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Why natural scene statistics?

  - (a bit about biology)

Theory of Redundancy Reduction

Sparse Coding

Today’s talk



What are the principles of computation and 
representation governing this system? 
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Natural images are full of ambiguity
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Natural images are full of ambiguity



lens

ImageWorld Model

Vision as inference



Visual cortical areas - macaque monkey
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1 mm2 of cortex analyzes ca. 14 x 14 array of retinal
sample nodes and contains 100,000 neurons

(Anderson & Van Essen, 1995)









Anatomy of a 
synapse



The evolution of eyes
Land & Fernald (1992)



http://redwood.berkeley.edu/wiki/VS298:_Animal_Eyes



Efficient Coding

 represent the most relevant visual information with the 
fewest physical and metabolic resources



Theory of ‘Redundancy Reduction’

P (x) = ΠiP (xi)

Attneave (1954) Some Informational Aspects of  Visual 
Perception 

Barlow (1961) Possible Principles Underlying the 
Transformations of Sensory Messages
 - nervous system should reduce redundancy
 - makes more efficient use of neural resources
 - enables storing information about prior 
probabilities since
 ➔  “suspicious coincidences”      



Laughlin (1981) - histogram equalization

Laughlin, Srinivasan and Dubs (1982) -  Predictive 
Coding: A Fresh View of Inhibition in the Retina

Field (1987) - natural images have        power spectra

Atick & Redlich (1992); van Hateren (1992; 1993) - 
whitening

Dan, Atick, and Reid (1996) - LGN whitens natural 
movies

From theory to models

1/f2

http://www.cnbc.cmu.edu/cns/papers/Srinivasan-Laughlin-Dubs-PRSL82-predictive-coding.pdf
http://www.cnbc.cmu.edu/cns/papers/Srinivasan-Laughlin-Dubs-PRSL82-predictive-coding.pdf
http://www.cnbc.cmu.edu/cns/papers/Srinivasan-Laughlin-Dubs-PRSL82-predictive-coding.pdf
http://www.cnbc.cmu.edu/cns/papers/Srinivasan-Laughlin-Dubs-PRSL82-predictive-coding.pdf


Natural scene statistics and visual coding
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IMAGE ANALYSIS

Methods
The six scenes used in this study were photographed with a
Keystone 3572 camera (35 mm) using XP1 Kodak mono-
chrome film. The scenes were taken from various places
around England and Greece. No attempt was made to se-
lect particular types of scene, but images were chosen that
had no artificial objects (buildings, roads, etc.). Although it
was hoped that these scenes were typical natural scenes, no
effort was made to ensure this, and they may therefore rep-
resent biased samples.

The negatives were digitized on a laser densitometer
(Joyce Loebel) into 256 X 256 pixels with a depth of 8 bits/
pixel (256 density levels). The images were analyzed on a
Sun Workstation computer using conventional software de-
veloped by the author.

Calibration
The modulation transfer function (MTF) of the optical sys-
tem (lens and developing process) was determined from the
response of the system to a point source. A photograph of a
point source was taken with the same camera and film, and
the negative was developed in the same manner as the six
natural scenes. The results described below were corrected
in accordance with this MTF.

IMAGE ANALYSIS: AMPLITUDE SPECTRA OF
NATURAL IMAGES
In this section we discuss a particular property of natural
images as illustrated by their amplitude or power spectra.
This topic is discussed in greater detail in another paper.
However, since the conclusions of this section play an impor-
tant part in the next section, it is discussed briefly here.

Natural images, on the whole, appear to be rather com-
plex. They are filled with objects and shadows and various
surfaces containing various patterns at a wide range of orien-
tations. Amid this complexity, it may seem surprising that
such images share any consistent statistical features. Con-
sider the six images shown in Fig. 6. Such images may seem
widely different, but as a group they can be easily distin-
guished from a variety of other classes of image. For exam-
ple, random-dot patterns are statistically different from all
six of these natural images. This difference is best de-
scribed in terms of the amplitude spectra or power spectra of
the images, where the amplitude spectrum is defined as the
square root of the power spectrum.

The two-dimensional amplitude spectra for two of the six
images are shown in Fig. 7. The spectra of these images are
quite characteristic and are quite different from that of
white noise, which is by definition flat. They show greatest
amplitude at low frequencies (i.e., at the center of the plot)
and decreasing amplitude as the frequency increases. The

f

A B C

D E F
Fig. 6. Examples of the six images (A-F) in this study. Each image consists of 256 X 256 pixels with 256 gray levels (8 bits). However, only
the central region was directly analyzed (160 X 160). See the text or details.

David J. Field

Aa:.:i

(Field 1987)



Whitening (or decorrelation) theory
(Atick & Redlich, 1992)
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‘Robust Coding’

Doi & Lewicki (2006) - A Theory of Retinal 
Population Coding 
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(b) Fovea retinal image (c) 40 degrees eccentricity(a) Undistorted image

Figure 1: Simulation of retinal images at different retinal eccentricities. (a) Undistorted image
signal. (b) The convolution kernel at the fovea [3] superimposed on the photoreceptor array indicated
by triangles under the x-axis [1]. (c) The same as in (b) but at 40 degrees of retinal eccentricity.

2 The model

First let us define the problem (Fig. 2). We assume that data sampled by photoreceptors (referred
to as the observation) x ∈ RN are blurred versions of the underlying image signal s ∈ RN with
additive white noise ν ∼ N (0,σ2

νIN ),

x = Hs + ν (1)

where H ∈ RN×N implements the optical blur. To encode the image, we assume that the obser-
vation is linearly transformed into an M -dimensional representation. To model limited neural pre-
cision, it is assumed that the representation is subject to additive channel noise, δ ∼ N (0,σ2

δIM ).
The noisy neural representation is therefore expressed as

r = W(Hs + ν) + δ (2)

where each row of W ∈ RM×N corresponds to a receptive field. To evaluate the amount of signal
information preserved in the representation, we consider a linear reconstruciton ŝ = Ar where
A ∈ RN×M . The residual is given by

� = (IN −AWH)s−AWν −Aδ, (3)

where IN is the N -dimensional identity matrix, and the mean squared error (MSE) is

E = tr[Σs]− 2 tr[AWHΣs] + tr[AW(HΣsH
T + σ2

νIN )WT
A

T ] + σ2
δ tr[AA

T ] (4)

with E = tr���T � by definition, �·� the average over samples, and Σs the covariance matrix of the
image signal s. The problem is to find W and A that minimize E .

To model limited neural capacity, the representation r must have limited SNR. This constraint is
equivalent to fixing the variance of filter output �wT

j x� = σ2
u, where wj is the j-th row of W (here

we assume all neurons have the same capacity). It is expressed in the matrix form as

diag[WΣxW
T ] = σ2

u1M (5)

where Σx = HΣsH
T + σ2

νIN is the covariance of the observation. It can further be simplified to

diag[VV
T ] = 1M , (6)
W = σuVS

−1
x E

T , (7)

sensory noise channel noise

observation reconstruction

encoder decoderoptical blur

representationimage

ν δ

Hs ŝAx W r

Figure 2: The model diagram. If there is no degradation of the image (H = I and σ2
ν = 0), the

model is reduced to the original robust coding model [2]. If channel noise is zero as well (σ2
δ = 0),

it boils down to conventional block coding such as PCA, ICA, or wavelet transforms.

The information capacity of neural representations is limited by both the number of neurons and the

precision of neural codes. The ratio of cone photoreceptors to mRGCs in the human retina is 1 : 2
at the fovea and 23 : 2 at 40 degrees [13]. We did not model neural rectification (separate on and off

channels) and thus assumed the effective cell ratios as 1 : 1 and 23 : 1, respectively. We also fixed

the neural SNR at 10 dB, equivalent to assuming∼ 1.7 bits coding precision as in real neurons [14].

The optimal W can be derived with the gradient descent on E , and A can be derived from W using

eqn. 8. As explained in Section 2, the solution must satisfy the variance constraint (eqn. 6). We

formulate this as a constrained optimization problem [15]. The update rule for W is given by

∆W ∝ −A
T (AWH− IN )ΣsH

T − σ2
νA

T
AW − κ diag

�
ln[diag(WΣxW

T )/σ2
u]

diag(WΣxW
T )

�
WΣx, (28)

where κ is a positive constant that controls the strength of the variance constraint. Our initial results

indicated that the optimal solutions are not unique and these solutions are equivalent in terms of

MSE. We then imposed an additional neural resource constraint that penalizes the spatial extent of

a receptive field: the constraint for the k-th neuron is defined by
�

j |Wkj |(ρ d 2
kj + 1) where dkj

is the spatial distance between the j-th weight and the center of mass of all weights, and ρ is a

positive constant defining the strength of the spatial constraint. This assumption is consistent with

the spatially restricted computation in the retina. If ρ = 0, it imposes sparse weights [16], though

not necessarily spatially localized. In our simulations we fixed ρ = 0.5.

For the fovea, we examined 15×15 pixel image patches sampled from a large set of natural im-

ages, where each pixel corresponds to a cone photoreceptor. Since the cell ratio is assumed to be

1 : 1, there were 225 model neurons in the population. As shown in Fig. 4, the optimal filters

show concentric center-surround organization that is well fit with a difference-of-Gaussian function

(which is one major characteristic of mRGCs). The precise organization of the model receptive field

changes according to the SNR of the observation: as the SNR decreases, the surround inhibition

gradually disappears and the center becomes larger, which serves to remove sensory noise by aver-

aging. As a population, this yields a significant overlap among adjacent receptive fields. In terms of

spatial-frequency, this change corresponds to a shift from band-pass to low-pass filtering, which is

consistent with psychophysical measurements of the human and the macaque [17].
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Figure 4: The model receptive fields at the fovea under different SNRs of the observation. (a) A

cross-section of the two-dimensional receptive field. (b) Six examples of receptive fields. (c) The

tiling of a population of receptive fields in the visual field. The ellipses show the contour of receptive

fields at half the maximum. One pair of adjacent filters are highlighted for clarity. The scale bar

indicates an interval of three photoreceptors. (d) Spatial-frequency profiles (modulation transfer

functions) of the receptive fields at different SNRs.

For 40 degrees retinal eccentricity, we examined 35×35 photoreceptor array that are projected to

53 model neurons (so that the cell ratio is 23 : 1). The general trend of the results is the same as

in the fovea except that the receptive fields are much larger. This allows the fewer neurons in the

population to completely tile the visual field. Furthermore, the change of the receptive field with the

sensory noise level is not as significant as that predicted for the fovea, suggesting that the SNR is a
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Figure 2: In the presence of biologically realistic level of noise, the optimal filters are center-
surround and contain both On-center and Off-center profiles; the optimal nonlinearities are hard-
rectifying functions. a. The set of learned filters for 100 model neurons. b. In pixel coordinates,
contours of On-center (Off-center) filters at 50% maximum (minimum) levels. c. The learned non-
linearities for the first four model neurons, superimposed on distributions of filter outputs.
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Figure 3: a. A characterization of two retinal ganglion cells obtained with white noise stimulus
[31]. We plot the estimated linear filters, horizontal slices through the filters, and mean output as
a function of input (black line, shaded area shows one standard deviation of response). b. For
comparison, we performed the same analysis on two model neurons. Note that the spatial scales of
model and data filters are different.

in the number of On-center neurons (bottom left panel). In this case, increasing the number of
neurons restored the balance of On- and Off-center filters (not shown). In the case of vanishing
input and output noise, we obtain localized oriented filters (top left panel), and the nonlinearities are
smoothly accelerating functions that map inputs to an exponential output distribution (not shown).
These results are consistent with previous theoretical work showing that optimal nonlinearity in the
low noise regime maximizes the entropy of the output subject to response constraints [11, 7, 17].

How important is the choice of linear filters for efficient information transmission? We compared
the performance of different filtersets across a range of firing rates (Fig. 5). For each simulation, we
re-optimized the nonlinearities, adjusting λj’s for desired mean rate, while holding the filters fixed.
As a rough estimate of input entropyH(X), we used an upper bound – a Gaussian distribution with
the covariance of natural images. Our results show that when filters are mismatched to the noise
levels, performance is significantly degraded. At equivalent output rate, the “wrong” filters transmit
approximately 10 fewer bits; conversely, it takes about 50% more spikes to encode the same amount
of information.

We also compared the coding efficiency of networks with variable number of neurons. First, we
fixed the allotted population spike budget to 100 (per input), fixed the absolute output noise, and
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Figure 1: a. Schematic of the model (see text for description). The goal is to maximize information
transfer between images x and the neural response r, subject to metabolic cost of firing spikes. b.
Information about the stimulus is conveyed both by the arrangement of the filters and the steepness
of the neural nonlinearities. Top: two neurons encode two stimulus components (e.g. two pixels of
an image, x1 and x2) with linear filters (black lines) whose output is passed through scalar nonlinear
functions (thick color lines; thin color lines show isoresponse contours at evenly spaced output
levels). The steepness of the nonlinearities specifies the precision with which each projection is
represented: regions of steep slope correspond to finer partitioning of the input space, reducing the
uncertainty about the input. Bottom: joint encoding leads to binning of the input space according to
the isoresponse lines above. Grayscale shading indicates the level of uncertainty (entropy) in regions
of the input (lighter shades correspond to higher uncertainty). Efficient codes optimize this binning,
subject to input distribution, noise levels, and metabolic costs on the outputs.

Parameter λj specifies the trade-off between information gained by firing more spikes, and the cost
of generating them. It is difficult to obtain a biologically valid estimate for this parameter, and
ultimately, the value of sensory information gained depends on the behavioral task and its context
[26]. Alternatively, we can use λj as a Lagrange multiplier to enforce the constraint on the mean
output of each neuron.

Our goal is to adjust both the filters and the nonlinearities of the neural population so as to maximize
the expectation of (3) under the joint distribution of inputs and outputs, p(x, r). We assume the
filters are unit norm (‖wj‖=1) to avoid an underdetermined model in which the nonlinearity scales
along its input dimension to compensate for filter amplification. The nonlinearities fj are assumed
to be monotonically increasing. We parameterized the slope of the nonlinearity gj =dfj/dyj using
a weighted sum of Gaussian kernels,

gj(yj |cjk, µjk,σj) =
K
∑

k=1

cjk exp

(

−
(yj − µjk)2

2σ2
j

)

, (4)

with coefficients cjk≥0. The number of kernelsK was chosen for sufficiently flexible nonlinearity
(in our experimentsK = 500). We spaced µjk evenly over the range of yj and chose σj for smooth
overlap of adjacent kernels (kernel centers 2σj apart).

2.1 Computing mutual information

How can we compute the information transmitted by the nonlinear network of neurons? Mutual
information can be expressed as the difference between two entropies, I(X ;R) = H(X)−H(X |R).
The first term is the entropy of the data, which is constant (i.e. it does not depend on the model) and
can therefore be dropped from the objective function. The second term is the conditional differential
entropy and represents the uncertainty in the input after observing the neural response. It is computed
by taking the expectation over output values H(X |R) = Er

[

−
∫

p(x|r) ln p(x|r)dx
]

. In general,
computing the entropy of an arbitrary high dimensional distribution is not tractable. We make several
assumptions that allow us to approximate the posterior, compute its entropy, and maximize mutual
information. The posterior is proportional to the product of the likelihood and the prior, p(x|r) ∝
p(r|x)p(x); below we describe these two functions in detail.

3

Karklin & Simoncelli 
(2011) - Efficient coding 
of natural images with a 
population of noisy 
Linear-Nonlinear neurons

‘Robust Coding’



Beyond efficient coding

RR is appropriate when there is a bottleneck.

But V1 expands dimensionality - many more neurons than inputs

The real goal of sensory representation is to model the 
redundancy in images, not necessarily to reduce it (Barlow 2001)

What we desire is a meaningful representation.

RR provides a valid probabilistic model only when the world can 
be described in terms of statistically independent components.

To understand cortical representation we must appeal to a 
different principle.



V1 is highly overcomplete
Temporal reconstruction o f  the image 

The homunculus also has to face t'he problem that  the image is often nioving 

continuously, but is only represented by impulses a t  discrete moments in time. I n  

these days he often has to deal with visual images derived from cinema screens and 

television sets tha t  represent scenes sampled a t  quite long intervals, and we know 

IVb 

0 1mm
C I 

FIGURE8. A tracing of the outlines of the granule cells of area 17 in layers IVb  and IVc of 

monkey cortex, where the incoming geniculate fibres termmate (from fig. 3 c of Hubel & 

Wiesel 1972) The dots at the top lndlcate the calct~lated separation of the sample points 

coming In from the re t~na ,  allowing tmo per cycle of the higllest spatial frequency 

resolved. The misaligned vernier a t  rlght has a displac~ment corresponding to one sixth 

of the sample separation, or 5' for 60 cycle/deg optimum aclutp The 'grain' in the 

cortex appears to be much finer than In the retlna. 

that  he does a good job a t  interpreting them even when the sample rate is only 

16 s-l, as in amateur movies. One only has to watch a kitten playing, a cttt hunt- 

ing, or a bird alighting a t  dusk among the branches of a tree. to appreciate the 

importance and difficulty of the ~ ~ i s u a l  appreciation of motion. Considering this 

overwhelming importance it is surprising to find how slow are the receptors and 

how long is the latency for the message in the optic nerve, and e~-en  more surprising 

to find how well the system works in spite of this slowness. 

Recent psychophysical work has improved our understanding of these problems. 

At one time i t  was thought that image motion aided resolution (Narshall SI Talbot 

1942),but this was hard to believe because of the bll~rring effect of the eye's long 

LGN 
afferents

layer 4 
cortex

Barlow (1981)



ai

I(x,y)

Sparse, distributed representation

• Provides a way to group things together so that the world 
can be described in terms of a small number of events at any 
given moment. 

• Converts higher-order redundancy in images into a simple 
form of redundancy.



Dense codes
(ascii)

Sparse, distributed codes Local codes
(grandmother cells)

. . . . . .

+ High combinatorial
   capacity (2N)

-  Difficult to read out

+ Decent combinatorial
   capacity (~NK)

+ Still easy to read out

-  Low combinatorial
   capacity (N)

+ Easy to read out

Sparse vs. dense vs. 
‘grandmother cell’ codes



Gabor-filter response histogram



image neural
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(sparse)
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stuff

aiφi(x,y)I(x,y)
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Sparse coding 
image model
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142 J Comput Neurosci (2007) 22:135–146

Fig. 5 Receptive fields from the efficient coding models and from
recordings in monkey V1. The models were trained on 16 × 16 patches
of natural input. Each panel shows 128 randomly selected cells, ordered
with respect to shape. Experimental results are shown as Gabor fits
(data courtesy of D. Ringach). Scale differences due to distance from
the fovea were corrected for

To assess the distributions of receptive field shapes quan-
titatively, we fitted the receptive fields from the models with
Gabor functions and compared them to the fits for the exper-
imental data. Figure 6 shows properties of the Gabor param-
eters for the entire cell populations, with the exception of
those cells from models for which the fitting procedure was
unstable, because the fields were centred outside the patch.

Ringach (2002) reported that Sparsenet was not fully suc-
cessful in reproducing the natural range in receptive field
structure; this finding is confirmed in plot (a). By contrast,
the SSC network captures the distribution of the envelopes
of the biological receptive fields remarkably well, plot (b).

The asymmetry in the polarity of the receptive fields (def-
inition in appendix C) is plotted over the aspect ratio of the
Gabor envelope in figures (c) and (d). Note that the exper-
imental data sample all values of asymmetry and that they
form clusters near perfect symmetry (Asym. = 0) and full
asymmetry (Asym. = 1). The SSC network also produces
cells at both extrema of the range of asymmetry, although
the clustering seems somewhat exaggerated compared to the
experimental data. On the other hand, the distribution of
fields made by Sparsenet is missing the cluster in the regime
of perfect symmetry. Overall, Figs. 5 and 6 suggest that the
variety of receptive fields recorded from monkey V1 was
more closely reproduced by the SSC than by the Sparsenet
model.

4 Discussion

4.1 New model for receptive field formation using hard
sparseness

Models in neuroscience can help explain the complexity and
diversity of experimental results by simple functional prin-
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Fig. 6 Spatial properties of receptive fields in the models and in
monkey V1 (data courtesy of D. Ringach). Red: 146 experimental cells
in each graph. Blue: Modelled cells; 302 Sparsenet cells in each left
graph, 447 SSC cells in each right graph. (a) and (b) display length
and width of the Gabor envelopes measured in periods of the cosine
wave (see schematic figure (e) and Appendix C). Circular shapes are
located near the origin, slim edge-detectors near the “length” axis and
geometries with multiple subfields at large “width” values. (c) and
(d) plot the asymmetry of the receptive fields, as measured by the
normalised difference between the integrals h+ and h−, see schematic
figure (e) and Appendix C. The x-axes of (c) and (d) display the log of
the ratio between length and width of the Gabor envelopes

ciples. Here we used the approach of computational mod-
elling to explore visual cortical function, with an emphasis
on explaining how the shapes of receptive fields emerge in
V1. Previous work showed that the computational princi-
ple of coding efficiency is able to explain how receptive
fields shaped like edge detectors in V1 are formed. However,
earlier computational models, the Sparsenet (Olshausen and
Field, 1996) and independent component analysis (Bell and
Sejnowski, 1997), were unable to capture the distribution of
receptive field shapes that had been quantified experimen-
tally (Ringach, 2002). To understand the reason for this gap
between theory and biology, we investigated the influence of
a central assumption in these earlier models, the choice of
soft sparseness in the neural representation.

Thus, we investigated different computational models;
Sparsenet (Olshausen and Field, 1996) and two new models
(developed in the course of this study) that employed dif-
ferent forms of sparseness. Sparsenet produced soft sparse
representations of sensory input and the new models form
hard sparse representations. One of the novel models, which
we call the sparse-set coding (SSC) network, explicitly
optimised coding efficiency. The second model served as
a control; it crudely approximated efficient hard sparse

Springer

Effect of overcompleteness and ‘hard sparsity’
(Rehn and Sommer 2006)



Learned 
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10x
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(joint work with 
David Warland, 

UC Davis)
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Solutions are stable
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Figure 4: Basis functions learned from natural images. Shown are a set of 200 basis functions, each 12×12
pixels in size. Most have become localized well within the image patch, and all have become oriented,
with the exception of one function which took on the D.C. component. The functions are also bandpass
in spatial-frequency, occupying different regions of the spatial-frequency domain.

given in Olshausen & Field (1996b) and Field (1993).
The learned basis functions are well fit by Gabor
functions, and the entire set of functions evenly tiles
the joint space of position, orientation, and scale, as
demonstrated in previous publications (Olshausen &
Field, 1996; 1997).

Time-varying images

The model may be extended to the time domain
by describing a sequence of images (i.e., a movie)
in terms of a linear superposition of spatiotemporal
functions, φi(x, t). Here, the basis functions are ap-
plied in a shift-invariant fashion over time, meaning
that the same function is assumed to be repeated at
each point in time. Thus, an image sequence is de-
scribed by convolving the spatiotemporal basis func-
tions with a set of time-varying coefficients, ai(t):

I(x, t) =
∑

i

∑

t′
ai(t′)φi(x, t − t′) + ν(x, t)

=
∑

i

ai(t) ∗ φi(x, t) + ν(x, t) (12)

The model is illustrated schematically in figure 5.
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Figure 5: Spatiotemporal image model. A time-
varying image patch, I(x, t), is modeled as a lin-
ear superposition of spatio-temporal basis functions,
φi(x, t), each of which is localized in time but may
be applied at any point within the image sequence.
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Again, a sparse, factorial prior is imposed on the
coefficients over both space (i) and time (t), and the
coefficients for an image sequence are computed via
gradient descent on the negative log-posterior:

τ ȧi(t) = bi(t) −
∑

j

Cij(t) " aj(t) − S′(ai(t))(13)

bi(t) = λN

∑

x

φi(x, t) " I(x, t)

Cij(t) = λN

∑

x

φi(x, t) " φj(x, t)

where " denotes cross-correlation. Note however
that in order to be considered a causal system, the
value of a coefficient at time t′ must be determined
solely from image frames and other coefficient val-
ues prior to t′. For now though we shall not bother
imposing this restriction, and in the next section
we shall entertain some possibilities for making the
model causal.

A learning rule for the spatiotemporal basis func-
tions may be derived by maximizing the average
log-likelihood as before (for details see Olshausen,
2002). When the basis functions are adapted in this
manner, using time-varying natural images as train-
ing data (van Hateren, 2000), they converge to a
set of spatially localized, oriented, bandpass func-
tions that now translate over time. Shown in Fig-
ure 6 is a randomly chosen subset of the 200 basis
functions learned, each 12×12 pixels and 7 frames
in time. Again, it seems intuitively reasonable that
these functions would form a sparse representation
of time-varying natural images, since only a few of
them are needed to describe a contour segment mov-
ing through this patch of the image.

The tiling properties for velocity, as well as speed
vs. spatial-frequency, are shown in figure 7. The
majority of basis functions translate by less than one
pixel per frame. (The frame rate is 25 frames/sec.,
so a speed of one pixel per frame corresponds to 25
pixels/sec.) The high-spatial frequency basis func-
tions are biased towards slow speeds as expected,
because at higher speeds they would give rise to
temporal-frequencies beyond the Nyquist limit. This
limit is shown by the dashed line (for example, a
spatial-frequency of 0.25 cy/pixel moving at two pix-
els per frame, or 50 pixels/sec, would give rise to a
temporal-frequency of 12.5 Hz, which is equal to the
Nyquist rate in this case).

Figure 6: Space-time basis functions learned from
time-varying natural images. Shown are 30 basis
functions randomly selected from the entire set of
200 functions learned, arranged into two columns of
15. Each basis function is 12×12 pixels in space and
7 frames in time. Each row within a column shows
a different basis function, with time proceeding left
to right.
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Figure 7: Basis function tiling properties. Each data
point denotes a different basis function. In the po-
lar plot at left, radius denotes speed (in units of
frames/sec) and angle denotes the direction in which
the basis function translates. In the plot at right, the
dashed line denotes the limit imposed by the Nyquist
frequency (12.5 Hz). (The striated clustering is an
artifact due to decimation in the spatiotemporal fre-
quency domain.)
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Sparse coding of 
time-varying images

I(�x, t) =
�

i

ai(t) ∗ φi(�x, t) + �(�x, t)
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Extensions to color, disparity
Wachtler, Lee and Sejnowski (2001), Hoyer & Hyvarinen (2000)

Fig. 5. Analysis of image patches using ICA. Top, spatiochromatic structure of the 147 learned ICA basis functions of image patches
(7 ! 7 pixels, three chromatic dimensions). The R, G, and B values of the color of each pixel correspond to the relative excitation of L,
M, and S cones, respectively. The functions are in order of decreasing L2 norm from left to right and top to bottom. The additional
column marked W on the right shows the filters for the rightmost column of basis functions (marked A). Bottom, chromaticities of the
basis functions, plotted in cone-opponent color-space coordinates. Horizontal axes, L- versus M-cone variation. Vertical axes, S-cone
variation. Each dot represents the coordinate of a pixel of the respective basis function, projected onto the isoluminant plane. Lumi-
nance can be inferred from the brightness of the dot. Note that for basis functions that vary mainly in luminance, the dots tend to lie
on top of one another.

Wachtler et al. Vol. 18, No. 1 /January 2001 /J. Opt. Soc. Am. A 71

Figure 14: ICA basis of stereo images. Each pair of patches represents one basis vector ai of the estimated
mixing matrix A. Note the similarity of these features to those obtained from standard image data. In
addition, these exhibit various degrees of binocularity and varying relative positions and phases.
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Figure 15: Ocular dominance histogram of the ICA features. For each pair, we cal-
culated the value of (‖aleft‖ − ‖aright‖)/(‖aleft‖ + ‖aright‖), and used the bin boundaries
[−0.85,−0.5,−0.15,0.15,0.5,0.85] as suggested in (Shouval et al., 1996). Although many units where
quite monocular (as can be seen from Figure 14), no units fell into bins 1 or 7. This histogram is quite
dependent on the sampling window around fi xation points, as discussed in the main text.
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‘Explaining away’
Solutions may be computed by a network 
of leaky integrators and threshold units

(Rozell et al. 2008)



‘explaining away’ explains nCRF effects
Lee et al. (2007), Zhu & Rozell (2010)
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Figure 6: Rozell.
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Energy-based models

E(x) =
M�

i=1

αi log

�
1 +

(Ji x)2

2

�

Osindero, Welling and Hinton (2005)

P (x) =
1

Z
e−E(x)
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Figure 2: Functions f(x) = 1/(1 + |x|β) for different values of β.

the distribution of complex cell outputs and the way they are penalized, the model ought
to position simple cells that have correlated activities near to each other. In doing so,
the model can escape the central limit theorem because the simple cell outputs that are
being pooled are no longer independent. Consequently, the pattern of violations that
arises is a better match to the pattern of violations which one would expect from the
penalising energy function.

Another way to understand the pressure towards topography is to ask how an indi-
vidual simple cell should be connected to the complex cells in order to minimize the
total cost caused by the simple cell’s outputs on real data. If the simple cell is connected
to complex cells that already receive inputs from the simple cell’s neighbors in position
and spatial frequency, the images that cause the simple cell to make a big contribution
will typically be those in which the complex cells that it excites are already active, so
its additional contribution to the energy will be small because of the gentle slope in the
heavy tails of the cost function. Hence, since complex cells locally pool simple cells,
local similarity of filters is expected to emerge.

2.5 Further Extensions To The Basic PoT Model
The parameters {αi} in the definition of the PoT model control the “sparseness” of the
activities of the complex and simple cells. For large values of α, the PoT model will
resemble more and more a Gaussian distribution, while for small values there is a very
sharp peak at zero in the distribution which decays very quickly into “fat” tails.

In the HPoT model, the complex cell activities, z, are the result of linearly combin-
ing the (squared) outputs simple cells, y = Jx. The squaring operation is a somewhat
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Figure 3: Learnt filters shown in the raw data space. Each small square represents
a filter vector, plotted as an image. The gray scale of each filter display has been
(symmetrically) scaled to saturate at the maximum absolute weight value. (A) Random
subset of filters learnt in a complete PoT model. (B) Random subset of filters learnt in a
complete ICA model. (C) Random subset of filters learnt in a 1.7× overcomplete PoT
model. (D) Random subset of filters learnt in a 2.4× overcomplete PoT model.
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