- Sensitive to presence of clutter
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1. Monkey electrophysiology

2. Computational model of integrated 
attention and recognition

Read-out of inferior temporal cortex population 
activity: Spatial attention eliminates clutter
with Zhang, Meyers, Bichot, Poggio & Desimone

What and where: a Bayesian attention theory of 
attention
with Chikkerur, Tan & Poggio
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The ‘readout’ approach

neuron 1

neuron 2

neuron 3

neuron n

Pattern Classifier
Prediction

Zhang Meyers Bichot Serre Poggio Desimone PNAS’11



The experiment

Zhang Meyers Bichot Serre Poggio Desimone unpublished data
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Effects of attention on decoding accuracy:
Decoding category

++

Zhang* Meyers* Bichot Serre Poggio Desimone in sub

Decoding target location



Changes in the salience of distractor stimuli 
dominate over attention related enhancements

Zhang* Meyers* Bichot Serre Poggio Desimone in sub

Aligned to the time when one of the 
distractors underwent a change
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Summary

• Consistent with feedforward hierarchical models: In the absence of attention 
information about the identity of individual objects (and position) in clutter is 
greatly reduced relative to when objects are shown in isolation

• Attention seems to restore the pattern of neural activity toward the vector 
representing the isolated object

• In spite of this nearly exclusive representation of the attended object, an 
increase in the salience of non-attended objects overrode these attentional 
enhancements

• Results provide computational level explanation for how attention operates on 
neural representations to solve the problem of invariant recognition in clutter



1. Monkey electrophysiology

2. Computational model of integrated 
attention and recognition

Read-out of inferior temporal cortex population 
activity: Spatial attention eliminates clutter
with Zhang, Meyers, Bichot, Poggio & Desimone

with Chikkerur, Tan & Poggio

What and where: a Bayesian attention theory of 
attention



Perception as Bayesian 
inference

Mumford ’92; Knill & Richards ‘96; Dayan & Zemel 
’99; Rao ’02 ’04; Kersten & Yuille ‘03; Kersten et al 

‘04;  Lee & Mumford ‘03; Dean ’05; George & 
Hawkins ’05 ’09; Yu & Dayan ’05; Hinton ‘07; 

Epshtein et al ‘08;  Murray & Kreutz-Delgado ’07

I image 
measurements

216 Int J Comput Vis (2010) 90: 198–235

Fig. 17 Experiment 2.2.
Superposed sketch of 50
elements of the deformed active
basis at each of the 10
resolutions, from 150 × 110 to
286 × 190. The bounding box is
179 × 112

Fig. 18 Experiment 2.2. MAX2 scores at resolutions 1 to 10

Figure 21 displays the superposed templates of the 5
scales, at the detected location and resolution of the testing
image.

Figure 22(a) displays the MAX2 scores over the 15 res-
olutions. (b) displays the combined SUM2 map at the opti-
mal resolution. The combined SUM2 map is the sum of the
SUM2 maps of the 5 templates.

Computationally, applying a larger Gabor filter to an im-
age is the same as applying a smaller Gabor filter to a lower
resolution of the same image, although the former may have
more numerical precision. In Experiment 2.3, we have not
eliminated such a computational redundancy. We use multi-
scale Gabor wavelets and meanwhile we also search over
multiple resolutions of the testing image.

Fig. 19 Experiment 2.3. Learned templates using Gabor wavelets of
lengths 17, 25, 33, 39, 49 respectively

Fig. 20 Experiment 2.3. Testing image. For each template, we run the
inference algorithm over 15 resolutions, from 110 × 140 to 341 × 434

Negative experience in Experiment 2. Our method can
sometimes be distracted by cluttered edges or strong edges
in the background. One may need to incorporate local ap-
pearance variables such as textures and smoothness into the
model.

4.3 Geometric Transformation of Template

Given a template B = (Bi = Bxi,yi ,s,αi , i = 1, . . . , n), we
can transform this template by dilation, rotation, and chang-
ing the aspect ratio. This amounts to simple transformations
of (xi, yi,αi , i = 1, . . . , n).
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Hypothesis #2

Chikkerur Serre Tan & Poggio ’10;

Two independent streams of 
processing for object and location

Explicit tuning for shape 
(position implicit)

Explicit tuning for position 
(shape implicit)

Ventral “what” 
stream

Dorsal “where” 
stream

PFC

P (O,L, I) = P (O)P (L)P (I|L,O)

O

I

object

image 
measurementslocation

L



Hypothesis #3

Chikkerur Serre Tan & Poggio ’10;

...

Fi

Xi

Objects encoded by collections of 
generic features (cond. ind. given an 
object and its location)
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Perception as 
Bayesian inference

• Goal of visual perception is to 
estimate posterior probabilities of 
visual features, objects and their 
locations in an image

• Attention corresponds to 
conditioning on high-level latent 
variables representing particular 
objects or locations (as well as on 
sensory input), and doing 
inference over the other latent 
variables

• Here we used belief propagation 
to solve the inference problem

L

Xi

I

object

Fi

O

N

location

image 
measurements

retinotopic 
features

(V4)

position and 
scale tolerant 

features
(IT)

Biologically-plausible implementations of 
belief propagation: Zemel et al. ’98; Beck & 
Pouget ‘07; Deneve ’08; George ‘08; Litvak & 
Ullman ‘09; Rao ‘04; Steimer et al. ’09
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after a short delay in the Fi units (in the ventral stream), in agree-
ment with physiological data (Buschman & Miller, 2007).

5.2.2. Feature-based attention
Recent findings in physiology (Bichot et al., 2005) show multi-

plicative modulation of neuronal response under attention (see
Fig. 5a and b). Units in the PFC and higher areas seem to modulate
arrays of ‘‘feature detector” cells in intermediate areas of the ven-
tral stream (PIT and V4) according to how diagnostic they are for
the specific categorization task at hand. The data suggest that this
modulation is effective at all locations within the receptive field.
An equivalent effect is also observed in the model (see Fig. 5c). Un-
der normal conditions, P(L) and P(Fi) have a uniform distribution
and thus the response of the neuron is largely determined by the
underlying stimulus (P(IjXi)). Under feature-based attention, the
feature priors are modified to P(Fi = 1) ! 1. This leads to a multipli-
cative change (from P(Fi = 1) = 1/2 to P(Fi = 1) ! 1) enhancing the
response at all locations. The response is more pronounced when
the stimulus is preferred (i.e., P(IjXi) is high (see Fig. 5a–c)).

In terms of message passing, objects priors are first concen-
trated around the object(s) of interest (e.g., (see Fig. 6d). ‘pedes-
trian’ when asked to search for pedestrians in street scenes). The

change in object prior is propagated to the feature units, through
the message O? Fi. This results in a selective enhancement of
the features that are typically associated with the target object
(e.g., vertical features when searching for pedestrians) and sup-
pression of others (see Fig. 6e). This preference propagates to all
feature-map locations through the message mFi!Xi ¼

P
OPðF

ijOÞ
PðOÞ.

The L unit pools across all features Xj for j = 1 % % %n at a specific
location l. However, because of the feature-based modulation, only
the locations that contain features associated with the object are
selectively enhanced (see Fig. 6f). Thus, priors on objects in the
ventral stream activates units in the parietal cortex at locations
that are most likely to contain the object of interest. The message
passing is thus initiated in the ventral stream first and is mani-
fested in the parietal cortex (L units) later, in agreement with the
recent data by Buschman and Miller (2007).

5.3. Contrast response

The influence of spatial attention on the contrast response of V4
neurons has been studied extensively. Prior work showed two ma-
jor, apparently contradictory, effects: in Martınez-Trujillo and

a b c

Fig. 5. (a) Effect of feature attention on neuron response (replotted from Bichot et al., 2005). (b) The time course of the neuron response is sampled at 150 ms. (c) The model
predicts multiplicative modulation of the response of Xi units under attention.

a

d

b

e

c

f

Fig. 6. Spatial and feature attention re-interpreted using message passing within the model. Spatial attention: (a) Each feature unit Fi pools across all locations from the
corresponding Xi unit. (b) Spatial attention here solves the ‘clutter’ problem by concentrating the prior P(L) around a region of interest (the attentional spotlight, marked ‘X’) via
a message passed between the L nodes in the ‘where’ stream and the Xi nodes in the ‘what’ stream. (c) Following this message passing, the feature within the spotlight can be
read out from the posterior probability P(FijI). Feature-based attention (d) Each location represented in the L unit output from all features at the same location. (e) Feature
attention can be deployed by altering the priors P(Fi) such that P(Fi) is high for the preferred feature and low for the rest. The message passing effectively enhances the
preferred features at all locations while suppressing other features from distracting objects. (f) The location of the preferred feature can be read out from the posterior
probability P(LjI).
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Experimental data Model data

Visual search

Consistent with data from V4 by 
Bichot et al ’05



Bayesian inference and 
attention

L

Xi

I

Fi

O

N

ventral / 
what

dorsal / 
where

Spatial cueing

P (Xi|I) =
P (I|Xi)

P

F i,L P (Xi|F i, L)P (L)P (F i)
P

Xi

n

P (I|Xi)
P

F i,L P (Xi|F i, L)P (L)P (F i)
o

feedforward input

suppressive drive

attentional modulation

(serial) spatial 
attention



Multiplicative scaling of tuning 
curves by spatial attention

P (Xi|I) =
P (I|Xi)
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F i,L P (Xi|F i, L)P (L)P (F i)
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n

P (I|Xi)
P

F i,L P (Xi|F i, L)P (L)P (F i)
o

Model

P (L = x) = 1/|L|

P (L = x) � 1

McAdams and Maunsell ‘99

W| attention



Contrast vs. response 
gain Predicted by Reynolds & Heeger ’09

Trujillo and Treue ‘02 Mc Adams and Maunsell ’99
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Learning to localize cars and 
pedestrians in street scenes

learning object priors

learning location priors 
(global contextual cues)

N
Xi

I

Fi

O

L

Context

(see Torralba et al)



• Dataset:
- 100 street-scenes images 

with cars & pedestrians and 
20 without

• Experiment
- 8 participants asked to 

count the number of cars/
pedestrians

- Blocks/randomized 
presentations

- Each image presented twice
• Eye movements recorded using 

an infra-red eye tracker
• Eye movements as proxy for 

attention

The experiment



Predicting eye movements during 
searches for cars and pedestrians
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Overall model accounts 
for 92% of inter-subject 

agreement!

1st three fixations
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Predicting eye movements 
during free viewing

human eye data from Bruce & Tsotsos
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Xi

I

Fi
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L

Method ROC area

Bruce and Tsotos ’06 72.8%

Itti et al ’01 72.7%

Proposed 77.9%
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Summary

• Attention as part of the inference process that solves the visual recognition 
problem of ‘what is where’ 

• Main goal of the visual system is to infer the identity and the position of 
objects in visual scenes: 

- Spatial attention emerges as a strategy to reduce the uncertainty in shape information 
while feature-based attention reduces the uncertainty in spatial information

- Featural and spatial attention represent two distinct modes of a computational process 
solving the problem of recognizing and localizing objects, especially in difficult 
recognition tasks such as in cluttered natural scenes

• Model agnostic about the specific algorithm for the inference process (i.e., no 
claim made about the brain computing probabilities explicitly) 
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processing:

- Coarse/initial base representation

- Enables rapid object detection/recognition (‘what is there?’)



Two modes of vision

• Rapid bottom-up / feedforward processing during first 100-150ms of visual 
processing:

- Coarse/initial base representation

- Enables rapid object detection/recognition (‘what is there?’)

• Top-down / re-entrant attentional processing 
- Enables recognition in clutter

- Enables object localization
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