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Machine Learning’s Successes

* Computer Vision:
— Image inpainting/denoising, segmentation
— object recognition/detection, scene understanding

* Information Retrieval / NLP:
— Text, audio, and image retrieval
— Parsing, machine translation, text analysis

» Speech processing:
— Speech recognition, voice identification

* Robotics:
— Autonomous car driving, planning, control

* Computational Biology

* Cognitive Science.



Mining for Structure

Massive increase in both computational power and the amount of
data available from web, video cameras, laboratory measurements.
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support inferences and discover
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Mostly Unlabeled

* Develop statistical models that can discover underlying structure, cause, or
statistical correlation from data in unsupervised or semi-supervised way.
* Multiple application domains.



Mining for Structure

Massive increase in both computational power and the amount of
data available from web, video cameras, laboratory measurements.
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* Develop statistical models that can discover underlying structure, cause, or
statistical correlation from data in unsupervised or semi-supervised way.
* Multiple application domains.
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Deep Generative Model

Deep Boltzmann Machine Gaussian-Bernoulli Markov
Random Field

> 12,000 Latent
Variables

Model P(image)

96 by 96
images

24,000 Training Images
Stereo pair 'ning 5

(Salakhutdinov, 2008; Salakhutdinov & Hinton, Al & Statistics 2009)



Deep Generative Model

Sanskrit Model P(image)
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25,000 characters from 50
alphabets around the world.

* 3,000 hidden variables

* 784 observed variables
(28 by 28 images)

* Over 2 million parameters

Bernoulli Markov Random Field



Deep Generative Model

Conditional
Simulation

P(image | partial image)

Bernoulli Markov Random Field



Deep Generative Model

Conditional
Simulation

Why so difficult?
28

28
. 928 X28 nossible images!

P(image | partial image)

Bernoulli Markov Random Field



Deep Generative Model

Model P(document) Reuters dataset: 804,414
hewswire stories: unsupervised
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(Hinton & Salakhutdinov, Science 2006)



Talk Roadmap
Part 1: Deep Networks

* Introduction, Graphical Models.

e Restricted Boltzmann Machines:
Learning low-level features.

* Deep Belief Networks: Learning
Part-based Hierarchies.

Part 2: Deep Boltzmann Machines.

* Inference and Learning
 Advanced Deep Models



Inference Problem

* Given a dataset D = {xy, 22, ..., 2, }

B Rule:
ayes Ruie P(D\Q) Likelihood function

P(DIO)PO)  p(y)
P(D)

Prior probability of parameters

P(0|D) =

P(9|D) Posterior distribution over
parameters

* Computing posterior distribution is known as inference problem.

However,

P(D) = / P(D|0)P(6)d0

* This integral can be very high-dimensional and difficult to compute.



Prediction

P(D|6) Likelihood function
P(DI)P()  p(p
P(D)

Prior probability of parameters

P(0|D) =

P(9|D) Posterior distribution over
parameters

* Prediction: Given data, computing conditional probability of a
new data point x* requires computing the following integral:

P(z7|D)

/ P(z*|0) P(6] D)do
= Ep@p)|P(z7]0)]
which is sometimes called predictive distribution.

* Computing predictive distribution requires posterior.



Computational Challenges

* Computing marginal likelihoods often requires computing very
high-dimensional integrals.

* Computing posterior distributions (and hence predictive
distributions) is often analytically intractable.

* Next: Graphical Models.



Graphical Models

Graphical Models: Powerful framework for representing dependency
structure between random variables.

a * The joint probability distribution over a set of
b random variables.

* The graph contains a set of nodes (vertices) that
represent random variables, and a set of links

¢ (edges) that represent dependencies between
those random variables.

* The joint distribution over all random variables decomposes into a product
of factors, where each factor depends on a subset of the variables.

Two type of graphical models:
* Directed (Bayesian networks)
* Undirected (Markov random fields, Boltzmann machines)

Hybrid graphical models that combine directed and undirected models, such
as Deep Belief Networks, Hierarchical-Deep Models.



Directed Graphical Models

Directed graphs are useful for expressing causal relationships between
random variables.

* The joint distribution defined by the graph is given
by the product of a conditional distribution for each
node conditioned on its parents.

p(x) = | [ p(zxlpay)

* For example, the joint distribution over x1,..,x7
factorizes:

p(X) — p(xl)p($2)p($3)p($4|ﬂf17 L2, $3)p($5\$1, $3)p($6|$4)p($7|$4, 2175)

Directed acyclic graphs, or DAGs.



Directed Graphical Models

Example: Generative model of an image:

Object  Position Orientation * Object identity (discrete variable) and the
position and orientation (continuous variables)
have independent prior probabilities.

* The image has a probability distribution that
depends on the object identity, position, and

Image orientation (likelihood function).

The joint distribution:
P(Im,Ob, Po,Or) = P(Im|Ob, Po, Or)P(Ob)P(Po)P(Or)
N N J

Y Y
Likelihood Prior

Inference: Computing posterior:

P(Ob, Po,Or|Im) = P(Im|Ob, Po,Or)P(Ob)P(Po)P(Or)

P(Im)

Marginal likelihood: Often difficult to compute



Popular Models

Latent Dirichlet Allocation

Ol Pr(topic | doc)

o &

320,
I Pr(word | topic)

* One of the popular models for
modeling word count vectors.
We will see this model later.

Probabilistic Matrix Factorization
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* One of the popular models for
collaborative filtering applications.
Part of the winning solution in the
Netflix contest.



Bayesian Matrix Factorization

e Let us first look at some examples.

User
Features

1234567 ..
1|5 3 71 .. I
2 374732 .. v
3
4 kMovie
2 R ~ U Features
7

* We have N users, M movies, and integer rating values from 1 to K.

* Let r; be the rating of user i for movie j, and U € R~ N and V € RP* M pe
latent user and movie feature matrices:

R~U'V.
e Our goal is to predict missing values (missing ratings).

(Salakhutdinov & Mnih, ICML 2008)



Bayesian Matrix Factorization

e We can define a probabilistic bilinear model with Gaussian observation noise:

Oty Oy
l l p(re| U, V,0%) = N (ry|ui v, 0%).
@) @)
| | e We can place Gaussian priors over latent variables:
@ @ N
\ > p(U‘,uUaAU) :HN(u’L‘:uUaA[_]l)?
LM i=1,...,N

p(V]py,Ay) = H (v;]pv, AGY).

e Hierarchical Prior: introduce Gaussian-Wishart priors over the user and movie
hyper-parameters:

= {pv,Av}, Ov ={puv,Av}.



Bayesian Matrix Factorization
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Predictive Distribution

* Consider predicting a rating rij;” for user i and query movie j:

p(rf;|R) = / / p(r|us, v;)p(U, V, O, O | R){U, V}d{Oy, Ov'}

Posterior over parameters and hyperparameters

e Exact evaluation of this predictive distribution is analytically intractable.

e Posterior distribution over parameters and hyper-parameters is complicated
and does not have a closed-form expression.

e Need to approximate.

* One option would be to approximate the posterior using factorized
distribution and use variational framework.

¢ Alternative would be to resort to Monte Carlo methods.



Markov Random Fields
c p(x) = 3 [[ éc(ec)
C

A B  Each potential function is a mapping from joint
configurations of random variables in a clique to non-
negative real numbers.

* The choice of potential functions is not restricted to

D having specific probabilistic interpretations.

Potential functions are often represented as exponentials:

— %Hqﬁo(xc) = —eXp ZE T.)) = —eXP( E(x))
C

\ J
Y
where E(x) is called an energy function. Boltzmann distribution

* Suppose x is a binary random vector with &; € {+1, —1} :
e If x is 100-dimensional, we need to sum over 2100 terms!

Computing Z is often very hard. This represents a major limitation of undirected models.



Markov Random Fields
c p(x) = 3 [[ éc(ec)
C

A B  Each potential function is a mapping from joint
configurations of random variables in a clique to non-
negative real numbers.

* The choice of potential functions is not restricted to

D having specific probabilistic interpretations.

Potential functions are often represented as exponentials:

— %Hqﬁo(xc) = —eXp ZE T.)) = —eXP( E(x))
C

\ J
Y
where E(x) is called an energy function. Boltzmann distribution

Compare to computing posterior:
P(8|D) = pipyP(D|0)P(6) where P(D)

1’(9)

/ P(D,0)dd



Maximum Likelihood Learning

Consider binary pairwise MRF:

Py(x) = 229) exp ( Z rixil;; + szez)

ijEE =%

Given a set of i.i.d. training examples
D = {xW x@ .. %M1, wewantto learn
model parameters 6 .

N
Maximize log-likelihood objective: L(6) = % Z log PG(X(n))
n=1

Derivative of the log-likelihood:

oL(0) 1 (n) (n)
agij — N Z[xz «Tj ] - Z[%’zmjpg(x)] = EPdata[xixj] - Epe [xzajj]

mn X
1\ )
Y
Difficult to compute: exponentially many

configurations




MRFs with Latent Variables

For many interesting real-world problems, we need to introduce hidden
or latent variables.

* Our random variables will contain both visible
and hidden variables x=(v,h).

* Probability of observed input is given by
marginalizing out the states of hidden variables:

p(v) = = 3" exp(~E(v. b))

h

* In general computing both partition function
and summation over hiddens will be
intractable, except for special cases.

* Parameter learning becomes a very
challenging task.

Deep Networks have to deal with this intractability.



Inference Problem

* For most situations, we will be interested in evaluating expectations (for
example in order to make predictions):

p(e) O B = [ fepEds

where the integral will be replaced with
summation in case of discrete variables.

— >
/ ’
. . . _ (=)
* We will often use the following notation: p(z) = —
* We can evaluate p(z) pointwise but cannot evaluate Z.

1
- Posterior distribution: p(6|D) = ——p(D|0)p(H).
| istribu p( | ) p(D>P( | )P( )

1

- Markov Random Fields: p(x) = = exp(—FE(x)).



Variational Inference

e Approximate intractable distribution P(6|D) with simpler, tractable
distribution Q(4).

InP(D) = ln/ (D|0)P(0)do = ln/Q

P(D, 1
> /Q QdQ—/Q 1npD9d9—I—/Q In (Q)dQ
\ J
Y .
\ YEntropy Functional y

Variational Lower Bound

= In P(D) — KL(Q(9)||P(6|D)

where KL(Q||P) is a Kullback-Leibler divergence —a non-symmetric measure
of the difference between two distributions Q and P:

KL(Q||P) = /Q(x) In gggd@“



Variational Inference
e Approximate intractable distribution P(D|6) with simpler, tractable
distribution Q(4).

¢ VVariational Lower-bound:

In P(D) > In P(D) — KL(Q(8)||P(6|D))

* The goal of variational inference is to maximize the variational lower-bound
with respect to approximate Q distribution, i.e minimize the KL term.



Mean-Field Approximation

* We can choose a fully factorized distribution: Q(6 H Qi (0
This is known as a mean-field approximation.

* The variational lower-bound takes form:

L(Q) = /Q dO—/Q lnpD9d9+/Q ln%de
1
= [ Q,(0 llnPDQHQZ d@]e +Z Qi (0 92’
Joso[sranamalos = fooncg
Y

iz [hl P(Dv @)]

* Suppose that we keep {Q;;} fixed and maximize the bound w.r.t. all
possible forms for the distribution Q;(6;) .



Mean-Field Approximation

1

The original distribution (yellow), along
0.8t . . 4.
with Laplace (red), and variational
B6r (green) approximations.
0.4}
0.2}
0
-2 -1 0 1 2 3 4

e By maximizing the bound, we obtain a general form:

_exp (Eizj[In P(D,0)])
J exp (Eiz;[In P(D, 6)])db;

Q7 (05)

* Iterative procedure: Initialize all () ; (Hj) and then iterate through the factors
replacing each in turn with a revised estimate.

e Convergence is guaranteed (see Bishop, chapter 10).



Talk Roadmap
Part 1: Deep Networks

* Introduction, Graphical Models.

e Restricted Boltzmann Machines:
Learning low-level features.

* Deep Belief Networks: Learning
Part-based Hierarchies.

Part 2: Deep Boltzmann Machines.

* Inference and Learning
 Advanced Deep Models



Restricted Boltzmann Machines

hidden variables

Bipartite  Stochastic binary visible variables v € {0, 1}”
Structure  5re connected to stochastic binary hidden
variables h € {0,1}*.

DS
R
vV ';\

24\

N

Image visible variables

The energy of the joint configuration:

E(V,h; 9) = — ZWijvz’hj — szvz — Zajhj
1] 7

J

6 = {W,a,b} model parameters.

Probability of the joint configuration is given by the Boltzmann distribution:

1 1 ok T
Py(v,h) = Z(0) exp(—E(v,h;Q)) — %HGWW ihj Heb, lHe ik
J

i N~

Z(Q) _ Z exp ( . E(V, h; 9)) partition function potential functions
h,v

Markov random fields, Boltzmann machines, log-linear models.



Restricted Boltzmann Machines

hidden variables

Bipartite
Structure

()
AN
AN

\

Image visible variables

Product of Experts formulation.

The joint distribution is given by:

1
Po(v,h) = o5 exp (Y Wijuihy + 3 bivi + > ajhy)
ij i J

where the undirected edges in the graphical model represent {Ww} :

Marginalizing over the states of hidden variables:

P@(V) = Z PQ(V, h) = % H exp(bivi) H (1 + eXp(CLj + Z szvz)>
h 0 J \ g y
Y

Product of experts

Markov random fields, Boltzmann machines, log-linear models.



Restricted Boltzmann Machines

hidden variables

Bipartite . _ _
structure  Restricted: No interaction between

hidden variables

/

Inferring the distribution over the
hidden variables is easy:

P(alv) = [[ P(hilv) P(h; =1}v) = :
X J

Image visible variables

1 + exp(— Zz Wij’Uz' — CLj)

Factorizes: Easy to compute
Similarly:

P(vih) = [] P(oib) P(w: = 1]h) = 1

1+ exp(— Zj Wz’jhj — bz)

Markov random fields, Boltzmann machines, log-linear models.



Learning Features

Observed Data Learned W: “edges”
Subset of 25,000 characters Subset of 1000 features

Most hidden
New Image: p(h7 = 1|v) variables are off

| |
m = 0(0.99 X i + 0.97 x - + 0.82 xn )

1 Logistic Function: Suitable for
Itexp(=z)  modeling binary images

as P(h|v) =10, 0, 0.82, 0, 0, 0.99, 0,0 ... |

o(x) =

Represent:




Model Learning

1
Py(v) = Z00) Z exp [VTWh +a'h+b'v
h

hidden variables

h \. C )
N\
\\/,/’A\\' Given a set of i.i.d. training examples
W \ K
/@%Q"A‘Q D = {v) v® vV, wewanttolearn
/‘g” ’/“q model parameters § = {W, a, b}.

\

Image visible variables

Maximize (penalized) log-likelihood objective:

N
1 A
L(9) = N E log Py (v ))—NHWH%

n=1
Derivative of the log-likelihood: Regularization
L) 1 <~ 0 G, 2\
= — 1 M TWh4a h+b v™] |- log Z(0)—==W;;
W N;5’Wij og(gh:exp v Wh+a'h+b' v™] I og Z(0) NVVL7
2
= Epuualvihy] = Bry[vih] = Wi

Difficult to compute: exponentially many

Piata(v,h;0) = P(h[v;0) Piata(V) configurations

1
Piata(V) = + > S(v—v™)



Model Learning

1
Py(v) = Z00) Z exp [VTWh +a'h+b'v
h

hidden variables

Given a set of i.i.d. training examples
D = {v) v® vV, wewanttolearn
model parameters § = {W, a, b}.

Maximize (penalized) log-likelihood objective:

N
1 A
L(9) = N E log Py (v ))—NHWH%

n=1

visible variables

Image

Derivative of the log-likelihood:

OL(0) 2
S, = EPaaa[Viltj] = Br,[vihy] — = Wi
i
Approximate maximum likelihood learning:
Contrastive Divergence (Hinton 2000) Pseudo Likelihood (Besag 1977)
MCMC-MLE estimator (Geyer 1991) Composite Likelihoods (Lindsay, 1988; Varin 2008)
Tempered MCMC Adaptive MCMC

(Salakhutdinov, NIPS 2009) (Salakhutdinov, ICML 2010)



Contrastive Divergence

Run Markov chain for a few steps (e.g. one step):

P(h|v)

hOO OO OO

v OOO OOO OOO

Data Reconstructed Data (V‘h
1
hiv) = \v) P(h: =1 —
( ‘ ) ‘_j__ ( J‘ ) ( ] ‘V) 1—|—€Xp(— Zz Wz’jvi_aj)
1
P(vh) = [] P(vilh) P(v; = 1]h) =

1+ exp(—>_; Wijh; — b;)

)
Update model parameters:
AWi;j = Ep,,,,[vik;] — Ep [vih;]
Hinton, Neural Computation 2002



RBMs for Images

Gaussian-Bernoulli RBM: 1
Pg(V,h) = Z(@)

exp(—E(v, h; 0))

Define energy functions for
various data modalities:

L0\ — (vi — b;)? ZW Uj
Image visible variables E’(V’ h’ 9> o Z 202 o ijhj o o 2 :ajhj
( ’l] (/

i J
1 (il?—bZ—O'ZZWZh)Q
P(v; = z|/h) = Noro exp <— 552 77 Gaussian
1 .
P(h; =1]v) = — ‘ Bernoulli

(Salakhutdinov & Hinton, NIPS 2007)



RBMs for Images

Gaussian-Bernoulli RBM:

Interpretation: Mixture of exponential
number of Gaussians

Image visible variables P9 (V) — Z P9 (V|h)P9(h)7

h

where

Py(h) = / Py(v,h)dv is an implicit prior, and

1 (.I—bz—O'zZWZh)Q
P(v; = z|h) = Ty, P (— 50 e Gaussian



RBMs for Images and Text

Images: Gaussian-Bernoulli RBM

4 million unlabelled images

Reuters dataset:
804,414 unlabeled W)
newswire stories

Bag-of-Words

russian
russia
moscow
yeltsin
soviet

Learned features (out of 10,000)

Learned features: ‘topics”

clinton
house
president
bill
congress

computer
system
product
software
develop

trade
country
import
world
economy

stock
wall
street
point
dow

(Salakhutdinov & Hinton SIGIR 2007, NIPS 2010)



Learned first-layer bases
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Lee et.al., NIPS 2009



Comparison of bases to phonemes

“oy “al” uen

Example phones ("oy") Example phones ("el") Example phones ("s")

T

Phoneme

B
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First layer bases First layer bases First Iayer bases
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Slide credit: Honglak Lee

First layer bases
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Collaborative Filtering

1
Py(v,h) = Z(0) exp (ZWzﬁvfh] + bevf + Zajhj)
J

ijk ik

Bernoulli hidden: user preferences

Learned features: ‘genre”

Fahrenheit 9/11 Independence Day
Bowling for Columbine The Day After Tomorrow
_ o _ The People vs. Larry Flynt Con Air
Multinomial visible: user ratings Canadian Bacon Men in Black Il
] La Dolce Vita Men in Black
Netflix dataset:
480,189 users |:> Friday the 13th Scary Movie
. The Texas Chainsaw Massacre Naked Gun
17'770 mo.\/l.es ) Children of the Corn Hot Shots!
Over 100 million ratings Child's Play American Pie
The Return of Michael Myers Police Academy

State-of-the-art performance
on the Netflix dataset.

Relates to Probabilistic Matrix Factorization
(Salakhutdinov & Mnih ICML 2007)



Multiple Application Domains

Natural Images
Text/Documents
Collaborative Filtering / Matrix Factorization

Video (Langford, Salakhutdinov and Zhang, ICML 2009)

Motion Capture (Taylor et.al. NIPS 2007)
Speech Perception (Dahl et. al. NIPS 2010, Lee et.al. NIPS 2010)

Same learning algorithm --
multiple input domains.

Limitations on the types of structure that can be
represented by a single layer of low-level features!



Talk Roadmap
Part 1: Deep Networks

* Introduction, Graphical Models.

e Restricted Boltzmann Machines:
Learning low-level features.

* Deep Belief Networks: Learning
Part-based Hierarchies.

Part 2: Deep Boltzmann Machines.

* Inference and Learning
 Advanced Deep Models



Deep Belief Network

Low-level features:
Edges

N

y
o/
,/f&\';!h Q’/

Built from unlabeled inputs.

Input: Pixels

(Hinton et.al. Neural Computation 2006)



Deep Belief Network

Internal representations capture
higher-order statistical structure

Higher-level features:
Combination of edges

Low-level features:
Edges

//
UV

WG
AR

Built from unlabeled inputs.

Input: Pixels

(Hinton et.al. Neural Computation 2006)



Deep Belief Network

The joint probability
distribution factorizes:

Deep Belief Network

P(v,h' h* h?)
> RBM
= P(v|h")P(h'|h?)P(h? h)
\. J J
Y Y
Sigmoid Sigmoid Belief RBM
Belief Network
Network
P(h* h*) = ! exp [h2T W3h?]

Z(W3)

1
hilh?)  P(hj =1]h?) =
) 14 exp (= X, W3

1
P(vih') = || P(v:|h! P(v; =1|h') =
(vih?) H (vi[h™) 1—|—exp(—2ngjhjl)




Deep Belief Network

The joint probability

Deep Belief Network
P 5€ll W distribution factorizes:

l .‘\‘.’/‘. RBM P(v, b, b b)

R aNA P <
| XTRKX w2 Layerwise Pretraining:
Si id
I{:“‘.’s“! Bg:g?l e Learn and freeze 15t layer RBM
N Network  « Treat inferred values P(h!|v)
M"\‘ as the data for training 2"d-
@ @ layer RBM.
* Learn and freeze 2" layer
RBM.

Unsupervised Feature Learning. . Proceed to the next layer



Layerwise Pretraining

Deep Belief Network

Efficient layer-wise pretraining

algorithm.
Pg(hl V)
_ 1 > 1 ’
log P@(V) = Z PH(Va h ) = ZQ¢(h lv) log Qs(hl[v)
h! \\h J
Y
Variational Lower Bound

= 3 Qulb'v) | tog Po(vn’s Wl)J FH(Qs0 V)

h!t \{

Y

Likelihood term Entropy functional

- Z Qo (h'|v)log Po(h'; W?)

hl |\ J
Y

Similar arguments for pretraining a Replace with a
. second layer RBM
Deep Boltzmann machine




Layerwise Pretraining

Deep Belief Network

Efficient layer-wise pretraining

algorithm.
Pg(hl V)
_ 1 > 1 ’
log P@(V) = Z PH(Va h ) = Z:Q¢(h lv) log Qs(hl[v)
h! \\h J
Y
Variational Lower Bound

~

:gfLayerwise pretraining [V

improves variational  fonal
_lower bound y

hl |\ J
Y

Similar arguments for pretraining a Replace with a
. second layer RBM
Deep Boltzmann machine




DBNs for Classification

| 2000 ‘
T ;
| 500 | RBM Softmax Output
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, [10] [10]
[ 500 | | LA W, +ey
I W, 2000 2000
: y' N T y' N
| 500 | : W Wi+e,
RBM
****************************************** | 500 500
777777777777777777777777777777777777777777 W%‘ Wz +€y
| 500 | 1 | 500 500
I Wl i T Wl T Wl +€1
RBM; . .

Pretraining Unrolling Fine—tuning
 After layer-by-layer unsupervised pretraining, discriminative fine-tuning
by backpropagation achieves an error rate of 1.2% on MNIST. SVM’s get

1.4% and randomly initialized backprop gets 1.6%.

* Clearly unsupervised learning helps generalization. It ensures that most of
the information in the weights comes from modeling the input data.

(Hinton and Salakhutdinov, Science 2006)



DBNs for Regression

Predicting the orientation of a face patch

Training Data
-22.07 3299 -41.15 6638 27.49

LIRSS " AR TR e

Training Data: 1000 face patches of Test Data: 1000 face patches of
30 training people. 10 new people.

Test Data

Regression Task: predict orientation of a new face.

Gaussian Processes with spherical Gaussian kernel achieves a RMSE
(root mean squared error) of 16.33 degree.

(Salakhutdinov and Hinton, NIPS 2007)



DBNs for Regression

Training Data
-22.07 3299 -41.15 6638 2749 Unlabeled

Pt N R

Additional Unlabeled Training Data: 12000 face patches from 30
training people.

* Pretrain a stack of RBMs: 784-1000-1000-1000.

* Features were extracted with no idea of the final task.

The same GP on the top-level features: RMSE: 11.22

GP with fine-tuned covariance Gaussian kernel: RMSE: 6.42

Standard GP without using DBNs: RMSE: 16.33



Deep Autoencoders

Decoder

Pretraining Unrolling Fine-tuning



Information Retrieval

European Community ) _
Interbank Markets Monetary/Economic 2-D LSA Space

.
e &0, o
oe

.': 7%, 3
Leading R Tt % Legalludicial
Economic - g Fedo L
Indicators if.,,} =
. - &,
. . . -R . ?."?' .
e
© Rk Government

Accounts/ Yy
Earnings

Borrowings

* The Reuters Corpus Volume Il contains 804,414 neWswire stories
(randomly split into 402,207 training and 402,207 test).

» “Bag-of-words” representation: each article is represented as a vector containing
the counts of the most frequently used 2000 words in the training set.

(Hinton and Salakhutdinov, Science 2006)



Information Retrieval

Reuters Dataset

Precision (%)
w
o

N
o

== Deep Generative Model
-©-Latent Sematic Analysis |
—B-Latent Dirichlet Allocation

0.1

0.4

1.6

6.4 25 100
Recall (%)

Reuters dataset: 804,414
newswire stories.

Deep generative model significantly
outperforms LSA and LDA topic models



Semantic Hashing

European Community 0 002 Qo
H ©]
Monetary/Economic SR o c%®%%®7 %9

Address Space Disasters and

Accidents

o s Semantically
\ Similar
Documents

’
’
’

Semantic v
Hashing Government
Function Borrowing
X
£
X
Document

Accounts/Earnings

* Learn to map documents into semantic 20-D binary codes.

* Retrieve similar documents stored at the nearby addresses with no
search at all.

(Salakhutdinov and Hinton, SIGIR 2007)



Searching Large Image Database
using Binary Codes

* Map images into binary codes for fast retrieval.
Input image 30-RBM

* Small Codes, Torralba, Fergus, Weiss, CVPR 2008

* Spectral Hashing, Y. Weiss, A. Torralba, R. Fergus, NIPS 2008
* Kulis and Darrell, NIPS 2009, Gong and Lazebnik, CVPR 20111
* Norouzi and Fleet, ICML 2011,



Learning Similarity Measures

Learning Similarity Metric

D[y ¥’ 1

 Learn a nonlinear transformation of the input space.

* Optimize to make KNN perform well in the low-dimensional feature
space

(Salakhutdinov and Hinton, Al and Statistics 2007)



Compare to Other Approaches

Learning Similarity Metric
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Talk Roadmap
Part 1: Deep Networks

* Introduction, Graphical Models.

e Restricted Boltzmann Machines:
Learning low-level features.

* Deep Belief Networks: Learning
Part-based Hierarchies.

Part 2: Deep Boltzmann Machines.

* Inference and Learning
 Advanced Deep Models



DBNs vs. DBMs

Deep Belief Network Deep Boltzmann Machine

DBNs are hybrid models:
* Inference in DBNs is problematic due to explaining away.
* Only greedy pretrainig, no joint optimization over all layers.
* Approximate inference is feed-forward: no bottom-up and top-down.

Introduce a new class of models called Deep Boltzmann Machines.



Mathematical Formulation

P*(v) 1 Trrrl11 1T /21,2 2T 11,313
P, = = —— W-h h- W-<h h“ W-h
(V) Z(0) Z(0) hl%;hg exp [V — +

Deep Boltzmann Machine 0 = {W' W= W=} model parameters

 Dependencies between hidden variables.
e All connections are undirected.

e Bottom-up and Top-down:

P(h? =1h',h3) =0 ( S Whh+ > W;fmhfn>
7 m

7 ™

Bottom-up Top-Down

Input Unlike many existing feed-forward models: ConvNet (LeCun),
HMAX (Poggio et.al.), Deep Belief Nets (Hinton et.al.)



Mathematical Formulation

P*(v) 1 Trrrl11 1T /21,2 2T 11,313
P, = = —— W-h h- W-<h h“ W-h
(V) Z(0) Z(0) hl%;hg exp [V + +

Deep Boltzmann Machine
* Conditional Distributions:

P(h;:uv,h?):a(ZWigvz Z khQ)
P(h} = 1|h',h?) = (Z kh1+Zka )
P(h3 =1]h?) = (Zkah2>

* Note that exact computation of
Input P(h',h% h3|v) isintractable.



Mathematical Formulation

P*(v) 1 [T 11.1 1T /21,2 2T 11,313
= —— exp |[v. W h"+h" W*h*+h® W-h
Z(6) ~ Z(0) Z

PQ(V) =

Neural Network

Deep Boltzmann Machine Deep Belief Network

Input Unlike many existing feed-forward models: ConvNet (LeCun),
HMAX (Poggio), Deep Belief Nets (Hinton)



Mathematical Formulation

p* 1
Vo1 S e [valhl +h!' W2h? 4 hQTW3h3]

Fp(v) = zO)  Z(0) h!,h? h3

Neural Network

Deep Boltzmann Machine Deep Belief Network

9JUaJajUul -

HMAX (Poggio), Deep Belief Nets (Hinton)



Mathematical Formulation

P*(v) 1 [T 1.1 1T /21,2 2T 11,313
= = —— exp |[v. W h"+h" W*h*+h® W-h
Z(6) ~ Z(0) Z

PQ(V)

Deep Boltzmann Machine O = {I/Vl7 W27 W3} model parameters
 Dependencies between hidden variables.

Maximum likelihood learning:

0log Py(v)

oW1 [Vth] — Ep, [Vhl—r]

— Ep

data

Problem: Both expectations are
intractable!

Learning rule for undirected graphical models:
MRFs, CRFs, Factor graphs.



Previous Work

Many approaches for learning Boltzmann machines have been
proposed over the last 20 years:

* Hinton and Sejnowski (1983),

* Peterson and Anderson (1987) . .
* Galland (1991) Real-world applications — thousands

* Kappen and Rodriguez (1998) of hidden and observed variables

* Lawrence, Bishop, and Jordan (1998) ith milli f t
« Tanaka (1998) witn miliions or paramerters.

* Welling and Hinton (2002)
* Zhu and Liu (2002)

* Welling and Teh (2003)

* Yasuda and Tanaka (2009)

Many of the previous approaches were not successful for learning
general Boltzmann machines with hidden variables.

Algorithms based on Contrastive Divergence, Score Matching, Pseudo-
Likelihood, Composite Likelihood, MCMC-MLE, Piecewise Learning, cannot
handle multiple layers of hidden variables.



New Learning Algorithm

Posterior Inference Simulate from the Model

Unconditional

Approximate Approximate the m
conditional joint distribution

Pdata(h|v) Pmodel(ha V)

(Salakhutdinov, 2008; NIPS 2009)



New Learning Algorithm

Posterior Inference Simulate from the Model

Approximate Approximate the
conditional joint distribution

Pdata(h|v) Pmodel(ha V)

T
EPdata [Vh—r] Epmodel [Vh
Data-dependent Data-independe
(N J

Mgccch /

\
R\ % v




New Learning Algorithm

Posterior Inference Simulate from the Model

Markov Chain
[I\/Iean-FieId} _Monte Carlo

- | ]
EPdata [Vh—r] Epmodel Vh—l_
Data-dependent Data-independeht M
(N J
Y B
Match

.I; Key Idea of Our Approach:

Data-dependent: Variational Inference, mean-field theory
Data-independent: Stochastic Approximation, MCMC based



Sampling from DBMs

Sampling from two-hidden layer DBM by running a Markov chain:

h2|h1

Q00 | OOO OOO
7 \P (h'|v, h/,

r::::.?;z'y b OO OO OO
005 ooc OOO

Sample

1+ exp(—>_, VV1 v; — Y. W2 .h?)

gt mgtty
1

1+exp(—>_,, Waih,)

m T mjg'm

1
14 exp(=>_,, Wi, hi)

P(h}, = 1|v, h?)

P(h; =1/h') =

P(v; = 1|ht) =



Stochastic Approximation

Time t=1 t=2 t=3

h2

Update 65

) — @ )

Update 64
) — G

X1 T91 (X1 %Xo) Xo v ng (X2 %Xl) X3 v T93 (X3 %Xg)
Update 6, and x; sequentially, where x = {v,h', h?}
* Generate x; ~ Ty, (Xt <—Xt_1) by simulating from a Markov chain

that leaves Py, invariant (e.g. Gibbs or M-H sampler)

* Update 0; by replacing intractable Epet [VhT] with a point
estimate [Vth;r]

In practice we simulate several Markov chains in parallel.

Robbins and Monro, Ann. Math. Stats, 1957
L. Younes, Probability Theory 1989



Stochastic Approximation

Update rule decomposes:

M
1 m m T
bevs = O+ (Br 0T <, 0] ) (B, b= D v )

m=1
\ J L _J

Y Y
True gradient Noise term €¢

Almost sure convergence guarantees as learning rate a; — 0

Problem: High-dimensional data: [ n13rkov Chain
the energy landscape is highly

, Monte Carlo
multimodal .

Key insight: The transition operator can be
any valid transition operator — Tempered
Transitions, Parallel/Simulated Tempering.

Connections to the theory of stochastic approximation and adaptive MCMC.



Variational Inference

Approximate intractable distribution Py(h|v) with simpler, tractable
distribution @, (h|v):
Py(h,v)

log Py(v logZPghv logZQM h|v) 0.0l
7]

Posterij ference P (h V)
> (h|v)1
/@\ 2 Qulbivlos 5 1S
Mean-Field 1
= Qu(hv)log P; (h,v) —log Z2(0) + Y _ Qu(h|v)log
h 1\ " h Qu(hfv)

E . v W'h! + h! 'W?2h? + h?' Wih? )
Y

Variational Lower Bound

— log Py(v) — KL(Q,.(b[v)|| P(h[v))

Q(z)

Pl) dz

KL(QIIP) = [ Q(a)log

Minimize KL between approximating and true
distributions with respect to variational parameters 1 .

(Salakhutdinov, 2008; Salakhutdinov & Larochelle, Al & Statistics 2010)



Variational Inference

Approximate intractable distribution P, (h|v) with simpler, tractable
distribution @, (h|v):

KL(Q|P) = / Q) log

log Pp(v) > 18g Pp(v) — KL(Qp(h|v)| \Pe(h\V)Z

Y

Posteri ference oo
/ﬁ Variational Lower Bound
R 4 . 1. . e
: Mean-Field: Choose a fully factorized distribution:
Mean-Field F
Qu(hv) = [ a(h;lv) with g(h; = 1|v) = u;
j=1

E Variational Inference: Maximize the lower bound w.r.t.
Variational parameters 1t

1
Nonlinear fixed- (Zlel Z ’““’f)

point equations: _ U(Z szkﬂgn X Z W méf?)




Variational Inference

Approximate intractable distribution P, (h|v) with simpler, tractable

distribution @, (h|v): Q(z)

KL(Q||P) = /Q(:L') log P(x)dx

log Pp(v) > 1€8§ Pp(v) — KL(Qp(h|v)| \Pe(h\V)Z

Posterior Inference L v
Variational Lower Bound Unconditional Simulation
'y .
ield o o Markov Chain
Mean-Fie 1. Variational Inference: Maximize the lower

Monte Carlo

bound w.r.t. variational parameters

2. MCMC: Apply stochastic approximation

to update model parameters

Almost sure convergence guarantees to an asymptotically
stable point.



Variational Inference

Approximate intractable distribution P, (h|v) with simpler, tractable

distribution @, (h|v): Q(z)

KL(Q||P) = /Q(x) log P(q})dw

log Pp(v) > 18g Pp(v) — KL(Qp(h|v)| \Pe(h\V)z

Y

Posterior Inference L.
Variational Lower Bound Unconditional Simulation

23
Mean-Field

1.V wer Markov Chain
b’ou[ Fast Inference J Mornte Carlo

2. . N
w{ Learning can scale to

_ millions of examples |

Almost sure convergence guarantees to an asymptotically
stable point.




Good Generative Model?

Handwritten Characters
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Handwritten Characters
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Good Generative Model?

Handwritten Characters

Simulated Real Data



Good Generative Model?

Handwritten Characters

Real Data Simulated



Good Generative Model?

Handwritten Characters
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Good Generative Model?

MNIST Handwritten Digit Dataset




Handwriting Recognition

MNIST Dataset Optical Character Recognition
60,000 examples of 10 digits 42,152 examples of 26 English letters

Learning Algorithm Error Learning Algorithm Error
Logistic regression 12.0% Logistic regression 22.14%
K-NN 3.09% K-NN 18.92%
Neural Net (platt 2005) 1.53% Neural Net 14.62%
SVM (Decoste et.al. 2002) 1.40% SVM (Larochelle et.al. 2009) 9.70%
Deep Autoencoder 1.40% Deep Autoencoder 10.05%
(Bengio et. al. 2007) (Bengio et. al. 2007)

Deep Belief Net 1.20% Deep Belief Net 9.68%
(Hinton et. al. 2006) (Larochelle et. al. 2009)

DBM 0.95% DBM 8.40%

Permutation-invariant version.



Generative Model of 3-D Objects

\ = £
%® ||
e\ |8
X [ o
<7k
AN &

24,000 examples, 5 object categories, 5 different objects within each
category, 6 lightning conditions, 9 elevations, 18 azimuths.



3-D Object Recognition

Learning Algorithm Error
Logistic regression 22.5%
K-NN (Lecun 2004) 18.92%
SVM (Bengio & LeCun 2007) 11.6%
Deep Belief Net (Nair & 9.0%
Hinton 2009)

DBM 7.2%

Pattern Completion

Permutation-invariant version.




Spoken Query Detection

630 speaker TIMIT corpus: 3,696 training and 944 test utterances.

10 query keywords were randomly selected and 10 examples of
each keyword were extracted from the training set.

Goal: For each keyword, rank all 944 utterances based on the
utterance’s probability of containing that keyword.

Performance measure: The average equal error rate (EER).

Learning Algorithm AVG EER l
GMM Unsupervised 16.4%
DBM Unsupervised 14.7%
DBM (1% labels) 13.3%
DBM (30% labels) 10.5%
DBM (100% labels) 9.7%

Avg. EER

10.51

D

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Training Ratio

(Yaodong Zhang et.al. ICASSP 2012)



Robust Boltzmann Machines

* Build more complex models that can deal with occlusions or structured

noise. Gaussian RBM, modeling  Binary RBM modeling
clean faces occlusions
A A
g layer || h layer ' N\ \
E = lz (vi = bi)” v Wh—s'U
2 o2 5

)

paJiaju]

i .

1 ., 1 (0 — b;)?
EL AR
Binary pixel-wise Gaussian noise

Mask

Observed

Relates to Le Roux, Heess, Shotton, and Winn,
Neural Computation, 2011

Eslami, Heess, Winn, CVPR 2012 _ _
Tang, Salakhutdinov, and Hinton, CVPR 2012



paJiajul

Robust Boltzmann Machines

Internal States of
RoBM during
learning.

SRPEREE
subjects

Initial 1 3 5 7 9 11
Ground Partially Nearest
truth occluded RoBM Wiener Neighbor

TS

Comparing to Other
Denoising Algorithms



Deep Lambertian Network

Consider More Complex Models: undirected + directed models.

Deep Lambertian Net

\
g layer h layer
U W 3 Deep
{ n @ Undirected
- ]
\EEEE- 2
| I T N
> Directed
v
J
Observed

Combines the elegant properties of the Lambertian model with the Gaussian
RBMs (and Deep Belief Nets, Deep Boltzmann Machines).

Tang, Salakhutdinov, and Hinton, ICML 2012



Lambertian Reflectance Model

* A simple model of the image formation process.

* Albedo is the diffuse reflectivity of a surface, material dependent,
illumination independent

* Images with different illumination can be generated by varying light
directions

Lambertian Reflectance Model

viewer

Liower = a X \ﬂ]ﬁ}cas(@)




Deep Lambertian Networks

Model Details:

Deep Lambertian Net Image Surface  |jght

albedo Normals  source
g layer h layer _ \ l /
. I Iw > PN = [ (vl D)
\ E [. . - a PD 1E€pixels
v Q.
| | 'T acRY NeRY* [cR’
m A P(a) ~ GRBM/(a),
Observed P(N) ~ GRBM(N),

P) ~ N(uA)

Inference: Gibbs sampler.
Learning: Stochastic Approximation



Yale B Extended Face Dataset

38 subjects, ~ 45 images of varying illuminations per subject,
divided into 4 subsets of increasing illumination variations

« 28 subjects for training, 10 (original Yale Database) for testing

* Toronto Face Database is used to pretrain the “albedo DBN”



Deep Lambertian Networks

Yale B Extended Database

One Test Image Two Test Images Face Relighting

a) One test image.



Deep Lambertian Networks

Recognition as function of the number of training images for 10 test
subjects.

Yale B Face Recognition

T T T T T T T

i NN
DBN
0.6 —6— Correlation [
—— SVD
—— D|_N
05 o Q\e___\ .
04r .

Test Error

61

One-Shot

1 | 1 | | 1

. 0 0
Recognition %, 1 > 3 4 5 6 7 8

Number of training images




Generic Objects

 Amsterdam Library of Images (Geusebroek et al. 2005).

* For each object, 10 images taken for training, 5 for testing.




Multi-Modal Input

Learning systems that combine multiple input domains

Images | Text & Language

REUTERS P
AP Associated Press

AN N
2) qx/\\/\f“)

5 00 S
SSET- Y (/)g‘r—;i
N
\ / WIKIPEDIA
The Eree Encyclopedia

Laser scans

Speech&
Audio Lot

Me series

data

Develop learning systems that come
closer to displaying human like intelligence.



Multi-Modal Input

Learning systems that combine multiple input domains

5D A 0000000000000
+3 L 4 +3

0000 0CO00) OO
*+3 *3 +3

\;;.‘ (elele]el0)f 0]e]0]00) ) 0l0)0]0)0)
©@O000) (CO00Y) [OO00Y)

Video Text Speech

it
iy

More robust perception.

Ngiam et.al., ICML 2011 used deep autoencoders (video + speech)

* Guillaumin, Verbeek, and Schmid, CVPR 2011
* Huiskes, Thomee, and Lew, Multimedia Information Retrieval, 2010
* Xing, Yan, and Hauptmann, UAI 2005.



Training Data

camera, jahdakine,
lightpainting,
reflection
doublepaneglass
wowiekazowie

pentax, k10d,
kangarooisland
southaustralia, sa
australia
australiansealion 300mm

sandbanks, lake,
lakeontario, sunset,
walking, beach, purple,
sky, water, clouds,
overtheexcellence

top20butterflies

mickikrimmel,
mickipedia, headshot
<no text>

Samples from the MIR Flickr Dataset - Creative Commons License



Multi-Modal Input

Improve Classification

pentax, k10d, kangarooisland
southaustralia, sa australia ﬁ SEA / NOT SEA

australiansealion 300mm

beach, sea, surf,
strand, shore,

) ove seascape,

sand, ocean, waves

Retrieve data from one modality when queried using data from
another modality

beach, sea, surf,
strand, shore,
wave, seascape,
sand, ocean, waves

Srivastava and Salakhutdinov, 2012



Multi-Modal Deep Boltzmann

Machine
0000000000000
+3 3
eleJele) eleJele)
+3 23
00000 OOOOO
Gaussian RBM OOﬁO@OO OOQO%O Replicated Softmax
Dense Image features Image Text Sparse word counts

Srivastava and Salakhutdinov, 2012



Multi-Modal DBM

* Flickr Data - 1 Million images along with text tags, 25K annotated

Given Tags

pentax, k10d,
kangarooisland,
southaustralia,
sa, australia,
australiansealion,
300mm

Image

<no text>

aheram, 0505
sarahc, moo

unseulpixel,
naturey crap

Generated Tags

beach, sea,
surf, strand,
shore, wave,
seascape,
sand, ocean,
waves

night, lights,
christmas,
nightshot,

nacht, nuit,notte,
longexposure,
noche, nocturna

portrait, bw,
blackandwhite,
woman,
people, faces,
girl,blackwhite,
person, man

fall, autumn,
trees, leaves,
foliage, forest,
woods,
branches,
path

Input Text 2 nearest neighbours to generated
image features
-l

nature, hill

scenery, green
clouds

flower, nature,
green, flowers,
petal, petals, bud

blue, red, art,
artwork, painted,
paint, artistic
surreal, gallery
bleu

bw, blackandwhite,
noiretblanc,
biancoenero
blancoynegro



Recognition Results

* Multimodal Inputs (images + text), 38 classes.

Learning Algorithm Mean Average Precision
Image-text SVM 0.475
Image-text LDA 0.492
Multimodal DBM 0.587

* Unimodal Inputs (images only).

Learning Algorithm Mean Average Precision
Image-SVM 0.375
Image-LDA 0.315
Image DBN 0.452




Retrieval Results

Multimodal Query Top 4 retrieved results

o s

* ed
I

.'.'.: . w =

Wﬂ..,,,r”(: : t”“”

=G : &?‘;..x.g‘
LA e :
hongkong, causewaybay, howell, bridge, genesee, london, uk, night, skyline, edinburgh, arcoiris, fincadehierro,
shoppingcentre, river, rochester, downtown, river, thames, lights, bridge scotland, lluvia, sannicolas,
building, mall building dusk, bank  valencia

-

me, myself, eyes, urban, me, trisha, mynewcamera, me, ofme, pink, prettyinpink,
blue, hair abigfave, fiveflickrfavs lake, field, girl self, selfportrait explored




Pattern Completion

Given a test image, we generate associated text — achieve far better

classification results.

landscape, scenery,
hills,landscapes,
scenic, land,
canyon, roadtrip,
place, tourism

woods,
breathtaking,
hills, scenery,
alone, mist,
fields, bush,
branches

car, engine,
auto, supercar,
ferrari, fast,

gt, jason,
parking,
automobile

sky, clouds,
blue, horizon,
céu, sunset,
hills, twilight,
bluesky,
breathtaking

portrait, black,
white, girl,
expression, lady,
look, blonde,
eyes, gorgeous

sky, clouds
landscape, hills,
scenery, horizon,
fields, landscapes,
scenic, sun

sunset, twilight,
strand, wave,
breathtaking,
horizon, shore,
seascape, surf,
scenery

structure, facade,
place, landmark,
industry,
skyscraper,
tripod, royal,
parking, 1910s

beach, sea,
surf, strand,
shore, wave,
seascape, sand,
ocean, waves

night, city
urban, cityscape
traffic, notte,
skyline, lights,
streets,
skyscraper

sky, blue,
clouds, horizon,
céu,

twilight, azul,
bleu, wave,
sunset

red, rouge,
rosso, rot,
catchycolors,
gift, shiny,
rojo, vivid,
soft



Pattern Completion

blue, art, expression, lady, Jsis::r'c\alllrd?g;t
artwork, artistic look, human, john enéine '
surreal b errari,
N gorgeous, boys, gt, ferrari,
expression, portrait, person, collections
original, artist blonde, sitting german '
gallery, pattems
i breathtaking car, engine
zlijlrss,en twilight, christmastree, auto, fast
breathtaking expression, e
scenery, horizon, newyear ;upercaz,
landscapes, calm experiment e rking
vob. land photowalk, grain, parking
' 1910s automobile
. place, german,
ggx::ls p;)r:a'élals winter, snow, english, john,
macroflowerlovers frozen, frost, o taki
et ' ggcem_ber, cold, t{;z:)thtakmg'
" iver, ice, S,
ilé)sv(\grotlca, floral, inverno, neige cpllectiqns,
video, bill

newyear, video,

fall, breathtaking, 1910s,

expression, video,

leaves, branches, artistic, john, christmastree,
autumn, woods, collections, weird, english, john,
alone, branch, human, magic, weird,gift,
christmastree, frost gorgeous, newyear german,

collections



Model Selection

How to choose the number of layers and the number of hidden units?

More generally, how can we choose between models?

7 ¢
»
2
o

Mixture of Bernoulli’s
Goal: Compare P(v) on the validation P(v) = P(v)*/Z

Need an estimate of partition function Z



Model Selection

MCMC-based algorithm based on Annealed Importance Sampling to
estimate partition function of a DBM model.

1

- (1-5)
Po(v; ) = (5)]30( V) m(v)

Z(1)  Z(B1) Z2(B2) Z(B3) Z(Bg) Z2(1)

Z(0)  Z2(0) Z(B1) Z(B2) Z(Bs) Z(Ba)

Annealing, or Tempering: 1/8 = “temperature”

(Salakhutdinov & Murray, ICML 2008, Salakhutdinov 2008)



Model Selection
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Mixture of Bernoulli’s

MoB, test log-probability: -137.64 nats/digit
DBM, test log-probability: -85.97 nats/digit

Difference of over 50 nats is striking!



Model Selection
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Mixture of Bernoulli’s

DBM samples

We will come back to advanced

MoB, te
DBM, te

MCMC techniques later.

Difference of over 50 nats is striking!



Learning Part-based Hierarchy

! learned from 4 object categories

Object parts.

Combination of edges.

Trained from multiple classes
(cars, faces, motorbikes, airplanes).

Lee et.al., ICML 2009



Learning Hierarchical Representations

Deep Boltzmann Machines:

Learning Hierarchical Structure - | roream
in Features: edges, combination il
of edges. “

* Performs well in many application domains
* Combines bottom and top-down

* Fast Inference: fraction of a second

* Learning scales to millions of examples

Many examples, few categories

Next: Few examples, many categories — One-Shot Learning



One-shot Learning

“zarc” segway”
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How can we learn a novel concept — a high dimensional
statistical object — from few examples.
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(Lake, Salakhutdinov, Gross, Tenenbaum, CogSci 2011)



Traditional Supervised Learning

Motorcycle

Test:
What is this?




Learning to Transfer

Background Knowledge
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Learn novel concept
from one example

Test: T
What is this? w




Learning to Transfer

Background Knowledge

/I\/Iillions of unlabeled images Learn to Transter
- - Knowledge

2

Key problem in computer vision,
speech perception, natural language
. processing, and many other domains.

Some Tabeled images

Learn novel concept
from one example

T e L Test: éz
T 0T S I What is this? @
Elephant Tractor




Thank you

Code for learning RBMs, DBNs, and DBMs is available at:
http://www.utstat.toronto.edu/~rsalakhu/code.html



