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Two Approaches to Unsupervised Learning

INPUT SPACE: FEATURE SPACE:

Training sample
Input vector which is NOT a training sample
Feature vector

ph∣x 

p x∣h

- structure is learned by scoring input data vectors
- implicit/explicit mapping between input and feature space

x h

Ranzato et al. “A unified energy-based framework for unsupervised learning” AISTATS 2007
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1st strategy: constrain latent representation & 
optimize score only at training samples 

                    - K-Means 
- sparse coding
- use lower dimensional representations  

2nd strategy: optimize score for training samples while normalizing      
  the score over the whole space (maximum likelihood)

Two Approaches to Unsupervised Learning
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1st strategy: constrain latent representation & 
optimize score only at training samples 

                    - K-Means 
- sparse coding
- use lower dimensional representations  

2nd strategy: optimize score for training samples while normalizing      
  the score over the whole space (maximum likelihood)

Two Approaches to Unsupervised Learning

p(x)

x

TO
MORRO

W
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Outline

 

- mathematical formulation of the model

- training

- generation of natural images

- recognition of facial expression under occlusion
 

- learning acoustic features for spech recognition
 

- conclusion
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Outline

 

- mathematical formulation of the model
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- generation of natural images

- recognition of facial expression under occlusion

- learning acoustic features for spech recognition

- conclusion
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Conditional Distribution Over Input

INPUT SPACE LATENT SPACE

Training sample Latent vector

p x∣h=N mean h ,D 

- examples: PPCA, Factor Analysis, ICA, Gaussian RBM

p x∣h
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Conditional Distribution Over Input

p x∣h=N mean h ,D 

- examples: PPCA, Factor Analysis, ICA, Gaussian RBM

input image

model does not represent well dependecies, only mean intensity

ph∣x  p x∣h

generated image
latent variables
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Conditional Distribution Over Input

INPUT SPACE LATENT SPACE

Training sample Latent vector

p x∣h=N 0,Covariance h

- examples: PoT, cRBM

Welling et al. NIPS 2003, Ranzato et al. AISTATS 10

p x∣h
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Conditional Distribution Over Input

p x∣h=N 0,Covariance h

- examples: PoT, cRBM

Welling et al. NIPS 2003, Ranzato et al. AISTATS 10

model does not represent well mean intensity, only dependencies

Andy Warhol 1960

input image

ph∣x  p x∣h

generated image
latent variables
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Conditional Distribution Over Input

INPUT SPACE LATENT SPACE

Training sample Latent vector

p x∣h=N mean h ,Covariance h

- this is what we propose: mcRBM, mPoT

Ranzato et al. CVPR 10, Ranzato et al. NIPS 2010, Ranzato et al. CVPR 11
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Conditional Distribution Over Input

INPUT SPACE LATENT SPACE

Training sample Latent vector

- this is what we propose: mcRBM, mPoT

p x∣h=N mean h ,Covariance h

Ranzato et al. CVPR 10, Ranzato et al. NIPS 2010, Ranzato et al. CVPR 11

p x∣h

p x =∑h
p x∣h  ph
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PoT PPCA

Our model

N(0,Σ) N(m,I)

N(m,Σ)
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Geometric interpretation of conditional over x

If we multiply them, we get...

N 0,hc
 N mhm

 , I 
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If we multiply them, we get...
a sharper and shorter Gaussian

Geometric interpretation of conditional over x

N 0,hc
 N mhm

 , I 

N m' , ' 
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p x ,hm , hc ∝exp−E x ,hm , hc

x

xx

x
mcRBM

Ranzato Hinton CVPR 10

- two sets of latent variables to modulate mean and covariance 
of the conditional distribution over the input

- energy-based model

x∈ℝD

hc∈{0,1 }M

hm
∈{0,1}N
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E  x ,h
c
, h

m
=

1
2

x ' 
−1

x

Covariance part of the energy function:

pair-wise MRF
x p xq

Ranzato Hinton CVPR 10

x∈ℝ
D

−1∈ℝD×D
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Covariance part of the energy function:

pair-wise MRF
x p xq

factorization

Ranzato Hinton CVPR 10

x∈ℝ
D

C∈ℝ
D×F

F

E  x ,h
c
, h

m
=

1
2

x ' C C ' x
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Covariance part of the energy function:

pair-wise MRF
x p xq

factorization

Ranzato Hinton CVPR 10

x∈ℝ
D

C∈ℝ
D×F

F

E  x ,h
c
, h

m
=

1
2

x ' C C ' x

E  x ,h
c
, h

m
=

1
2

x ' C C ' x=11 x1
2
12 x1 x2...



31

Covariance part of the energy function:

pair-wise MRF
x p xq

factorization

Ranzato Hinton CVPR 10

x∈ℝ
D

C∈ℝ
D×F

F

E  x ,h
c
, h

m
=

1
2

x ' C C ' x

E  x ,h
c
, h

m
=

1
2

x ' C C ' x=
1
2∑i=1

F
C i ' x

2
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Covariance part of the energy function:

gated MRF

x p xq

factorization + hiddens

hk
c

CC

Ranzato Hinton CVPR 10

x∈ℝ
D

C∈ℝ
D×F

hc
∈{0,1 }F

F

F

E  x ,h
c
, h

m
=

1
2

x ' C [diag h
c
]C ' x
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Covariance part of the energy function:

gated MRF

x p xq

factorization + hiddens

hk
c

CC

Ranzato Hinton CVPR 10

x∈ℝ
D

C∈ℝ
D×F

hc
∈{0,1 }F

F

F

E  x ,h
c
, h

m
=

1
2

x ' C [diag h
c
]C ' x

E  x ,h
c
, h

m
=

1
2

x ' C [diag h
c
]C ' x=

1
2∑i=1

F
h i

c
C i ' x 

2
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Covariance part of the energy function:

x p xq
CC

P

Ranzato Hinton CVPR 10

x∈ℝ
D

C∈ℝ
D×F

hc
∈{0,1 }M

P∈ℝF ×M

F

M

hk
c

E  x ,h
c
, h

m
=

1
2

x ' C [diag P h
c
]C ' x

gated MRF

factorization + hiddens
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Covariance part of the energy function:

x p xq
CC

P

Ranzato Hinton CVPR 10

x∈ℝ
D

C∈ℝ
D×F

hc
∈{0,1 }M

P∈ℝF ×M

F

M

hk
c

E  x ,h
c
, h

m
=

1
2

x ' C [diag P h
c
]C ' x

gated MRF

factorization + hiddens

E  x ,h
c
, h

m
=

1
2 ∑k=1

M

∑i=1

F
hk

c
P ik C i ' x

2
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Overall energy function:

x p xq

covariance part mean part

h j
m

W

Ranzato Hinton CVPR 10

x∈ℝ
D

W ∈ℝ
D×N

hm
∈{0,1}N

CC

P

F

M

hk
c

N

E  x ,h
c
, h

m
=

1
2

x ' C [diag P h
c
]C ' x

1
2

x ' x− x ' W h
m

gated MRF



37

Overall energy function:

x p xq

covariance part mean part

h j
m

W

Ranzato Hinton CVPR 10

x∈ℝ
D

W ∈ℝ
D×N

hm
∈{0,1}N

CC

P

F

M

hk
c

N

E  x ,h
c
, h

m
=

1
2

x ' C [diag P h
c
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Overall energy function:

x p xq

covariance part mean part

h j
m

W

Ranzato Hinton CVPR 10

x∈ℝ
D

W ∈ℝ
D×N

hm
∈{0,1}N

CC

P

F

M

hk
c

N

E  x ,h
c
, h

m
=

1
2

x ' C [diag P h
c
]C ' x

1
2

x ' x− x ' W h
m

gated MRF

p x∣hc , hm=N Whm ,

−1=C diag [P hc ]C 'I
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Overall energy function:

covariance part

inference
phk

c
=1∣x=−

1
2

Pk C ' x
2
bk 

ph j
m
=1∣x = W j ' xb j

mean part

Ranzato Hinton CVPR 10

E  x ,h
c
, h

m
=

1
2

x ' C [diag P h
c
]C ' x

1
2

x ' x− x ' W h
m

x p xq

h j
m

W

CC

P

F

M

hk
c

N
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Overall energy function:

covariance part

inference
phk

c
=1∣x=−

1
2

Pk C ' x
2
bk 

ph j
m
=1∣x = W j ' xb j

mean part

Ranzato Hinton CVPR 10

E  x ,h
c
, h

m
=

1
2

x ' C [diag P h
c
]C ' x

1
2

x ' x− x ' W h
m

x p xq

h j
m

W

CC

P

F

M

hk
c

N

Complex-cell:
pools rectified simple cells

Simple-cell:
non-linear filtering
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Interpretation

E=w ' x 2 minimizing E over the training set yields the 
minor component: w = [-1,1] since images are 
usually smooth.



42

Interpretation

E=w ' x 2 minimizing E over the training set yields the 
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Interpretation

E=w ' x 2 This enforces a strong penalty against the 
violation of the constraint:

This edge shows the strong dependency 
(correlation) between image pixels!

x1= x2
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Interpretation

E=w ' x 2 How to make the penalty less strong?
How to model violations of the constraint?

This edge shows the strong dependency 
(correlation) between image pixels!
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Interpretation

E=w ' x 2 How to make the penalty less strong?
How to model violations of the constraint?

This edge shows the strong dependency 
(correlation) between image pixels!

ADD LATENT VARIABLES!
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Interpretation

E= hw ' x 2− bh , b0

Penalty discount!

w ' x=0, h=1

E=−b

w ' x≫0, h=0

E=0

Black Rangarajan  “On..line process..” IJCV 96
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Interpretation

MRF with adaptive (input-dependent) 
affinities
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Interpretation

Integrating out latent variable, we 
get “robust” error metric.

F=− log [e−0∗w ' x 2
b∗0

e−w' x 2
b
]

=−log [1e−w' x 2
b ]

w ' x

F
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Interpretation

pixel correlations

mean intensity
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input

reconstruction using only mean units

How mean & covariance units cooperate

reconstruction using both mean&cov units

hc⋅Whm

Whm

p x∣hc , hm=N Whm ,

−1=C diag [P hc ]C 'I
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input

setting mean unit reconstruction by hand

How mean & covariance units cooperate

reconstruciton using covariance units

M

hc⋅M
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input

How mean & covariance units cooperate

hc
⋅M

M

setting mean unit reconstruction by hand

reconstruciton using covariance units
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input

How mean & covariance units cooperate

hc
⋅M

M

setting mean unit reconstruction by hand

reconstruciton using covariance units
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Comparison
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Comparison
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Comparison
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Comparison
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Comparison
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Comparison



Relation to prior work

x

xx

x

- Looking at 

- relation to PCA, FA, PoT, etc.

- relation to line process and PoT

- relation to conditional 3-way RBM

Geman etal 84, Blake etal 87, Black etal 96

Memisevic et al 07,  Taylor et al.  2009

- Looking at hiddens 

- Looking at E v ,h

3rd order BM

- Looking at 
phk

c
=1∣v = −

1
2

Pk C ' v
2
bk

+

- relation to simple-complex cell model

pv∣h

ph∣v 

hc

v 2v 1

hc

v 2v 1
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Outline

 

- mathematical formulation of the model

- training

- generation of natural images

- recognition of facial expression under occlusion

- learning acoustic features for spech recognition

- conclusion
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Learning

- maximum likelihood

  - Fast Persistent Contrastive Divergence 
  - Hybrid Monte Carlo to draw samples  

x i x j

hn
m

hk
c

P

CC
W

p x =
∫hm , hc e

−E x , hm , hc


∫x ,h m , hc e
−E x ,h m ,hc



E=
1
2

x ' C [ diag P h
c
]C ' x−x ' W h

m
...
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Learning

p x =
∫hm , hc e

−E x , hm , hc


∫x ,h m , hc e
−E x ,hm ,hc


=

e−F x

∫x
e−F  x

F x =−log∫hm , hc e
−E  x , hm , hc
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Interpretation

Integrating out latent variable, we 
get “robust” error metric.

F=− log [e−0∗w ' x 2
b∗0

e−w' x 2
b
]

=−log [1e−w' x 2
b ]

w ' x

F
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Learning

p x ;=
e−F x ;

∫y
e−F  y ; 

L x ;=−log p x ;

−
∂L
∂
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Learning

p x ;=
e−F x ;

∫y
e−F  y ; 

L x ;=−log p x ;

∂L
∂

=
∂ F  x ;

∂ 
x~TrainSet −

∂ F  y ;
∂ 

y~ p  y ;

−
∂L
∂
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Learning

p x ;=
e−F x ;

∫y
e−F  y ; 

L x ;=−log p x ;

∂L
∂

=
∂ F  x ;

∂ 
x~TrainSet −

∂ F  y ;
∂ 

y~ p  y ;

−
∂L
∂

We estimate this by using 
an MCMC method: HMC
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∂ F
∂ w

training sample 

F= - log(p(x)) + K 

Learning



69

HMC dynamics
∂ F
∂ w

training sample 

Learning

F= - log(p(x)) + K 
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HMC dynamics
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HMC dynamics
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HMC dynamics
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HMC dynamics
∂ F
∂ w

training sample 

Learning

F= - log(p(x)) + K 
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HMC dynamics
∂ F
∂ w

Learning

F= - log(p(x)) + K 
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∂ F
∂ w

weight update
∂ F
∂ w

sample data
point

ww− − 
∂ F
∂ w

∣sample
∂ F
∂ w

∣data

Learning

F= - log(p(x)) + K 
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∂ F
∂ w

weight update
∂ F
∂ w

sample data
point

ww− − 
∂ F
∂ w

∣sample
∂ F
∂ w

∣data

Learning

F= - log(p(x)) + K 
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ww− − 

∂ F
∂ w

∣sample
∂ F
∂ w

∣data

Start next dynamics 
from this sample

data
point

sample 

Learning

F= - log(p(x)) + K 
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Outline

 

- mathematical formulation of the model

- training

- generation of natural images

- recognition of facial expression under occlusion

- learning acoustic features for spech recognition

- conclusion



79

Learned Filters: mean filters W

v p v q

h j
m

hk
c

P

CC

W

N

M

F
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h j
m

hk
c

P

CC

W

N

M

Learned Filters: covariance filters C

F



1) given image -> infer latent variables using p(h|v)
2) keeping latent variables fixed, sample from p(v|h) 
 

x
ooooooo

Random Walk: p(v|h)
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Generation natural 
image patches

Natural images

mcRBM

GRBM

S-RBM + DBN
from Osindero and Hinton NIPS 2008

from Osindero and Hinton NIPS 2008

Ranzato and Hinton  CVPR 2010
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Training on Small Image Patches

Pick patches at random 
locations for training
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But we could also take 
them from a grid

This is not a good way to extend the model to 
big images: block artifacts

From Patches to High-Resolution  Images
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IDEA: have one subset of filters applied to these locations,

From Patches to High-Resolution  Images
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IDEA: have one subset of filters applied to these locations, 
another subset to these locations 

From Patches to High-Resolution  Images
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IDEA: have one subset of filters applied to these locations, 
another subset to these locations, etc. 

Gregor LeCun  arXiv 2010
Ranzato, Mnih, Hinton NIPS 2010

Train jointly all parameters.

No block artifacts 
Reduced redundancy

From Patches to High-Resolution  Images



89

Sampling High-Resolution Images
Gaussian model marginal wavelet

from Simoncelli 2005
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Gaussian model marginal wavelet

from Simoncelli 2005

Pair-wise MRF FoE

from Schmidt, Gao, Roth CVPR 2010

Sampling High-Resolution Images
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Gaussian model marginal wavelet

from Simoncelli 2005

Pair-wise MRF FoE

from Schmidt, Gao, Roth CVPR 2010

Mean Covariance Model

Ranzato, Mnih, Hinton NIPS 2010

Sampling High-Resolution Images
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Gaussian model marginal wavelet

from Simoncelli 2005

Pair-wise MRF FoE

from Schmidt, Gao, Roth CVPR 2010

Mean Covariance Model

Ranzato, Mnih, Hinton NIPS 2010

Sampling High-Resolution Images
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from Simoncelli 2005

from Schmidt, Gao, Roth CVPR 2010

Gaussian model marginal wavelet

Pair-wise MRF FoE

Mean Covariance Model

Ranzato, Mnih, Hinton NIPS 2010

Sampling High-Resolution Images
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Making the model.. “DEEPER “

Treat these units as data 
to train a similar model on the top

SECOND STAGE
Field of binary RBM's. 
Each hidden unit has a 
receptive field of 30x30 
pixels in input space.
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Sampling from the DEEPER model

- Sample from 2nd layer Restricted Boltzmann Machine (RBM)
- project sample in image space using 1st layer p(x|h)

RBM

gMRF

...

1st layer

2nd layer

E h1 , h2=−h1 ' W h2

ph j
2
=1∣h1

= W j ' h
1
b j

2


phk
1
=1∣h2

= W k h2
bk

1


h1

h2

RBM RBM RBM
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Samples from Deep Generative Model

1st stage model
3rd stage model
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Samples from Deep Generative Model

1st stage model
3rd stage model
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Samples from Deep Generative Model

1st stage model
3rd stage model
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Samples from Deep Generative Model

1st stage model
3rd stage model
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Sampling High-Resolution Images

from Simoncelli 2005from Schmidt, Gao, Roth CVPR 2010

Gaussian model marginal waveletFoE

Deep - 1 layer

Ranzato, Mnih, Hinton NIPS 2010

from Simoncelli 2005

Deep - 3 layers

Ranzato, et al. CVPR 2011
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Using -Energy to Score Images

>

>

>

less likely
test images
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Using Energy to Score Images

>

>

>

>

>

>

Upside-down images
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Using Energy to Score Images

Average of those images for which 
difference of energy is higher
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Scene Recognition

- 15 scene dataset   (Lazebnik et al. CVPR 2006)
- 15 categories, 100 images per class for training
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Scene Recognition

- use hiddens at 2nd layer to represent 46x46 input image patches
- spatial pyramid matching on 1st and 2nd layer fearures

- Result

 accuracy non-linear SVM (histogram intersection)
-  SIFT............................................................................................81.4%
    Lazebnik et al. CVPR 2006

 - DEEP Features: ........................................................................81.2%
    Ranzato et al. CVPR 2011

- Best Method (SIFT + Sparse Coding)..................................84.1%
    Boureau et al. CVPR 2010
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Image Denoising
original image noisy image: PSNR=22.1dB denoised: PSNR=28.0dB

X ∗
=argmin

1
2
∥X−N∥


2 F  X 
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Image Denoising
original image noisy image: PSNR=22.1dB denoised: PSNR=29.2dB

∗=argmin−log p X ∗ ;

X ∗
=argmin

1
2
∥X−N∥


2 F  X 

repeat
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Image Denoising
original image noisy image: PSNR=22.1dB denoised: PSNR=30.7dB

X ∗= X mPoT
∗ 1− X NonLocalMeans

∗
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Outline

 

- mathematical formulation of the model

- training

- generation of natural images

- recognition of facial expression under occlusion

- learning acoustic features for spech recognition

- conclusion
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Facial Expression Recognition

Toronto Face Dataset  (J. Susskind et al. 2010)
 ~ 100K unlabeled faces from different sources
 ~ 4K labeled images
 Resolution: 48x48 pixels 
 7 facial expressions

anger

Ranzato, et al. CVPR 2011
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Facial Expression Recognition

Toronto Face Dataset  (J. Susskind et al. 2010)
 ~ 100K unlabeled faces from different sources
 ~ 4K labeled images
 Resolution: 48x48 pixels 
 7 facial expressions

disgust
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Facial Expression Recognition

Toronto Face Dataset  (J. Susskind et al. 2010)
 ~ 100K unlabeled faces from different sources
 ~ 4K labeled images
 Resolution: 48x48 pixels 
 7 facial expressions

fear
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Facial Expression Recognition

Toronto Face Dataset  (J. Susskind et al. 2010)
 ~ 100K unlabeled faces from different sources
 ~ 4K labeled images
 Resolution: 48x48 pixels 
 7 facial expressions

happiness
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Facial Expression Recognition

Toronto Face Dataset  (J. Susskind et al. 2010)
 ~ 100K unlabeled faces from different sources
 ~ 4K labeled images
 Resolution: 48x48 pixels 
 7 facial expressions

neutral
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Facial Expression Recognition

Toronto Face Dataset  (J. Susskind et al. 2010)
 ~ 100K unlabeled faces from different sources
 ~ 4K labeled images
 Resolution: 48x48 pixels 
 7 facial expressions

sadness
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Facial Expression Recognition

Toronto Face Dataset  (J. Susskind et al. 2010)
 ~ 100K unlabeled faces from different sources
 ~ 4K labeled images
 Resolution: 48x48 pixels 
 7 facial expressions

surprise
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Facial Expression Recognition

- 1st layer using local (not shared) connectivity
- layers above are fully connected
- 5 layers in total 

- Result

- Linear Classifier on raw pixels 71.5%

- Gaussian RBF SVM on raw pixels 76.2%

- Gabor + PCA + linear classifier 80.1%  
   Dailey et al. J. Cog. Science 2002

- Sparse coding   74.6%
   Wright et al. PAMI 2008

- DEEP model (3 layers): 82.5%
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Facial Expression Recognition

RBM 5th layer

gMRF
...

RBM... RBM

Drawing samples from the model (5th layer with 128 hiddens)

1st layer

h4

h5

RBM

RBM
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Facial Expression Recognition

Drawing samples from the model (5th layer with 128 hiddens)
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Facial Expression Recognition

- 7 synthetic occlusions
- use generative model to fill-in
   (conditional on the known pixels)

...
gMRF

RBM

RBM

RBM RBM

RBM

RBM

gMRF gMRF

RBM

RBM

RBM RBM

RBM

RBM

gMRF gMRF

RBM

RBM

RBM
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Facial Expression Recognition

originals

Type 1 occlusion: eyes

Restored images
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Facial Expression Recognition

originals

Type 2 occlusion: mouth

Restored images



123

Facial Expression Recognition

originals

Type 3 occlusion: right half

Restored images
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Facial Expression Recognition

originals

Type 4 occlusion: bottom half

Restored images
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Facial Expression Recognition

originals

Type 5 occlusion: top half

Restored images
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Facial Expression Recognition

originals

Type 6 occlusion: nose

Restored images
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Facial Expression Recognition

originals

Type 7 occlusion: 70% of pixels at random

Restored images
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Facial Expression Recognition

Original Input
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Facial Expression Recognition

Original Input 1st layer

gMRF gMRF
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Facial Expression Recognition

Original Input 1st layer 2nd layer

gMRF

RBM RBM

gMRF
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Facial Expression Recognition

Original Input 1st layer 2nd layer 3rd layer

gMRF

RBM RBM

gMRF

RBM RBM
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Facial Expression Recognition

Original Input 1st layer 2nd layer 3rd layer 4th layer

gMRF

RBM

RBM

RBM RBM

RBM

RBM

gMRF
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Facial Expression Recognition

Original Input 1st layer 2nd layer 3rd layer 4th layer  10 times

...
gMRF

RBM

RBM

RBM RBM

RBM

RBM

gMRF gMRF

RBM

RBM

RBM RBM

RBM

RBM

gMRF gMRF

RBM

RBM

RBM
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Facial Expression Recognition

occluded images for both training and test

Ranzato, et al. CVPR 2011Wright, et al. PAMI 2008
Dailey, et al. J. Cog. Neuros. 2003
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Outline

 

- mathematical formulation of the model

- training

- generation of natural images

- recognition of facial expression under occlusion

- learning acoustic features for spech recognition

- conclusion
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Speech Recognition on TIMIT

<-235 ms-> Dahl, Ranzato, Mohamed, Hinton, NIPS 2010

INPUT: standard pre-processing, but without augmentation 
(no 1st & 2nd order termporal derivatives)

Training:
- unsupervised layer-wise training (8 layers, ~2000 units per layer)
- supervised training to predict states of HMM

Test: frame-by-frame prediction  Viterbi decoding →
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CRF 34.8%  
Large-Margin GMM 33.0%  
CD-HMM 27.3%  
Augmented CRF 26.6%  
RNN 26.1%   
Bayesian Triphone HMM 25.6%  
Triphone HMM discrim. trained 22.7%  
DBN with gated MRF 20.5%  

METHOD PER

Speech Recognition on TIMIT
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METHOD PER Year
CRF 34.8%    2008

Large-Margin GMM 33.0%    2006

CD-HMM 27.3%    2009

Augmented CRF 26.6%    2009

RNN 26.1%     1994

Bayesian Triphone HMM 25.6%    1998

Triphone HMM discrim. trained 22.7%    2009

DBN with gated MRF 20.5%    2010

Speech Recognition on TIMIT
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Summary
 Unsupervised Learning

 Deep Generative Model

 1st layer: gated MRF
 Higher layers: binary RBM's
 fast inference
 Realistic generation: natural images 

 Applications:
 scene recognition, denoising, facial expression recognition 
robust to occlusion...
 speech recognition
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THANK  YOU 
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References on gated MRFs

 PoT like models for modeling natural images
 Hinton, the - Discovering multiple constraints that are frequently approximately satisfied UAI 
2001
 Welling, Hinton, Osindero - Learning sparse topographic representations with products of 
student's t distributions NIPS 2003
 Teh, Welling, Osindero, Hinton – Energy-based models for sparse overcomplete representations 
JMLR 2003
 Osindero, Welling, Hinton – Topographic product models applied to natural scene statistics Neural 
Comp. 2006
 Roth, Black – Field of Experts IJCV 2009
 Ranzato, Krizhevsky, Hinton – Factored 3-way RBMs for modeling natural images AISTATS 2010 

 mPoT like models for modeling images and speech
 Ranzato, Hinton – Modeling pixel means and covariances using factored 3rd order Boltzmann 
machines CVPR 2010
 Dahl, Ranzato, Mohamed, Hinton – Phone recognition with mcRBM NIPS 2010
 Ranzato, Mnih, Hinton – Generating more realistic images using gated MRF's NIPS 2010
 Ranzato, Susskind, Mnih, Hinton – On deep generative models with applications to recognition 
CVPR 2011
 Kivinen, Williams – Multiple texture Boltzmann machines AISTATS 2012
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 Models similar to mPoT
 Courville, Bergstra, Bengio – The spike and slab RBM NIPS 2010
 Courville, Bergstra, Bengio – Unsupervised models of image by ssRBM ICML2011
 Goodfellow, Courville, Bengio – Large-scale feature learning with spike-and-slab sparse coding. 
ICML 2012

 3-way RBM applied to sequences
 Memisevic, Hinton – Unsupervised learning of image transformations  CVPR 2007
 Taylor, Hinton – Factored conditional RBM for modeling motion style ICML 2009
 Memisevic, Hinton – Learning to represent spatial transformations with a factored high-order 
Boltzmann machine Neural Comp 2010
 Memisevic – Gradient-based learning of higher-order image features ICCV 2011
 Memisevic – On multi-view feature learning  ICML 2012
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