Deep Gated MRF's

Marc'Aurelio Ranzato
ranzato@google.com
www.cs.toronto.edu/~ranzato

Google

Two Approaches to Unsupervised Learning

- structure is learned by scoring input data vectors
- implicit/explicit mapping between input and feature space Ranzato et al. "A unified energy-based framework for unsupervised learning" AISTA TS 2007
- Training sample
- Input vector which is NOT a training sample
- Feature vector

INPUT SPACE: x

Two Approaches to Unsupervised Learning

- structure is learned by scoring input data vectors
- implicit/explicit mapping between input and feature space Ranzato et al. "A unified energy-based framework for unsupervised learning" AISTA TS 2007
- Training sample
- Input vector which is NOT a training sample
- Feature vector

Two Approaches to Unsupervised Learning

$1^{\text {st }}$ strategy: constrain latent representation \& optimize score only at training samples

INPUT SPACE: x

Two Approaches to Unsupervised Learning

$1^{\text {st }}$ strategy: constrain latent representation \& optimize score only at training samples
e.g., K-Means: score $=$ reconstruction error: $\|x-W h\|^{2}$ constraint = h 1-of-N: [0 00100 ... O]

FEATURE SPACE: h
$\bullet[1,0,0]$
$\bullet[0,1,0]$
$\bullet[0,0,1]$

Two Approaches to Unsupervised Learning

$1^{\text {st }}$ strategy: constrain latent representation \& optimize score only at training samples
e.g., K-Means: score $=$ reconstruction error: $\|x-W h\|^{2}$ constraint = h 1-of-N: [0 O O 100 ... O]

DECODING

Two Approaches to Unsupervised Learning

$1^{\text {st }}$ strategy: constrain latent representation \& optimize score only at training samples
e.g., K-Means: score $=$ reconstruction error: $\|x-W h\|^{2}$ constraint = h 1-of-N: [0 00100 ... O]

DECODING

Two Approaches to Unsupervised Learning

$1^{\text {st }}$ strategy: constrain latent representation \& optimize score only at training samples
e.g., K-Means: score $=$ reconstruction error: $\|x-W h\|^{2}$ constraint = h 1-of-N: [0 O O 100 ... O]

DECODING

Two Approaches to Unsupervised Learning

$1^{\text {st }}$ strategy: constrain latent representation \& optimize score only at training samples
e.g., K-Means: score $=$ reconstruction error: $\|x-W h\|^{2}$ constraint = h 1-of-N: [0 00100 ... O]

ENCODING

Two Approaches to Unsupervised Learning

$1^{\text {st }}$ strategy: constrain latent representation \& optimize score only at training samples
e.g., K-Means: score $=$ reconstruction error: $\|x-W h\|^{2}$ constraint = h 1-of-N: [0 00100 ... O]

ENCODING

Two Approaches to Unsupervised Learning

$1^{\text {st }}$ strategy: constrain latent representation \& optimize score only at training samples
e.g., K-Means: score $=$ reconstruction error: $\|x-W h\|^{2}$ constraint = h 1-of-N: [000100 ... 0]

Two Approaches to Unsupervised Learning

$1^{\text {st }}$ strategy: constrain latent representation \& optimize score only at training samples

- K-Means
- sparse coding
- use lower dimensional representations

Two Approaches to Unsupervised Learning

$1^{\text {st }}$ strategy: constrain latent representation \& optimize score only at training samples

- K-Means
- sparse coding
- use lower dimensional representations
$2^{\text {nd }}$ strategy: optimize score for training samples while normalizing the score over the whole space (maximum likelihood)

Two Approaches to Unsupervised Learning

$1^{\text {st }}$ strategy: constrain latent representation \& optimize score only at training samples

- K-Means
- sparse coding
- use lower dimensional repres.ntations
$2^{\text {nd }}$ strategy: optimize score for the score over space (maximum likelihood)

Two Approaches to Unsupervised Learning

$1^{\text {st }}$ strategy: constrain latent represer optimize score onlv as

- K-Means
- sparse con
- use lowe
-ral representations
$2^{\text {nd }}$ strategy: opt*. .117, score for training samples while normalizing the score over the whole space (maximum likelihood)

Outline

- mathematical formulation of the model
- training
- generation of natural images
- recognition of facial expression under occlusion
- learning acoustic features for spech recognition
- conclusion

Outline

- mathematical formulation of the model
- training
generation of natural images
recognition of facial expression under occlusion
learning acoustic features for spech recognition
conclusion

Conditional Distribution Over Input

$$
p(x \mid h)=N(\operatorname{mean}(h), D)
$$

- examples: PPCA, Factor Analysis, ICA, Gaussian RBM

- Training sample

Conditional Distribution Over Input

$$
p(x \mid h)=N(\operatorname{mean}(h), D)
$$

- examples: PPCA, Factor Analysis, ICA, Gaussian RBM

input image

latent variables

generated image
model does not represent well dependecies, only mean intensity

Conditional Distribution Over Input

$$
p(x \mid h)=N(0, \text { Covariance }(h))
$$

- examples: PoT, cRBM

Conditional Distribution Over Input

$$
p(x \mid h)=N(0, \text { Covariance }(h))
$$

- examples: PoT, cRBM

input image

latent variables

generated image
model does not represent well mean intensity, only dependencies

Conditional Distribution Over Input

$$
p(x \mid h)=N(\text { mean }(h), \text { Covariance }(h))
$$

- this is what we propose: mcRBM, mPoT

Conditional Distribution Over Input

$$
p(x \mid h)=N(\text { mean }(h), \text { Covariance }(h))
$$

- this is what we propose: mcRBM, mPoT

- Training sample
- Latent vector

Geometric interpretation of conditional over x

If we multiply them, we get...

Geometric interpretation of conditional over x

- two sets of latent variables to modulate mean and covariance of the conditional distribution over the input
- energy-based model

$$
p\left(x, h^{m}, h^{c}\right) \propto \exp \left(-E\left(x, h^{m}, h^{c}\right)\right)
$$

$$
\begin{aligned}
& x \in \mathbb{R}^{D} \\
& h^{c} \in\{0,1\}^{M} \\
& h^{m} \in\{0,1\}^{N}
\end{aligned}
$$

Covariance part of the energy function:

$$
\begin{aligned}
& E\left(x, h^{c}, h^{m}\right)=\frac{1}{2} x^{\prime} \Sigma^{-1} x \\
& x \in \mathbb{R}^{D} \\
& \Sigma^{-1} \in \mathbb{R}^{D \times D}
\end{aligned}
$$

Covariance part of the energy function:
$E\left(x, h^{c}, h^{m}\right)=\frac{1}{2} x^{\prime} C C^{\prime} x$
$x \in \mathbb{R}^{D} \quad$ factorization
$C \in \mathbb{R}^{D \times F}$

pair-wise MRF

Covariance part of the energy function:
$E\left(x, h^{c}, h^{m}\right)=\frac{1}{2} x^{\prime} C C^{\prime} x$
$x \in \mathbb{R}^{D} \quad$ factorization
$C \in \mathbb{R}^{D \times F}$

pair-wise MRF

$$
E\left(x, h^{c}, h^{m}\right)=\frac{1}{2} x^{\prime} C C^{\prime} x=\alpha_{11} x_{1}^{2}+\alpha_{12} x_{1} x_{2}+\ldots
$$

Covariance part of the energy function:
$E\left(x, h^{c}, h^{m}\right)=\frac{1}{2} x^{\prime} C C^{\prime} x$
$x \in \mathbb{R}^{D} \quad$ factorization
$C \in \mathbb{R}^{D \times F}$

$$
E\left(x, h^{c}, h^{m}\right)=\frac{1}{2} x^{\prime} C C^{\prime} x=\frac{1}{2} \sum_{i=1}^{F}\left(C_{i}^{\prime} x\right)^{2}
$$

Covariance part of the energy function:
$E\left(x, h^{c}, h^{m}\right)=\frac{1}{2} x^{\prime} C\left[\operatorname{diag}\left(h^{c}\right)\right] C^{\prime} x$
$x \in \mathbb{R}^{D} \quad$ factorization + hiddens
$C \in \mathbb{R}^{D \times F}$
$h^{c} \in\{0,1\}^{F}$
gated MRF

Covariance part of the energy function:
$E\left(x, h^{c}, h^{m}\right)=\frac{1}{2} x^{\prime} C\left[\operatorname{diag}\left(h^{c}\right)\right] C^{\prime} x$
$x \in \mathbb{R}^{D} \quad$ factorization + hiddens
$C \in \mathbb{R}^{D \times F}$
$h^{c} \in\{0,1\}^{F}$
gated MRF

$$
E\left(x, h^{c}, h^{m}\right)=\frac{1}{2} x^{\prime} C\left[\operatorname{diag}\left(h^{c}\right)\right] C^{\prime} x=\frac{1}{2} \sum_{i=1}^{F} h_{i}^{c}\left(C_{i}^{\prime} x\right)^{2}
$$

Covariance part of the energy function:
$E\left(x, h^{c}, h^{m}\right)=\frac{1}{2} x^{\prime} C\left[\operatorname{diag}\left(P h^{c}\right)\right] C^{\prime} x$
$x \in \mathbb{R}^{D} \quad$ factorization + hiddens
$C \in \mathbb{R}^{D \times F}$
$h^{c} \in\{0,1\}^{M}$
$P \in \mathbb{R}^{F \times M}$
gated MRF

Covariance part of the energy function:
$E\left(x, h^{c}, h^{m}\right)=\frac{1}{2} x^{\prime} C\left[\operatorname{diag}\left(P h^{c}\right)\right] C^{\prime} x$
$x \in \mathbb{R}^{D} \quad$ factorization + hiddens
$C \in \mathbb{R}^{D \times F}$
$h^{c} \in\{0,1\}^{M}$
$P \in \mathbb{R}^{F \times M}$
gated MRF

$$
E\left(x, h^{c}, h^{m}\right)=\frac{1}{2} \sum_{k=1}^{M} \sum_{i=1}^{F} h_{k}^{c} P_{i k}\left(C_{i}^{\prime} x\right)^{2}
$$

Overall energy function:

$$
\begin{aligned}
& E\left(x, h^{c}, h^{m}\right)=\frac{1}{2} x^{\prime} C\left[\operatorname{diag}\left(P h^{c}\right)\right] C^{\prime} x+\frac{1}{2} x^{\prime} x-x^{\prime} W h^{m} \\
& x \in \mathbb{R}^{D} \quad \text { covariance part } \quad \text { mean part }
\end{aligned}
$$ $W \in \mathbb{R}^{D \times N}$ $h^{m} \in\{0,1\}^{N}$

gated MRF

Overall energy function:

$$
\begin{array}{lc}
E\left(x, h^{c}, h^{m}\right)=\frac{1}{2} x^{\prime} C\left[\operatorname{diag}\left(P h^{c}\right)\right] C^{\prime} x+\frac{1}{2} x^{\prime} x-x^{\prime} W h^{m} \\
x \in \mathbb{R}^{D} & \text { covariance part } \quad \text { mean part }
\end{array}
$$ $W \in \mathbb{R}^{D \times N}$ $h^{m} \in\{0,1\}^{N}$

gated MRF

Overall energy function:

$$
\begin{aligned}
& E\left(x, h^{c}, h^{m}\right)=\frac{1}{2} x^{\prime} C\left[\operatorname{diag}\left(P h^{c}\right)\right] C^{\prime} x+\frac{1}{2} x^{\prime} x-x^{\prime} W h^{m} \\
& x \in \mathbb{R}^{D} \quad \text { covariance part } \quad \text { mean part }
\end{aligned}
$$ $W \in \mathbb{R}^{D \times N}$ $h^{m} \in\{0,1\}^{N}$

gated MRF

$$
p\left(x \mid h^{c}, h^{m}\right)=N\left(\Sigma\left(W h^{m}\right), \Sigma\right)
$$

$$
\Sigma^{-1}=C \operatorname{diag}\left[P h^{c}\right] C^{\prime}+I
$$

Ranzato Hinton CVPR 10

Overall energy function:

$$
E\left(x, h^{c}, h^{m}\right)=\frac{1}{2} x^{\prime} C \underset{\text { covariance part }}{\left[\operatorname{diag}\left(P h^{c}\right)\right] C^{\prime} x+\frac{1}{2} x^{\prime} x-x^{\prime} W h^{m}} \text { mean part }
$$

inference

$$
p\left(h_{k}^{c}=1 \mid x\right)=\sigma\left(-\frac{1}{2} P_{k}\left(C^{\prime} x\right)^{2}+b_{k}\right)
$$

Ranzato Hinton CVPR 10

Overall energy function:

$$
E\left(x, h^{c}, h^{m}\right)=\frac{1}{2} x^{\prime} C \underset{\text { covariance part }}{\left[\operatorname{diag}\left(P h^{c}\right)\right] C^{\prime} x+\frac{1}{2} x^{\prime} x-x^{\prime} W h^{m}} \text { mean part }
$$

Complex-cell:
inference

Ranzato Hinton CVPR 10

Interpretation

$E=\left(w^{\prime} x\right)^{2}$
minimizing E over the training set yields the minor component: $w=[-1,1]$ since images are usually smooth.

Interpretation

$E=\left(w^{\prime} x\right)^{2}$
minimizing E over the training set yields the minor component: $w=[-1,1]$ since images are usually smooth.

This edge shows the strong dependency (correlation) between image pixels!

Interpretation

$E=\left(w^{\prime} x\right)^{2}$
This enforces a strong penalty against the violation of the constraint:

$$
x_{1}=x_{2}
$$

This edge shows the strong dependency (correlation) between image pixels!

Interpretation

$$
E=\left(w^{\prime} x\right)^{2}
$$

How to make the penalty less strong? How to model violations of the constraint?

This edge shows the strong dependency (correlation) between image pixels!

Interpretation

$$
E=\left(w^{\prime} x\right)^{2}
$$

How to make the penalty less strong? How to model violations of the constraint? ADD LATENT VARIABLES!

This edge shows the strong dependency (correlation) between image pixels!

Interpretation

$$
E=h\left(w^{\prime} x\right)^{2}-b h, \quad b>0
$$

$$
\begin{aligned}
& w^{\prime} x=0, h=1 \\
& E=-b
\end{aligned}
$$

$$
\begin{aligned}
& w^{\prime} x \gg 0, h=0 \\
& E=0
\end{aligned}
$$

Penalty discount!

Interpretation

MRF with adaptive (input-dependent) affinities

Interpretation

Integrating out latent variable, we get "robust" error metric.

$$
\begin{aligned}
& F=-\log \left[e^{-0 *\left(w^{\prime} x\right)^{2}+b * 0}+e^{-\left(w^{\prime} x\right)^{2}+b}\right] \\
& =-\log \left[1+e^{-\left(w^{\prime} x\right)^{2}+b}\right]
\end{aligned}
$$

Interpretation

How mean \& covariance units cooperate

reconstruction using only mean units
input

$W h^{m}$
reconstruction using both mean\&cov units

$$
\begin{aligned}
& p\left(x \mid h^{c}, h^{m}\right)=N\left(\Sigma\left(W h^{m}\right), \Sigma\right) \\
& \Sigma^{-1}=C \operatorname{diag}\left[P h^{c}\right] C^{\prime}+I
\end{aligned}
$$

How mean \& covariance units cooperate

setting mean unit reconstruction by hand

reconstruciton using covariance units

$$
\Sigma\left(h^{c}\right) \cdot M
$$

How mean \& covariance units cooperate

setting mean unit reconstruction by hand

reconstruciton using covariance units

$$
\Sigma\left(h^{c}\right) \cdot M
$$

How mean \& covariance units cooperate

setting mean unit reconstruction by hand

reconstruciton using covariance units

$$
\Sigma\left(h^{c}\right) \cdot M
$$

Comparison

Comparison

Comparison

Comparison

Comparison

Comparison

Relation to prior work

- Looking at $p(v \mid h)$

- Looking at hiddens

- relation to line process and PoT Geman etal 84, Blake etal 87, Black etal 96
- Looking at $E(v, h)$

- relation to conditional 3-way RBM Memisevic et al 07, Taylor et al. 2009
- Looking at $p(h \mid v)$

$$
p\left(h_{k}^{c}=1 \mid v\right)=\sigma\left(-\frac{1}{2} P_{k}\left(C^{\prime} v\right)^{2}+b_{k}\right)
$$

- relation to simple-complex cell model

Outline

- mathematical formulation of the model

- training
- generation of natural images
recognition of facial expression under occlusion
- Iearning acoustic features for spech recognition
- conclusion

Learning

- maximum likelihood $p(x)=\frac{\int_{h^{m}, h^{h}} e^{-E\left(x, h^{m}, h^{c}\right)}}{\int_{x, h^{m}, h^{e}} e^{-E\left(x, h^{m}, h^{c}\right)}}$
- Fast Persistent Contrastive Divergence
- Hybrid Monte Carlo to draw samples

$$
E=\frac{1}{2} x^{\prime} C\left[\operatorname{diag}\left(P h^{c}\right)\right] C^{\prime} x-x^{\prime} W h^{m}+\ldots
$$

Learning

$$
p(x)=\frac{\int_{h^{m}, h^{c}} e^{-E\left(x, h^{m}, h^{c}\right)}}{\int_{x, h^{m}, h^{c}} e^{-E\left(x, h^{m}, h^{c}\right)}}=\frac{e^{-F(x)}}{\int_{x} e^{-F(x)}}
$$

$$
F(x)=-\log \int_{h^{m}, h^{c}} e^{-E\left(x, h^{m}, h^{c}\right)}
$$

Interpretation

Integrating out latent variable, we get "robust" error metric.

$$
\begin{aligned}
& F=-\log \left[e^{-0 *\left(w^{\prime} x\right)^{2}+b * 0}+e^{-\left(w^{\prime} x\right)^{2}+b}\right] \\
& =-\log \left[1+e^{-\left(w^{\prime} x\right)^{2}+b}\right]
\end{aligned}
$$

Learning

$$
\begin{aligned}
& p(x ; \theta)=\frac{e^{-F(x ; \theta)}}{\int_{y} e^{-F(y ; \theta)}} \\
& L(x ; \theta)=-\log p(x ; \theta) \\
& \theta \leftarrow \theta-\eta \frac{\partial L}{\partial \theta}
\end{aligned}
$$

Learning

$$
\begin{aligned}
& p(x ; \theta)=\frac{e^{-F(x ; \theta)}}{\int_{y} e^{-F(y ; \theta)}} \\
& L(x ; \theta)=-\log p(x ; \theta) \\
& \theta \leftarrow \theta-\eta \frac{\partial L}{\partial \theta} \\
& \frac{\partial L}{\partial \theta}=\left\langle\frac{\partial F(x ; \theta)}{\partial \theta}\right\rangle_{x \sim T_{\text {rainSet }}}-\left\langle\frac{\partial F(y ; \theta)}{\partial \theta}\right\rangle_{y \sim p(y ; \theta)}
\end{aligned}
$$

Learning

$$
\begin{aligned}
& p(x ; \theta)=\frac{e^{-F(x ; \theta)}}{\int_{y} e^{-F(y ; \theta)}} \\
& L(x ; \theta)=-\log p(x ; \theta) \\
& \theta \leftarrow \theta-\eta \frac{\partial L}{\partial \theta} \\
& \left.\frac{\partial L}{\partial \theta}=\left\langle\frac{\partial F(x ; \theta)}{\partial \theta}\right\rangle_{x \sim \text { TrainSet }}-<\frac{\partial F(y ; \theta)}{\partial \theta}\right\rangle_{y \sim p(y ; \theta)}
\end{aligned}
$$

We estimate this by using an MCMC method: HMC

Learning

Outline

- mathematical formulation of the model

- training

- generation of natural images
recognition of facial expression under occlusion
learning acoustic features for spech recognition
conclusion

Learned Filters: mean filters W

Learned Filters: covariance filters C

Random Walk: p(v|h)

1) given image \rightarrow infer latent variables using $p(h \mid v)$
2) keeping latent variables fixed, sample from $p(v \mid h)$

Generation natural

mcRBM

Ranzato and Hinton CVPR 2010

Natural images

GRBM

from Osindero and Hinton NIPS 2008

S-RBM + DBN

from Osindero and Hinton NIPS 2008

Training on Small Image Patches

Pick patches at random locations for training

From Patches to High-Resolution Images

This is not a good way to extend the model to big images: block artifacts

From Patches to High-Resolution Images

IDEA: have one subset of filters applied to these locations,

From Patches to High-Resolution Images

IDEA: have one subset of filters applied to these locations, another subset to these locations

From Patches to High-Resolution Images

IDEA: have one subset of filters applied to these locations, another subset to these locations, etc.

Gregor LeCun arXiv 2010 Ranzato, Mnih, Hinton NIPS 2010

Train jointly all parameters.

No block artifacts Reduced redundancy

Sampling High-Resolution Images

Gaussian model

from Simoncelli 2005
marginal wavelet

Sampling High-Resolution Images

Gaussian model

from Simoncelli 2005
marginal wavelet

Sampling High-Resolution Images

Mean Covariance Model

Ranzato, Mnih, Hinton NIPS 2010

Gaussian model

from Simoncelli 2005

Pair-wise MRF

marginal wavelet

from Schmidt, Gao, Roth CVPR 2010

Sampling High-Resolution Images

Gaussian model

Mean Covariance Model

Ranzato, Mnih, Hinton NIPS 2010

from Simoncelli 2005

Pair-wise MRF

Sampling High-Resolution Images

Gaussian model

Mean Covariance Model

Ranzato, Mnih, Hinton NIPS 2010

from Simoncelli 2005

Pair-wise MRF

Making the model.. "DEEPER"

Treat these units as data to train a similar model on the top

SECOND STAGE

Field of binary RBM's.
Each hidden unit has a receptive field of 30×30 pixels in input space.

Sampling from the DEEPER model

- Sample from $2^{\text {nd }}$ layer Restricted Boltzmann Machine (RBM)
- project sample in image space using $1^{\text {st }}$ layer $p(x \mid h)$

Samples from Deep Generative Model

$1^{\text {st }}$ stage model

Samples from Deep Generative Model

$1^{\text {st }}$ stage model

$3^{\text {rd }}$ stage model

Samples from Deep Generative Model

$1^{\text {st }}$ stage model

$3^{\text {rd }}$ stage model

Samples from Deep Generative Model

$1^{\text {st }}$ stage model

Sampling High-Resolution Images

FoE

from Schmidt, Gao, Roth CVPR 2010

Gaussian model

from Simoncelli 2005
marginal wavelet

from Simoncelli 2005

Using -Energy to Score Images

test images

Using Energy to Score Images

Using Energy to Score Images

Average of those images for which difference of energy is higher

Scene Recognition

- 15 scene dataset (Lazebnik et al. CVPR 2006)

- 15 categories, 100 images per class for training

Scene Recognition

- use hiddens at $2^{\text {nd }}$ layer to represent 46×46 input image patches
- spatial pyramid matching on $1^{\text {st }}$ and $2^{\text {nd }}$ layer fearures
- Result
accuracy non-linear SVM (histogram intersection)
- SIFT.
81.4\%

Lazebnik et al. CVPR 2006

- DEEP Features:

Ranzato et al. CVPR 2011

- Best Method (SIFT + Sparse Coding) 84.1\% Boureau et al. CVPR 2010

Image Denoising

original image

noisy image: $P S N R=22.1 d B$

denoised: PSNR=28.0dB

$$
X^{*}=\operatorname{argmin} \frac{1}{2} \frac{\|X-N\|}{\sigma^{2}}+F(X)
$$

Image Denoising

original image

noisy image: $P S N R=22.1 \mathrm{~dB}$

denoised: $P S N R=29.2 \mathrm{~dB}$

repeat

$$
\begin{aligned}
& X^{*}=\operatorname{argmin} \frac{1}{2} \frac{\|X-N\|}{\sigma^{2}}+F(X) \\
& \theta^{*}=\operatorname{argmin}_{\theta}-\log p\left(X^{*} ; \theta\right)
\end{aligned}
$$

Image Denoising

original image

noisy image: $P S N R=22.1 d B$

denoised: $P S N R=30.7 \mathrm{~dB}$

$$
X^{*}=\alpha X_{m P o T}^{*}+(1-\alpha) X_{\text {NonLocalMeans }}^{*}
$$

Outline

mathematical formulation of the model

- training

generation of natural images

- recognition of facial expression under occlusion learning acoustic features for spech recognition conclusion

Facial Expression Recognition

Toronto Face Dataset (J. Susskind et al. 2010)
~ 100K unlabeled faces from different sources
~ 4K labeled images
Resolution: 48×48 pixels
7 facial expressions

Facial Expression Recognition

Toronto Face Dataset (J. Susskind et al. 2010)
~ 100K unlabeled faces from different sources
~ 4K labeled images
Resolution: 48×48 pixels
7 facial expressions

Facial Expression Recognition

Toronto Face Dataset (J. Susskind et al. 2010)
~ 100K unlabeled faces from different sources
~ 4K labeled images
Resolution: 48×48 pixels
7 facial expressions

Facial Expression Recognition

Toronto Face Dataset (J. Susskind et al. 2010)
~ 100K unlabeled faces from different sources
~ 4K labeled images
Resolution: 48×48 pixels
7 facial expressions

Facial Expression Recognition

Toronto Face Dataset (J. Susskind et al. 2010)
~ 100K unlabeled faces from different sources
~ 4K labeled images
Resolution: 48×48 pixels
7 facial expressions

Facial Expression Recognition

Toronto Face Dataset (J. Susskind et al. 2010)
~ 100K unlabeled faces from different sources
~ 4K labeled images
Resolution: 48×48 pixels
7 facial expressions

Facial Expression Recognition

Toronto Face Dataset (J. Susskind et al. 2010)
~ 100K unlabeled faces from different sources
~ 4K labeled images
Resolution: 48×48 pixels
7 facial expressions

Facial Expression Recognition

- $1^{\text {st }}$ layer using local (not shared) connectivity
- layers above are fully connected
- 5 layers in total
- Result
- Linear Classifier on raw pixels
71.5\%
- Gaussian RBF SVM on raw pixels
- Gabor + PCA + linear classifier Dailey et al. J. Cog. Science 2002
- Sparse coding Wright et al. PAMI 2008
- DEEP model (3 layers):
76.2\% 80.1\%
74.6\%
82.5\%

Facial Expression Recognition

Drawing samples from the model ($5^{\text {th }}$ layer with 128 hiddens)

Facial Expression Recognition

 Drawing samples from the model ($5^{\text {th }}$ layer with 128 hiddens)

Facial Expression Recognition

- 7 synthetic occlusions
- use generative model to fill-in (conditional on the known pixels)

Facial Expression Recognition

originals

Type 1 occlusion: eyes

Restored images

Facial Expression Recognition

originals

Type 2 occlusion: mouth

Restored images

Facial Expression Recognition

originals

Type 3 occlusion: right half

6	8	A	∞	x		∞	0

Restored images

Facial Expression Recognition

originals

Type 4 occlusion: bottom half

Restored images

Facial Expression Recognition

originals

Type 5 occlusion: top half

Restored images

Facial Expression Recognition

originals

Type 6 occlusion: nose

Restored images

Facial Expression Recognition

originals

Type 7 occlusion: 70% of pixels at random

Restored images

Facial Expression Recognition

Original Input
\square
\square
\square

Facial Expression Recognition

Facial Expression Recognition

 occluded images for both training and test

Outline

mathematical formulation of the model

- training

generation of natural images
recognition of facial expression under occlusion

- learning acoustic features for spech recognition conclusion

Speech Recognition on TIMIT

INPUT: standard pre-processing, but without augmentation (no $1^{\text {st }} \& 2^{\text {nd }}$ order termporal derivatives)

Training:

- unsupervised layer-wise training (8 layers, ~2000 units per layer)
- supervised training to predict states of HMM

Test: frame-by-frame prediction \rightarrow Viterbi decoding

Speech Recognition on TIMIT

METHOD	PER
CRF	34.8%
Large-Margin GMM	33.0%
CD-HMM	27.3%
Augmented CRF	26.6%
RNN	26.1%
Bayesian Triphone HMM	25.6%
Triphone HMM discrim. trained	22.7%
DBN with gated MRF	20.5%

Speech Recognition on TIMIT

METHOD	PER	Year
CRF	34.8%	2008
Large-Margin GMM	33.0%	2006
CD-HMM	27.3%	2009
Augmented CRF	26.6%	2009
RNN	26.1%	1994
Bayesian Triphone HMM	25.6%	1998
Triphone HMM discrim. trained	22.7%	2009
DBN with gated MRF	20.5%	2010

Summary

Unsupervised Learning
Deep Generative Model
$41^{\text {st }}$ layer: gated MRF
Higher layers: binary RBM's
Δ fast inference
Realistic generation: natural images
\triangle Applications:
ascene recognition, denoising, facial expression recognition robust to occlusion...
${ }^{4}$ speech recognition

THANK YOU

References on gated MRFs

\triangle PoT like models for modeling natural images

2 Hinton, the - Discovering multiple constraints that are frequently approximately satisfied UAI 2001
2 Welling, Hinton, Osindero - Learning sparse topographic representations with products of student's \dagger distributions NIPS 2003
Δ Teh, Welling, Osindero, Hinton - Energy-based models for sparse overcomplete representations JMLR 2003
2 Osindero, Welling, Hinton - Topographic product models applied to natural scene statistics Neural Comp. 2006
1 Roth, Black - Field of Experts IJCV 2009
3 Ranzato, Krizhevsky, Hinton - Factored 3-way RBMs for modeling natural images AISTATS 2010

$\triangle \mathrm{mPo}$ like models for modeling images and speech

Δ Ranzato, Hinton - Modeling pixel means and covariances using factored $3^{\text {rd }}$ order Boltzmann machines CVPR 2010
2 Dahl, Ranzato, Mohamed, Hinton - Phone recognition with mcRBM NIPS 2010
4 Ranzato, Mnih, Hinton - Generating more realistic images using gated MRF's NIPS 2010
Δ Ranzato, Susskind, Mnih, Hinton - On deep generative models with applications to recognition CVPR 2011
Kivinen, Williams - Multiple texture Boltzmann machines AISTATS 2012

Models similar to mPoT

4 Courville, Bergstra, Bengio - The spike and slab RBM NIPS 2010
2 Courville, Bergstra, Bengio - Unsupervised models of image by ssRBM ICML2011
\triangle Goodfellow, Courville, Bengio - Large-scale feature learning with spike-and-slab sparse coding. ICML 2012

3-way RBM applied to sequences

4 Memisevic, Hinton - Unsupervised learning of image transformations CVPR 2007
I Taylor, Hinton - Factored conditional RBM for modeling motion style ICML 2009
Δ Memisevic, Hinton - Learning to represent spatial transformations with a factored high-order Boltzmann machine Neural Comp 2010
2 Memisevic - Gradient-based learning of higher-order image features ICCV 2011
\triangle Memisevic - On multi-view feature learning ICML 2012

