Deep learning in the
visual cortex

Brown University

|. Fundamentals of primate vision

Il. Computational mechanisms of rapid
recognition and feedforward processing

lll. Beyond feedforward processing:

Attentional mechanisms and cortical
feedback
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is there an
animal?

how big is
this object?

visual
routines

where is the
boundary of
the object?

e Coarse initial base representation

- Enables rapid object detection/recognition
(‘what is there?’)
- Insufficient for object localization

- Sensitive to presence of clutter

") Complex units
(O simple units

Feedforward processing
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The ‘readout’ approach
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Prediction
Pattern Classifier

Zhang Meyers Bichot Serre Poggio Desimone PNAS’11



The experiment

Target/distractor

Saccade
change

Fixation Array onset Cue

-500 0 500 1000 Variable
Time (ms)

Zhang Meyers Bichot Serre Poggio Desimone unpublished data
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The experiment

train readout classifier test generalization in
on isolated object clutter
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Decoding category

—ffects of attention on decoding accuracy:

Decoding object identity
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—ffects of attention on decoding accuracy:
Decoding category

Decoding target location

Test on isolated object data
Test on clutter data
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Changes in the salience of distractor stimuli
dominate over attention related enhancements

Aligned to the time when one of the
distractors underwent a change
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Summary

e Consistent with feedforward hierarchical models: In the absence of attention
information about the identity of individual objects (and position) in clutter is
greatly reduced relative to when objects are shown in isolation

e Attention seems to restore the pattern of neural activity toward the vector
representing the isolated object

¢ |In spite of this nearly exclusive representation of the attended object, an
iIncrease in the salience of non-attended objects overrode these attentional
enhancements

e Results provide computational level explanation for how attention operates on
neural representations to solve the problem of invariant recognition in clutter
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visual scene
description

. image

_ ~ measurements
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Hypothesis #1

Chikkerur Serre Tan & Poggio ’10;

To recognize and localize objects in a
scene, the visual system selects
objects one at a time

P(O, L, I)

visual scene
description

image
measurements




Hypothesis #2

Explicit tuning for position

- o

Explicit tuning for shape
(position implicit)

Chikkerur Serre Tan & Poggio ’10;

Two independent streams of
processing for object and location

P(O)P(L)P(I|L,O)

object

N

image

location measurements




Objects encoded by collections of
generic features (cond. ind. given an

Hypothesis #3 object and its location)

Explicit tuning for position

- o

Explicit tuning for shape
(position implicit)

Chikkerur Serre Tan & Poggio ’10;



Perception as
Sayesian inference

object

position and
scale tolerant
features
(IT)

location

retinotopic
features
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measurements

Chikkerur Serre Tan & Poggio ’10;



Perception as
Sayesian inference

(L)
saliency map

Chikkerur Serre Tan & Poggio ’10;



Perception as
Sayesian inference

e Goal of visual perception is to
estimate posterior probabilities of
visual features, objects and their
locations in an image

e Attention corresponds to
conditioning on high-level latent
variables representing particular
objects or locations (as well as on
sensory input), and doing
inference over the other latent
variables

e Here we used belief propagation
to solve the inference problem

object

position and
scale tolerant
features
(IT)

location

retinotopic
features
(V4)

N

image
measurements

0000

Biologically-plausible implementations of
belief propagation: Zemel et al. ’98; Beck &
Pouget ‘07; Deneve '08; George ‘08; Litvak &
Ullman ‘09; Rao ‘04; Steimer et al. ’09
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Normalized response
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Learning to localize cars and
pedestrians in strest scenes . aladianill

|

learning object priors

learning location priors
(global contextual cues)

N

0000

(see Torralba et al)



The experiment

e Dataset:
- 100 street-scenes images
with cars & pedestrians and
20 without
e Experiment
- 8 participants asked to
count the number of cars/
pedestrians
- Blocks/randomized
presentations
- Each image presented twice
e Eye movements recorded using
an infra-red eye tracker
e Eye movements as proxy for
attention
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o | Overall model accounts
Predicting eye movements during for 92% of inter-subject

searches for cars and pedestrians agreement!
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Predicting eye movements
during free viewing

et oo

Bruce and Tsotos '06 72.8%
Itti et al '01 72.7%
Proposed 77.9%

human eye data from Bruce & Tsotsos
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- Spatial attention emerges as a strategy to reduce the uncertainty in shape information
while feature-based attention reduces the uncertainty in spatial information
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Summary

e Attention as part of the inference process that solves the visual recognition
problem of ‘what is where’

e Main goal of the visual system is to infer the identity and the position of
objects in visual scenes:

- Spatial attention emerges as a strategy to reduce the uncertainty in shape information
while feature-based attention reduces the uncertainty in spatial information

- Featural and spatial attention represent two distinct modes of a computational process
solving the problem of recognizing and localizing objects, especially in difficult
recognition tasks such as in cluttered natural scenes

e Model agnostic about the specific algorithm for the inference process (i.e., no
claim made about the brain computing probabilities explicitly)
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processing:

- Coarse/initial base representation
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Two modes of vision

e Rapid bottom-up / feedforward processing during first 100-150ms of visual
processing:

- Coarse/initial base representation

- Enables rapid object detection/recognition (‘what is there?’)
e Top-down / re-entrant attentional processing

- Enables recognition in clutter

- Enables object localization
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