Deep Gated MRF's

Marc'Aurelio Ranzato ranzato@google.com www.cs.toronto.edu/~ranzato

IPAM Summer School, 23 July 2012

- structure is learned by scoring input data vectors
- implicit/explicit mapping between input and feature space

Ranzato et al. "A unified energy-based framework for unsupervised learning" AISTATS 2007

- Training sample
- Input vector which is NOT a training sample
- Feature vector

- structure is learned by scoring input data vectors
- implicit/explicit mapping between input and feature space

Ranzato et al. "A unified energy-based framework for unsupervised learning" AISTATS 2007

- Training sample
- Input vector which is NOT a training sample
- Feature vector

1st strategy: constrain latent representation & optimize score only at training samples

1st strategy: constrain latent representation & optimize score only at training samples

1st strategy: constrain latent representation & optimize score only at training samples

1st strategy: constrain latent representation & optimize score only at training samples

1st strategy: constrain latent representation & optimize score only at training samples

1st strategy: constrain latent representation & optimize score only at training samples

1st strategy: constrain latent representation & optimize score only at training samples

1st strategy: constrain latent representation & optimize score only at training samples

1st strategy: constrain latent representation &

- optimize score only at training samples
- K-Means
- sparse coding
- use lower dimensional representations

1st strategy: constrain latent representation &

optimize score only at training samples

- K-Means
- sparse coding
- use lower dimensional representations

2nd strategy: optimize score for training samples while normalizing the score over the whole space (maximum likelihood)

1st strategy: constrain latent representation &

optimize score only at training samples

- K-Means
- sparse coding
- use lower dimensional representations

2nd strategy: optimize score for the score over Samples while normalizing space (maximum likelihood)

mples

1st strategy: constrain latent represer

- optimize score only ct
- K-Means
- sparse codi
- use lower and representations

2nd strategy: optimiz_score for training samples while normalizing the score over the whole space (maximum likelihood)

Outline

- mathematical formulation of the model
- training
- generation of natural images
- recognition of facial expression under occlusion
- learning acoustic features for spech recognition
- conclusion

Outline

- mathematical formulation of the model

- training

- generation of natural images
- recognition of facial expression under occlusion
- learning acoustic features for spech recognition
- conclusion

p(x|h) = N(mean(h), D)

- examples: PPCA, Factor Analysis, ICA, Gaussian RBM

p(x|h) = N(mean(h), D)

- examples: PPCA, Factor Analysis, ICA, Gaussian RBM

model does not represent well dependecies, only mean intensity

p(x|h) = N(0, Covariance(h))

- examples: PoT, cRBM

Welling et al. NIPS 2003, Ranzato et al. AISTATS 10

p(x|h) = N(0, Covariance(h))

- examples: PoT, cRBM

model does not represent well mean intensity, only dependencies

Welling et al. NIPS 2003, Ranzato et al. AISTATS 10

Andy Warhol 1960

p(x|h) = N(mean(h), Covariance(h))

- this is what we propose: mcRBM, mPoT

Ranzato et al. CVPR 10, Ranzato et al. NIPS 2010, Ranzato et al. CVPR 11

p(x|h) = N(mean(h), Covariance(h))

- this is what we propose: mcRBM, mPoT

Ranzato et al. CVPR 10, Ranzato et al. NIPS 2010, Ranzato et al. CVPR 11

PoT

Ν(0,Σ)

Our model

N(m,Σ)

PPCA

N(m,I)

Geometric interpretation of conditional over x

Geometric interpretation of conditional over x

- two sets of latent variables to modulate mean and covariance of the conditional distribution over the input

- energy-based model

 $\boldsymbol{\chi}$

 h^{c}

$$p(x, h^{m}, h^{c}) \propto \exp(-E(x, h^{m}, h^{c}))$$
$$x \in \mathbb{R}^{D}$$
$$h^{c} \in \{0, 1\}^{M}$$
$$h^{m} \in \{0, 1\}^{N}$$

$$E(x, h^{c}, h^{m}) = \frac{1}{2} x' \Sigma^{-1} x$$
$$x \in \mathbb{R}^{D}$$
$$\Sigma^{-1} \in \mathbb{R}^{D \times D}$$

$$E(x, h^{c}, h^{m}) = \frac{1}{2} x' CC' x$$

$$x \in \mathbb{R}^{D} \qquad \text{factorization}$$

$$C \in \mathbb{R}^{D \times F}$$

pair-wise MRF

$$E(x, h^{c}, h^{m}) = \frac{1}{2} x' CC' x$$

$$x \in \mathbb{R}^{D} \qquad \text{factorization}$$

$$C \in \mathbb{R}^{D \times F}$$

 $E(x, h^{c}, h^{m}) = \frac{1}{2} x' C C' x = \alpha_{11} x_{1}^{2} + \alpha_{12} x_{1} x_{2} + \dots$

$$E(x, h^{c}, h^{m}) = \frac{1}{2} x' CC' x$$

$$x \in \mathbb{R}^{D} \qquad \text{factorization}$$

$$C \in \mathbb{R}^{D \times F}$$

$$E(x, h^{c}, h^{m}) = \frac{1}{2} x' C C' x = \frac{1}{2} \sum_{i=1}^{F} (C_{i}' x)^{2}$$

 $E(x, h^{c}, h^{m}) = \frac{1}{2} x' C[diag(h^{c})]C'x = \frac{1}{2} \sum_{i=1}^{F} h_{i}^{c} (C_{i}'x)^{2}$

Overall energy function: $E(x, h^{c}, h^{m}) = \frac{1}{2} x' C[diag(Ph^{c})]C'x + \frac{1}{2} x'x - x'Wh^{m}$ $x \in \mathbb{R}^{D}$ covariance part mean part $W \in \mathbb{R}^{D \times N}$ $h^{m} \in \{0,1\}^{N}$ h_k^c gated MRF X_q \mathcal{X} W h_{i}^{m}
Overall energy function: $E(x, h^{c}, h^{m}) = \frac{1}{2} x' C[diag(Ph^{c})]C'x + \frac{1}{2} x'x - x'Wh^{m}$ covariance part $x \in \mathbb{R}^{D}$ mean part $W \in \mathbb{R}^{D \times N}$ $h^{m} \in \{0,1\}^{N}$ h_k^c gated MRF X_q \mathcal{X} W h_{i}^{m}

Overall energy function: $E(x, h^{c}, h^{m}) = \frac{1}{2} x' C[diag(Ph^{c})]C'x + \frac{1}{2} x'x - x'Wh^{m}$ $x \in \mathbb{R}^{D}$ covariance part mean part $W \in \mathbb{R}^{D \times N}$ $h^{m} \in \{0,1\}^{N}$ h_k^c gated MRF X_q W $p(x|h^{c}, h^{m}) = N(\Sigma(Wh^{m}), \Sigma)$ $\Sigma^{-1} = C \operatorname{diag} [P h^{c}]C' + I$ h_{i}^{m}

Overall energy function:

$$E(x, h^{c}, h^{m}) = \frac{1}{2} x' C[diag(Ph^{c})]C'x + \frac{1}{2} x'x - x'Wh^{m}$$

covariance part mean part
inference

$$M = p (h_{k}^{c} = 1|x) = \sigma(-\frac{1}{2}P_{k}(C'x)^{2} + b_{k})$$

$$x_{p} = C = K = 0$$

$$W = h_{j}^{m} p(h_{j}^{m} = 1|x) = \sigma(W_{j}'x + b_{j})$$

Overall energy function:

$$E(x, h^{c}, h^{m}) = \frac{1}{2} x' C[diag(Ph^{c})]C'x + \frac{1}{2} x'x - x'Wh^{m}$$

covariance part mean part
$$Complex-cell:$$

inference
$$h_{k}^{c} pools rectified simple cells$$

$$p(h_{k}^{c}=1|x) = \sigma(-\frac{1}{2}P_{k}(C'x)^{2}+b_{k})$$

$$w$$

$$x_{p} C_{F} W$$

$$W$$

Simple-cell:
non-linear filtering
$$h_{j}^{m} p(h_{j}^{m}=1|x) = \sigma(W_{j}'x+b_{j})$$

minimizing E over the training set yields the minor component: w = [-1,1] since images are usually smooth.

minimizing E over the training set yields the minor component: w = [-1,1] since images are usually smooth.

This enforces a strong penalty against the violation of the constraint:

 $x_1 = x_2$

$E = (w'x)^2$

How to make the penalty less strong? How to model violations of the constraint?

 $E = (w'x)^2$

How to make the penalty less strong? How to model violations of the constraint?

ADD LATENT VARIABLES!

 $E = h(w'x)^2 - bh, b > 0$

Penalty discount!

Black Rangarajan "On..line process.." IJCV 96

MRF with adaptive (input-dependent) affinities

Integrating out latent variable, we get "robust" error metric.

$$F = -\log[e^{-0*(w'x)^{2}+b*0} + e^{-(w'x)^{2}+b}]$$
$$= -\log[1 + e^{-(w'x)^{2}+b}]$$

reconstruction using only mean units

reconstruction using both mean&cov units

$$\Sigma(h^c) \cdot (Wh^m)$$

 Wh^m

$$p(x|h^{c}, h^{m}) = N(\Sigma(Wh^{m}), \Sigma)$$
$$\Sigma^{-1} = C diag[Ph^{c}]C' + I$$

setting mean unit reconstruction by hand

reconstruciton using covariance units

setting mean unit reconstruction by hand

reconstruciton using covariance units

 $\Sigma(h^c) \cdot M$

setting mean unit reconstruction by hand

reconstruciton using covariance units

Outline

- mathematical formulation of the model
- training
- generation of natural images
- recognition of facial expression under occlusion
- learning acoustic features for spech recognition
- conclusion

Learning

- maximum likelihood
$$p(x) = \frac{\int_{h^m, h^c} e^{-E(x, h^m, h^c)}}{\int_{x, h^m, h^c} e^{-E(x, h^m, h^c)}}$$

- Fast Persistent Contrastive Divergence
- Hybrid Monte Carlo to draw samples

Learning

$$p(x) = \frac{\int_{h^{m}, h^{c}} e^{-E(x, h^{m}, h^{c})}}{\int_{x, h^{m}, h^{c}} e^{-E(x, h^{m}, h^{c})}} = \frac{e^{-F(x)}}{\int_{x} e^{-F(x)}}$$

$$F(x) = -\log \int_{h^{m}, h^{c}} e^{-E(x, h^{m}, h^{c})}$$

Integrating out latent variable, we get "robust" error metric.

$$F = -\log[e^{-0*(w'x)^{2}+b*0} + e^{-(w'x)^{2}+b}]$$
$$= -\log[1 + e^{-(w'x)^{2}+b}]$$

$$p(x;\theta) = \frac{e^{-F(x;\theta)}}{\int_{y} e^{-F(y;\theta)}}$$

$$L(x;\theta) = -\log p(x;\theta)$$

$$\theta \leftarrow \theta - \eta \, \frac{\partial L}{\partial \theta}$$

$$p(x;\theta) = \frac{e^{-F(x;\theta)}}{\int_{y} e^{-F(y;\theta)}}$$

 $L(x;\theta) = -\log p(x;\theta)$

$$\theta \leftarrow \theta - \eta \, \frac{\partial L}{\partial \theta}$$

$$\frac{\partial L}{\partial \theta} = \langle \frac{\partial F(x;\theta)}{\partial \theta} \rangle_{x \sim TrainSet} - \langle \frac{\partial F(y;\theta)}{\partial \theta} \rangle_{y \sim p(y;\theta)}$$

$$p(x;\theta) = \frac{e^{-F(x;\theta)}}{\int_{y} e^{-F(y;\theta)}}$$

 $L(x;\theta) = -\log p(x;\theta)$

$$\frac{\partial L}{\partial \theta} = < \frac{\partial F(x, \theta)}{\partial \theta} >_{x \sim TrainSet}$$

We estimate this by using an MCMC method: HMC

Outline

- mathematical formulation of the model
- training
- generation of natural images
- recognition of facial expression under occlusion
- learning acoustic features for spech recognition
- conclusion

Learned Filters: mean filters W

Learned Filters: covariance filters C

Random Walk: p(v|h)

given image -> infer latent variables using p(h|v)
 keeping latent variables fixed, sample from p(v|h)

Generation natural image patches

Natural images

mcRBM Ranzato and Hinton CVPR 2010

GRBM from Osindero and Hinton NIPS 2008

S-RBM + DBN from Osindero and Hinton NIPS 2008

Training on Small Image Patches

Pick patches at random locations for training

From Patches to High-Resolution Images

IDEA: have one subset of filters applied to these locations,

Gregor LeCun arXiv 2010 Ranzato, Mnih, Hinton NIPS 2010 No block artifacts Reduced redundancy

Gaussian model

marginal wavelet

from Simoncelli 2005

Gaussian model

marginal wavelet

from Simoncelli 2005

Pair-wise MRF FoE

from Schmidt, Gao, Roth CVPR 2010

Mean Covariance Model

Ranzato, Mnih, Hinton NIPS 2010

Gaussian model

from Simoncelli 2005

Pair-wise MRF

marginal wavelet

from Schmidt, Gao, Roth CVPR 2010

Mean Covariance Model

Ranzato, Mnih, Hinton NIPS 2010

Gaussian model

from Simoncelli 2005

Pair-wise MRF

from Schmidt, Gao, Roth CVPR 2010

marginal wavelet

Mean Covariance Model

Ranzato, Mnih, Hinton NIPS 2010

Gaussian model

from Simoncelli 2005

Pair-wise MRF

from Schmidt, Gao, Roth CVPR 2010

Making the model.. "DEEPER "

Treat these units as data to train a similar model on the top

Field of binary RBM's. Each hidden unit has a receptive field of 30x30 pixels in input space.

Sampling from the DEEPER model

Sample from 2nd layer Restricted Boltzmann Machine (RBM)
 project sample in image space using 1st layer p(x|h)

1st stage model

from Schmidt, Gao, Roth CVPR 2010 from Simoncelli 2005

Gaussian model

marginal wavelet

from Simoncelli 2005

Deep - 1 layer

Ranzato, Mnih, Hinton NIPS 2010

Deep - 3 layers

Ranzato, et al. CVPR 2011

Using -Energy to Score Images

Using Energy to Score Images

Using Energy to Score Images

Average of those images for which difference of energy is higher

Scene Recognition

- 15 scene dataset (Lazebnik et al. CVPR 2006)
- 15 categories, 100 images per class for training

Tall Building (356)

Office (215)

Store (315)

Scene Recognition

- use hiddens at 2nd layer to represent 46x46 input image patches
- spatial pyramid matching on 1st and 2nd layer fearures

- Result

accuracy non-linear SVM (histogram intersection)	
- SIFT	81.4%
Lazebnik et al. CVPR 2006	
- DEEP Features:	81.2%
Ranzato et al. CVPR 2011	
- Best Method (SIFT + Sparse Coding)	

Image Denoising

original image

noisy image: PSNR=22.1dB

denoised: PSNR=28.0dB

$$X^{*} = argmin\frac{1}{2}\frac{\|X - N\|}{\sigma^{2}} + F(X)$$

Image Denoising

original image

noisy image: PSNR=22.1dB

denoised: PSNR=29.2dB

repeat

$$X^* = argmin \frac{1}{2} \frac{\|X - N\|}{\sigma^2} + F(X)$$

$$\theta^* = argmin_{\theta} - \log p(X^*; \theta)$$

Image Denoising

original image

denoised: PSNR=30.7dB

$$X^* = \alpha X^*_{mPoT} + (1 - \alpha) X^*_{NonLocalMeans}$$
Outline

- mathematical formulation of the model
- training
- generation of natural images
- recognition of facial expression under occlusion
- learning acoustic features for spech recognition
- conclusion

Toronto Face Dataset (J. Susskind et al. 2010) ~ 100K unlabeled faces from different sources ~ 4K labeled images Resolution: 48x48 pixels 7 facial expressions

anger

Ranzato, et al. CVPR 2011

Toronto Face Dataset (J. Susskind et al. 2010) ~ 100K unlabeled faces from different sources ~ 4K labeled images Resolution: 48x48 pixels 7 facial expressions

Toronto Face Dataset (J. Susskind et al. 2010) ~ 100K unlabeled faces from different sources ~ 4K labeled images Resolution: 48x48 pixels 7 facial expressions

Toronto Face Dataset (J. Susskind et al. 2010) ~ 100K unlabeled faces from different sources ~ 4K labeled images Resolution: 48x48 pixels 7 facial expressions

happiness

Toronto Face Dataset (J. Susskind et al. 2010) ~ 100K unlabeled faces from different sources ~ 4K labeled images Resolution: 48x48 pixels 7 facial expressions

neutral

Toronto Face Dataset (J. Susskind et al. 2010) ~ 100K unlabeled faces from different sources ~ 4K labeled images Resolution: 48x48 pixels 7 facial expressions

sadness

Toronto Face Dataset (J. Susskind et al. 2010) ~ 100K unlabeled faces from different sources ~ 4K labeled images Resolution: 48x48 pixels 7 facial expressions

surprise

- 1^{st} layer using local (not shared) connectivity
- layers above are fully connected
- 5 layers in total
- Result

- Linear Classifier on raw pixels	71.5%
- Gaussian RBF SVM on raw pixels	76.2%
- Gabor + PCA + linear classifier Dailey et al. J. Cog. Science 2002	80.1%
- Sparse coding Wright et al. PAMI 2008	74.6%
- DEEP model (3 layers):	82.5%

Drawing samples from the model (5th layer with 128 hiddens)

Drawing samples from the model (5th layer with 128 hiddens)

- 7 synthetic occlusions
- use generative model to fill-in (conditional on the known pixels)

originals

Type 1 occlusion: eyes

originals

Type 2 occlusion: mouth

originals

Type 3 occlusion: right half

originals

Type 4 occlusion: bottom half

originals

Type 5 occlusion: top half

originals

Type 6 occlusion: nose

originals

Type 7 occlusion: 70% of pixels at random

occluded images for both training and test

Dailey, et al. J. Cog. Neuros. 2003 Wright, et al. PAMI 2008

Ranzato, et al. CVPR 2011

Outline

- mathematical formulation of the model
- training
- generation of natural images
- recognition of facial expression under occlusion
- learning acoustic features for spech recognition
- conclusion

Speech Recognition on TIMIT

INPUT: standard pre-processing, but without augmentation (no 1st & 2nd order termporal derivatives)

Training:

- unsupervised layer-wise training (8 layers, ~2000 units per layer)
- supervised training to predict states of HMM

Test: frame-by-frame prediction \rightarrow Viterbi decoding

Dahl, Ranzato, Mohamed, Hinton, NIPS 2010

Speech Recognition on TIMIT

METHOD	PER
CRF	34.8%
Large-Margin GMM	33.0%
CD-HMM	27.3%
Augmented CRF	26.6%
RNN	26.1%
Bayesian Triphone HMM	25.6%
Triphone HMM discrim. tra	ained 22.7%
DBN with gated MRF	20.5%

Speech Recognition on TIMIT

METHOD	PER	Year
CRF	34.8%	2008
Large-Margin GMM	33.0%	2006
CD-HMM	27.3%	2009
Augmented CRF	26.6%	2009
RNN	26.1%	1994
Bayesian Triphone HMM	25.6%	1998
Triphone HMM discrim. trained	22.7%	2009
DBN with gated MRF	20.5%	2010

- Unsupervised Learning
- Deep Generative Model
 - 1st layer: gated MRF
 - Higher layers: binary RBM's
 - fast inference
 - Realistic generation: natural images
 - Applications:
 - scene recognition, denoising, facial expression recognition robust to occlusion...
 - speech recognition

THANK YOU

References on gated MRFs

Pot like models for modeling natural images

- Hinton, the Discovering multiple constraints that are frequently approximately satisfied UAI 2001
- Welling, Hinton, Osindero Learning sparse topographic representations with products of student's t distributions NIPS 2003
- Teh, Welling, Osindero, Hinton Energy-based models for sparse overcomplete representations JMLR 2003
- Osindero, Welling, Hinton Topographic product models applied to natural scene statistics Neural Comp. 2006
- Roth, Black Field of Experts IJCV 2009
- Ranzato, Krizhevsky, Hinton Factored 3-way RBMs for modeling natural images AISTATS 2010

mPoT like models for modeling images and speech

- Ranzato, Hinton Modeling pixel means and covariances using factored 3rd order Boltzmann machines CVPR 2010
- Dahl, Ranzato, Mohamed, Hinton Phone recognition with mcRBM NIPS 2010
- Ranzato, Mnih, Hinton Generating more realistic images using gated MRF's NIPS 2010
- Ranzato, Susskind, Mnih, Hinton On deep generative models with applications to recognition CVPR 2011
- Kivinen, Williams Multiple texture Boltzmann machines AISTATS 2012

Models similar to mPoT

- Courville, Bergstra, Bengio The spike and slab RBM NIPS 2010
- Courville, Bergstra, Bengio Unsupervised models of image by ssRBM ICML2011
- Goodfellow, Courville, Bengio Large-scale feature learning with spike-and-slab sparse coding. ICML 2012

3-way RBM applied to sequences

- Memisevic, Hinton Unsupervised learning of image transformations CVPR 2007
- Taylor, Hinton Factored conditional RBM for modeling motion style ICML 2009
- Memisevic, Hinton Learning to represent spatial transformations with a factored high-order Boltzmann machine Neural Comp 2010
- Memisevic Gradient-based learning of higher-order image features ICCV 2011
- Memisevic On multi-view feature learning ICML 2012