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Motivating Questions

Characterize representational power and learning performance.
I What can DL models model? How well?
I Can we bound approximation errors, prove convergence, etc.?

Seek a priori design insights
I What model architecture for what data?
I Can we predict performance?
I What tradeoffs should we make?

Understand representations obtained
I Identifiability
I Transferrability

I’ll describe an algebraic approach to these kinds of problems in
three parts
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Outline

1 Algebraic geometry of tensor networks
Tensors
Tensor Networks
Algebraic geometry

2 Algebraic Description of Graphical Models
Review of GM Defininitions
Algebraic and semialgebraic descriptions
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3 Identifiability, singular learning theory, other perspectives
Identifiability
Singular Learning Theory
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Matrices

T

��

i

j

��

A matrix M = (mij)

represents a linear transformation U→ V

is a 2-way array

has an action by GL(U), GL(V ) on two sides

Matrix decomposition is a workhorse of ML, much else

Most data can be flattened into matrix format
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Tensors

T
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A tensor T = (tijk)

represents a multilinear transformation U⊗ V → W ,
W → U ⊗ V , U ⊗W → V , etc.

is a multi-way array (here 3-way)

with a multilinear action on each “leg” or “side”

Tensor decomposition is possible but more subtle

Data arrives in tensor format, and something is lost by flattening
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Example of tensor decomposition
Three possible generalizations of eigenvalue decomposition are the
same in the matrix case but not in the tensor case. For a p × p × p
tensor K ,

Name minimum r such that

Tensor rank K =
∑r

i=1 ui ⊗ vi ⊗ wi

not closed

Border rank K = limε→0(Sε), Tensor rank(Sε) = r
closed but hard to represent;
defining equations unknown.

Multilinear rank K = A · C ,C ∈ Rr×r×r ,A ∈ Rp×r ,
closed and understood.
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Matrices vs Tensors

Generalization of matrix concepts to tensors is usually not
straightforward, but

flattenings are still matrices

effective computations in multilinear algebra generally reduce to
linear algebra (so far)
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Flatten

T

��

U

��

VW

��

Z

��

T

��

U

��

V

��

W

��

Z

View T ∈ U⊗V⊗W⊗Z as T : Z ∗⊗W ∗ → U⊗V
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Contract

T

��

i

��
j

k

��

S

��

`

��
m

Can express as: flatten, then multiply the matrices, then reshape
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Algebraic geometry of tensor networks
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What is a tensor network?
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And why do they keep coming up?

Bayesian networks: directed factor graph models

Converting a Bayesian network (a) to a directed factor graph (b).
Factor f is the conditional distribution py |x , g is pz|x , and h is pw |z,y .

X Y

Z W

X f

g

Y

Z h

W

e

f

g

h

X
Y

Z
W

(a) (b) (c)

(c) is a string diagram for a type of monoidal category; most of the
rest of the talk will be defining this.
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When we reason about processes in space and time, involving
interaction and independence, causality and locality, we tend to
draw diagrams (networks) involving boxes, wires, arrows
Attaching mathematical meaning to such a diagram

I allows us to quantitatively model real systems and to compute
I usually leads to defining a monoidal category

Analyzing the monoidal category often means defining a functor
to the category of vector spaces and linear transformations
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Tensor Networks

Category theory provides a succint and beautiful means to
formalize ideas about such diagrams and their interpetations in
applied mathematics

But I’ll focus on diagrams in the category of vector spaces and
linear transformations, often called tensor networks

Fortunately, many of the same mathematical ideas work to
analyze these whether they occur in machine learning, statistics,
computational complexity, or quantum information

Algebraic geometry and representation theory provide a powerful
set of tools to characterize and understand these objects as they
arise in . . .
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Tensor Networks
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Bayesian networks: directed factor graph models

Converting a Bayesian network (a) to a directed factor graph (b).
Factor f is the conditional distribution py |x , g is pz|x , and h is pw |z,y .

X Y

Z W

X f

g

Y

Z h

W

e

f

g

h

X
Y

Z
W

(a) (b) (c)

(c) is a string diagram for a type of monoidal category; most of the
rest of the talk will be defining this.
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Pfaffian circuit/kernel counting example
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# of satisfying assignments =

〈all possibile assignments, all restrictions〉 = αβ
√

det(x + y)

4096-dimensional space (C2)⊗12 12× 12 matrix
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FIG. 19. Left (a) the circuit realization (internal to the triangle) of the function fW of e.g. (23) which outputs
logical-one given input |x1x2x3〉 = |001〉, |010〉 and |100〉 and logical-zero otherwise. Right (b) reversing time and
setting the output to |1〉 (e.g. post-selection) gives a network representing the W-state. The näıve realization of fW
is given in Figure 21 with an optimized co-algebraic construction shown in Figure 21.

FIG. 20. Näıve CTNS realization of the familiar W-state |001〉+ |010〉+ |100〉. A standard (temporal) acyclic classical
circuit decomposition in terms of the XOR-algebra realizes the function fW of three bits. This function is given a
representation on tensors. As illustrated, the networks input is post selected to |1〉 to realize the desired W-state.

Example 22 (Network realization of |ψ〉 = |01〉 + |10〉 + αk|11〉). We will now design a network to realize
the state |01〉 + |10〉 + αk|11〉. The first step is to write down a function fS such that

fS(0, 1) = fS(1, 0) = fS(1, 1) = 1 (27)

and fS(00) = 0 (in the present case, fS is the logical OR-gate). We post select the network output on |1〉,
which yields the state |01〉 + |10〉 + |11〉, see Figure 23(a). The next step is to realize a diagonal operator,
that acts as identity on all inputs, except |11〉 which gets sent to αk|11〉. To do this, we design a function fd
such that

fd(0, 1) = fd(1, 0) = fd(0, 0) = 0 (28)

and fd(1, 1) = 1 (in the present case, fd is the logical AND-gate). This diagonal, takes the form in Figure
23(b). The final state |ψ〉 = |01〉 + |10〉 + αk|11〉 is realized by connecting both networks, leading to Figure
23(c).

VI. PROOF OF THE MAIN THEOREMS

We are now in a position to state the main theorem of this work. Specifically, we have a constructive
method to realize any quantum state in terms of a categorical tensor network.8 We state and prove the
theorem for the case of qubit. The higher dimensional case of qudits follows from known results that any
d-state switching function can be expressed as a polynomial and realized as a connected network [47, 86, 87].
The theorem can be stated as

8 A corollary of our exhaustive factorization of quantum states into tensor networks is a new type of quantum network
universality proof. To avoid confusion, we point out that past universality proofs in the gate model already imply that the
linear fragment (Figure 3) together with local gates is quantum universal. However, the known universality results clearly
do not provide a method to factor a state into a tensor network! Indeed, the decomposition or factorization of a state into a
tensor network is an entirely different problem which we address here.
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Tensors and wiring diagrams

T

��

U

��

V

W

��

A multilinear operator
T : U ⊗ V → W
is a tensor

Draw a wire for each vector space (variable)

Box for each tensor (factor)

Arrows denote primal/dual

Jason Morton (Penn State) Algebraic Deep Learning 7/19/2012 17 / 103



Composition

Connect wires to compose/contract: h ◦ g ◦ f

//
A or idA

f//
A

//
B f//

A
g//

B
h//

C
//
D

juxtpose to tensor/run in parallel f ⊗ g

f//
A

//
B

g//
C

//
D

From these primitives (and duals, swaps, special maps) can build
complex networks
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You could have invented graphical models

This graphical notation has arisen several times in several areas
(Feynman diagrams, graphical models, circuits, representation
theory. . . )

This convergent evolution is no accident and reflects an
underlying mathematical structure (monoidal categories)

Using the resulting common generalizations to study graphical
models is promising; makes translating results from/to other
areas much easier
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Graphical language for monoidal categories

A 2-category with one object is a strict monoidal category; the
graphical language is Poincaré dual to the 2-cell diagram notation.

• •��
A

II

B

f
�� •��

C

II

D

g
�� � f

��

��

g

��

��

� f ⊗ g

• •
��

A

JJ

C

//

Bg
��

f
�� �

f

g

��

��

��

� g ◦ f

See papers by Joyal and Street, Selinger.
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Categories

A category C consists of a

class of objects Ob(C) and set Mor(A,B) of morphisms for each
ordered pair of objects,

an associative composition rule taking morphisms A
f→ B ,

B
g→ C , to a morphism g ◦ f : A→C

an identity idA ∈ Mor(A,A) such that idB ◦f = f = f ◦ idA.

Diagrammatically:

//
A or idA

f//
A

//
B f//

A
g//

B
h//

C
//
D

Think of categories and variations as concrete and combinatorial.
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Monoidal categories
Definition

A monoidal category (C,⊗, α, λ, ρ, I) is a category C with the
additional data of

(i) an abstract tensor product functor ⊗ : C × C → C,

(ii) a natural isomorphism called the associator
αABC : (A⊗ B)⊗ C → A⊗ (B ⊗ C ),

(iii) a unit object I and natural isomorphisms λA : I⊗ A→ A and
ρA : A⊗ I, the left and right unitors,

such that if w ,w ′ are two words obtained from A1 ⊗ A2 ⊗ · · ·An by
inserting Is and balanced parenthesis, then all isomorphisms
φ : w → w ′ composed of αs, λs, and ρs and their inverses are equal.
Thus we have a unique natural transformation w → w ′.

A monoidal category is strict if α, λ, and ρ are equalities. Monoidal
categories can be “strictified,” so the λ, ρ, α can often be ignored.
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Monoidal categories ctd.

Definition
A monoidal category is braided if it is equipped with natural
isomorphisms bA⊗B : A⊗ B

∼→ B ⊗ A subject to the hexagon axioms
and symmetric if bA⊗BbB⊗A = idA⊗B .

Diagramatically:

=

braid isomorphism
bA⊗B

symmetry relation
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From graphical model to string diagram
Q: What does the graphical language of certain monoidal categories
with additional axioms look like?
A∗: Factor graph models.

X Y

Z W

X f

g

Y

Z h

W

e

f

g

h

X
Y

Z
W

(a) (b) (c)

Converting a Bayesian network (a) to a directed factor graph (b) and
a string diagram (c). Factor f is the conditional distribution py |x , g is
pz|x , and h is pw |z,y .
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From graphical model to string diagram

•
��� •???

◦

•

◦
��� ◦???

◦

◦

◦→ →

Converting an undirected factor graph to a string diagram.
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Example: näıve Bayes

◦

•�������

• •???????

δA ◦ δA ◦ uA

A A A

B C D

A

B C D
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Example: gluing two triangles

•
•oooooo

•OOOOOO •oooooo

OOOOOO

C

A

B

D

A

B

δA

δB

C D

A

A A

B

B B
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RBM: Hadamard product of näıve Bayes

◦

•�������

• •???????

◦

????????

��������

A

B C D

E

B C D
mB

mC
mD

A

E

B C D

B C D
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Graphical models as tensor networks

Roughly

Wires are variables (Frobenius algebras)

Boxes are factors at fixed parameters, or spaces of factors as
parameters vary

Under suitable assumptions
I global properties
I (such as the set of equations cutting out the space of

representable probability distributions)
I can be computed by gluing local properties

How do we describe these spaces of representable probability
distributions?
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Algebraic geometry of tensor networks
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What is algebraic geometry?
Study of solutions to systems of polynomial equations

Consider the ring of multivariate polynomials f ∈ C[x1, . . . , xn],
e.g. 3x22x4 − 5x33
Any polynomial f ∈ C[x1, . . . , xn] has a zero locus

{v = (v1, . . . , vn) ∈ Cn : f (v) = 0}.

This is the variety V (f ) cut out by f . For one polynomial, this
variety is a hypersurface.

Introduction to Algebraic Geometry

Let R[p] = R[p1, . . . ,pm] be the set of all polynomials in indeterminates
p1, . . . ,pm with real coefficients.

Definition
Let F ⊂ R[p1, . . . ,pm]. The variety defined by F is the set

V (F) := {a ∈ Rm | f (a) = 0 for all f ∈ F} .

V ({p2−p2
1}) =

Seth Sullivant (NCSU) Algebraic Statistics June 9, 2012 2 / 34
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What is algebraic geometry?

Study of solutions to systems of polynomial equations

Consider the ring of multivariate polynomials f ∈ C[x1, . . . , xn],
e.g. 3x22x4 − 5x33
Any polynomial f ∈ C[x1, . . . , xn] has a zero locus

{v = (v1, . . . , vn) ∈ Cn : f (v) = 0}.

This is the variety V (f ) cut out by f . For one polynomial, this
variety is a hypersurface.

For example, the set of probability distributions that can be
represented by an RBM with 4 visible and 2 hidden nodes is part
of a hypersurface.

I its f has degree 110 and probably around 5 trillion monomials
[Cueto-Yu]
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Varieties defined by sets of polynomials

Now suppose you have a set F of polynomials: a system of
polynomial equations

Requiring them all to hold simultaneously means we keep only
the points where they all vanish:

I the intersection of their hypersurfaces

The zero locus

{v = (v1, . . . , vn) ∈ Cn : f (v) = 0 for all f ∈ F}

of a set of polynomials F is the variety V (F).
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Sets of polynomials defined by varieties

On the other hand,

Given a set S ⊂ Cn, the vanishing ideal of S is

I (S) = {f ∈ C[x1, . . . , xn] : f (a) = 0 ∀a ∈ S}.

Hilbert’s basis theorem: such an ideal has a finite generating set.

Combining these operations:
a set S ⊂ Cn has a Zariski closure V (I (S)).

Jason Morton (Penn State) Algebraic Deep Learning 7/19/2012 35 / 103



Why applied algebraic geometry

“Any sufficiently advanced field of mathematics can model any
problem.”

I Algebraic geometry is as old as it gets.

More formally:
I Ideal membership / computing Gröbner bases is

EXPSPACE-complete.
I Matiyasevich’s theorem: every recursively enumerable set is a

Diophantine set (10th)

So any question with a computable answer can be phrased in
terms of algebraic geometry.

I If done well, get geometric insight into the problem and deep
hammers.
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Implicitization

We would like to study e.g. the space of probability distributions
representable by various deep learning models.

These models are not given as sets of polynomials F
They are given in terms of a parameterization described by a
graph: each box in the tensor network is allowed to be a certain
restricted set of tensors

So we need to study the map from parameter space to
probability space, its fibers, and its image.

A complete description tells us what equations and what
inequalities a probability distribution must satisfy in order to
come from, say, a DBN
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Implicitization

Define a polynomial map φ from a parameter space Θ ⊂ Cn to
an ambient space Cm

x = t

y = t2

Defines an image φ(Θ) ⊂ Cm. What equations define, or cut
out this set? y − x2 = 0 cuts out the image.

We took a Zariski closure

The process of finding defining equations of the image is called
implicitization

This is hard! But not impossible.
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Example: Mixture of products

A

B C D
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/ Näıve Bayes / Secant Segre / Tensor Rank

• P1

• P1×P1×P1×P1 ↪→ P15

Segre variety defined by
2× 2 minors of flattenings

of 2× 2× 2× 2 tensor

• • •

��������
•�������

•�����

•
*****

•??????? σ2(P1×P1×P1×P1)
First secant of Segre variety

3× 3 minors of flattenings

Dimension, equations defining such models?
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Computational Algebraic Geometry

There are computational tools for algebraic geometry, and many
advances mix computational experiments and theory.

Gröbner basis methods power general purpose software:
Singular, Macaulay 2, CoCoA, (Mathematica, Maple)

I Symbolic term rewriting

Polyhedral methods (e.g. polymake, gfan) for certain problems;
e.g. using work by Cueto and Yu, Bray and M- reduce
implicitization to (very) large-scale linear algebra: just find the
(1d) kernel of a 5 trillion × 5 trillion matrix for RBM4,2.

Computational algebraic geometry computations now routinely
burn millions of CPU-hours of cluster compute time (e.g.
implicitization, searching for efficiently contractable networks).
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Numerical Algebraic Geometry

Salmon Problem: Determine the ideal defining the fourth secant
variety of P3xP3xP3. Set theoretic [Friedland 2010], further
progress [Bates, Oeding 2010], [Friedland, Gross 2011].

Numerical Algebraic Geometry: Numerical methods for
approximating complex solutions of polynomial systems.

I Homotopy continuation (numerical path following).
I Can be used to find isolated solutions or points on each

positive-dimensional irreducible component.
I Can scale to thousands of variables for certain problems.
I Reliable, parallelized, adaptive multiprecision software is

available: Bertini (Bates, Hauenstein, Sommese, and Wampler).
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Why are geometers interested?

Applications (especially tensor networks in statistics and CS)
have revived classical viewpoints such as invariant theory.

Re-climbing the hierarchy of languages and tools (Italian school,
Zariski-Serre, Grothendieck) as applied problems are unified and
recast in more sophisticated language.

Applied problems have also revealed gaps in our knowledge of
algebraic geometry and driven new theoretical developments and
computational tools

I Objects which are “large”: high-dimensional, many points, but
with many symmetries

I These often stabilize in some sense for large n.
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Lectures 2 and 3
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Last time

Last time, we talked about the

algebraic geometry of tensor networks

and how to learn something about this geometry
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Tensors

T

��

i

��

j

k

��

A tensor T = (tijk)

represents a multilinear transformation U⊗ V → W ,
W → U ⊗ V , U ⊗W → V , etc.

is a multi-way array (here 3-way)

with a multilinear action on each “leg” or “side”

Tensor decomposition is possible but more subtle

Data arrives in tensor format, and something is lost by flattening
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One way things get harder with tensors
Which tensor products Cd1 ⊗ · · · ⊗ Cdn have finitely many orbits
under GL(d1,C)× · · · × GL(dn,C)?
The answer for matrices is easy
Kac (1980), Parfenov (1998, 2001): up to C2 ⊗ C3 ⊗ C6, orbit
representatives and abutment graph

Orbits and their closures in the spaces Ck1 ⊗ · · · ⊗ Ckr 91

presented in Fig. 1, where the indices of vertices of the graph correspond to the
indices of orbits appearing in Theorem 6. The integers on the left-hand side are
the dimensions of the orbits.

At the end of § 2 we prove Theorem 11, which asserts that in all cases under
consideration in our paper the abutment graphs are subgraphs of the abutment
graph for the case (2, 3, 6). This graph is presented in Fig. 2, where the indices
of vertices correspond to the indices of orbits in Theorem 8. The integers on the
left-hand side are the dimensions of the orbits in their dependence on n.

For clarity the results of this paper are collected in Table 0. In this table, for
each case (2, m, n) we indicate the number of orbits of GL2×GLm×GLn and the
degree of the generator for the algebra of invariants of the corresponding group
SL2×SLm×SLn; we also indicate the statements relating to the orbits and the
graphs of abuttings.

Table 0

No. Case (2,m, n)
The number
of orbits of

GL2×GLm×GLn
deg f

Assertion

on the orbits

Assertion on the

abutment graph

1 (2, 2,2) 7 4 Lemma 2 Theorem 11, Fig. 2

2 (2, 2,3) 9 6 Theorem 8 Theorem 11, Fig. 2

3 (2, 2,4) 10 4 Theorem 8 Theorem 11, Fig. 2

4 (2, 2, n), n � 5 10 0 Theorem 8 Theorem 11, Fig. 2

5 (2, 3,3) 18 12 Theorem 6 Theorem 11, Figs. 1, 2

6 (2, 3,4) 24 12 Theorem 8 Theorem 11, Fig. 2

7 (2, 3,5) 26 0 Theorem 8 Theorem 11, Fig. 2

8 (2, 3,6) 27 6 Theorem 8 Theorem 11, Fig. 2

9 (2, 3, n), n � 7 27 0 Theorem 8 Theorem 11, Fig. 2

The main results of the present paper were published (without proofs) in [6].
We use this opportunity to point out that [6] contains two disappointing mistakes,
one of which is a consequence of the other. Namely:

(1) in Theorem 2, the line

(2, 2, n), n � 4, has ten orbits with representatives 1–9, 19

must be replaced by the line

(2, 2, n), n � 4, has ten orbits with representatives 1–7, 11, 13, 19;

(2) accordingly, the figure with the abutment graph should contain no arrow
from vertex 19 to vertex 9, but there should be an arrow from the vertex 19 to
vertex 13 instead.

I would like to express my deep gratitude to my research supervisor É. B. Vinberg
for setting the problem, crucial advice, and constant attention to this research.
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Another way

Consider a matrix turned into a vector

[x1, x2, x3, . . . x`]

can you compute its rank, SVD, kernel, etc?
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Composition

Connect wires to compose/contract: h ◦ g ◦ f

//
A or idA

f//
A

//
B f//

A
g//

B
h//

C
//
D

juxtpose to tensor/run in parallel f ⊗ g

f//
A

//
B

g//
C

//
D

From these primitives (and duals, swaps, special maps) can build
complex networks such as graphical models. . .
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Tensor networks

X Y

Z W

X f

g

Y

Z h

W

e

f

g

h

X
Y

Z
W
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Algebraic geometry

Study of solutions to systems of polynomial equations

Ring of multivariate polynomials f ∈ C[x1, . . . , xn], e.g.
3x22x4 − 5ix33
The zero locus

{v = (v1, . . . , vn) ∈ Cn : f (v) = 0 for all f ∈ F}

of a set of polynomials F is the variety V (F).

Given a set S ⊂ Cn, the vanishing ideal of S is

I (S) = {f ∈ C[x1, . . . , xn] : f (a) = 0 ∀a ∈ S}.

Hilbert’s basis theorem: such an ideal has a finite generating set.

A set S ⊂ Cn has a Zariski closure V (I (S)).
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Implicitization

Define a polynomial map φ from a parameter space Θ ⊂ Cn to
an ambient space Cm

x = t

y = t2

Defines an image φ(Θ) ⊂ Cm. What equations define, or cut
out this set? y − x2 = 0 cuts out the image.

We took a Zariski closure

The process of finding defining equations of the image is called
implicitization
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Algebraic geometry and tensor networks

To an algebraic geometer, a tensor network

appearing in machine learning (statistics, signal processing,
computational complexity, quantum computation, . . . )

describes a regular map φ from the parameter space (choice of
tensors at the nodes) to an ambient space.

The image of φ is an algebraic variety of representable
probability distributions,

The fibers tell us about identifiability, transferability, and
learning rate
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1 Algebraic geometry of tensor networks
Tensors
Tensor Networks
Algebraic geometry

2 Algebraic Description of Graphical Models
Review of GM Defininitions
Algebraic and semialgebraic descriptions
Restricted Boltzmann machines

3 Identifiability, singular learning theory, other perspectives
Identifiability
Singular Learning Theory
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Algebraic description of probabilistic models

“Statistical models are algebraic varieties”

What distributions can be represented by a (graphical) model?

What is the geometry of the parameterization map?

Implications for approximation and optimization (learning)
performance?
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Hierarchical models, undirected graphical models

Model joint probability distributions on N random variables
X1, . . . ,XN with finitely many states d1, . . . , dN .

Define dependence locally by a simplicial complex on
{1, 2, . . . ,N}, parameterizing a family of probability distributions
by potential functions or factors, one per maximal simplex.

In an undirected graphical model, the simplicial complex is the
clique complex of an undirected graph.

•A

•������

C

•D

•
//////

B •
��� •???

•

•

•��

•��

•

//

•
//

UGM FG FG
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Hierarchical models: probability distribution

Model joint probability distributions on N random variables
X1, . . . ,XN with finitely many states d1, . . . , dN .

Define dependence locally by a simplicial complex on
{1, 2, . . . ,N}, parameterizing a family of probability distributions
by potential functions or factors, one per maximal simplex.

In an undirected graphical model, the simplicial complex is the
clique complex of an undirected graph.

Defines a family of probability distributions on discrete random
variables X1, . . . ,XN , where Xi has di states by (before marginalizing)

pM(x) =
1

Z

∏

s∈S
Ξs(xs)

where xs is the state vector restricted to the vertices in s, each Ξs is
a tensor corresponding to the factor associated to simplex s.
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Hierarchical models: undirected factor graph models

A hierarchical model defines a factor graph, which is a bipartite graph
Γ = (V ∪ H ,F ,E ) of nodes, factors and edges.

Each i ∈ {1, . . . ,N} = H ∪ V is labeled by a random variable Xi

and denoted by a open ◦ or filled • disc according to whether it
is Hidden (latent) or Visible respectively.

Each maximal simplex s ∈ S is denoted by a box fs labeled by a
factor fs ∈ F , and is connected by an edge to each variable disc
Xi where i ∈ s.

•A

•������

C

•D

•
//////

B •
��� •???

•

•

•��

•��

•

//

•
//

•
��� •???

◦

•
hidden

����
��

UGM FG FG FG
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Implicitization and graphical models

The Hammersley-Clifford Theorem is a theorem about
implicitizing undirected graphical models

They delayed publication for years trying to address the
nonnegative case

This was completed in [Geiger, Meek, Sturmfels 2006] by
studying the algebraic geometry of these models (“Algebraic
Statistics”)
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Bayesian networks: directed factor graph models

A (discrete) Bayesian network M = (H ,V , d ,G ) is based on a
directed acyclic graph G .

Vertices partitioned [N] = H ∪ V into hidden and visible
variables; each variable i ∈ [N] has a number di of states.

The parameterization defines for each variable x a conditional
probability distribution (a singly stochastic matrix) p(xi |xpa(i))
where pa(i) is the set of vertices which are parents of i .

Then
pM(v) =

∑

xH

∏

i∈[N]

p(xi |xpa(i))

with p(xi |xpa(i)) ≥ 0,
∑

i p(xi |xpa(i)) = 1 and no global
normalization is needed because of the local normalization.
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Bayesian networks: directed factor graph models

Every Bayesian network can be written as a directed factor
graph model, but not conversely [Frey 2003].

Algebraic geometry of Bayesian networks [Garcia, Stillman,
Sturmfels 2005]
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“Unhidden” Binary Deep Belief Network
Consider a binary DBN with layer widths n0, . . . , n`. An “unhidden”
binary DBN defines joint probability distributions of the form

P(h0, h1, . . . , h`) = P(h`−1, h`)
`−2∏

k=0

P(hk |hk+1) ,

P(hk |hk+1) =

nk∏

j=1

P(hkj |hk+1) ,

P(hkj |hk+1) ∝ exp

(
hkj b

k
j + hkj

nk+1∑

i=1

W k+1
j ,i hk+1

i

)
,

hk = (hkj )j ∈ {0, 1}nk is the state of the units in the kth layer,

W k
j ,i ∈ R is the connection weight between the units j and i

from the (k − 1)th and kth layer respectively, and

bkj ∈ R is the bias weight of the jth unit in the kth layer.
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Binary DBN

Now the DBN model DBN(n0, n1, . . . , n`) is the set of marginal
distributions

P(h0) =
∑

h1∈{0,1}n1 ,...,h`∈{0,1}n`
P(v , h1, . . . , h`), h0 ≡ v ∈ {0, 1}n0

(1)
of joint probability distributions of that form.

The DBN has

d = (
∑̀

k=1

nk−1nk) + (
∑̀

k=0

nk) parameters.

So this is its expected dimension if there is no collapse or waste
of parameters. Which tuples (n0, . . . , n`) have the expected
dimension?
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Where we are

The DBN contains many of the known models, hence

Don’t have a complete semialgebraic description of DBN, DBM.

Have partial information about representational power

Have algebraic, semialgebraic descriptions of submodels: näıve
Bayes, HMM, trees, RBM, etc.

I In some cases (especially small number of states), this is done
I In others, just have coarse information (dimension, relative

power)

Translating that understanding to something prescriptive is
ongoing

Let’s look at some of these submodels
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Näıve Bayes / Secant Segre / Tensor Rank

A

B C D
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Näıve Bayes / Secant Segre / Tensor Rank
Look at one hiden node in such a network, binary variables

• P1

• P1×P1×P1×P1 ↪→ P15

Segre variety defined by
2× 2 minors of flattenings

of 2× 2× 2× 2 tensor

• • •

��������
•�������

•�����

•
*****

•??????? σ2(P1×P1×P1×P1)
First secant of Segre variety

3× 3 minors of flattenings

Dimension, equations defining such models?
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Expected dimension of secant varieties

The expected dimension of σk(P1)n is

min(kn + k − 1, 2n − 1)

(e.g. by a parameter count)

But (especially for small n) things can collide and we can get a
defect, where the dimension is less than expected

Dimension is among the first questions one can ask about a
variety

I Is there hope for identifiability?
I are there wasted parameters/ positive-dimensional fibers?
I how big a model is needed to be able to represent all

distributions?
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Dimension of secant varieties

Recently [Catalisano, Geramita, Gimigliano 2011] showed
σk(P1)n has the expected dimension

min(kn + k − 1, 2n − 1)

except σ3(P1)4 where it is 13 not 14.

Progress in Palatini 1909, . . . , Alexander Hirschowitz 1995,
2000, CGG 2002,03,05, Abo Ottaviani Peterson 2006, Draisma
2008, others.

Classically studied, revived by applications to statistics, quantum
information, and complexity; shift to higher secants, solution.

So a generic tensor of (C2)⊗n can be written as a sum of d 2n

n+1
e

decomposable tensors, no fewer.
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Representation theory of secant varieties

Raicu (2011) proved the ideal-theoretic GSS [Garcia Stillman
Sturmfels 05] conjecture

Equations defining σ2(Pk1 × · · · × Pkn)

Using representation theory of ideal of σ2(Pk1 × · · · × Pkn) as a
GLk1 × · · ·GLkn-module

(progress in [Landsberg Manivel 04, Landsberg Weyman 07,
Allman Rhodes 08]).

SECANT VARIETIES OF SEGRE–VERONESE VARIETIES 15

Definition 3.14. Given a partition µ = (µ1, · · · , µt) ` r, an n-partition λ `n r and a block

M ∈ Udµ , we associate to the element cλ ·M ∈ cλ · Udµ the n-tableau

T = (T 1, · · · , Tn) = T 1 ⊗ · · · ⊗ Tn

of shape λ, obtained as follows. Suppose that the block M has the set αij in its i-th row and

j-th column. Then we set equal to i the entries in the boxes of T j indexed by elements of
αij (recall from Section 2.3 that the boxes of a tableau are indexed canonically: from left to

right and top to bottom). Note that each tableau T j has entries 1, · · · , t, with i appearing
exactly µi · dj times.

Note also that in order to construct the n-tableau T we have made a choice of the ordering
of the rows of M : interchanging rows i and i′ when µi = µi′ should yield the same element

M ∈ Udµ , therefore we identify the corresponding n-tableaux that differ by interchanging
the entries equal to i and i′.

Example 3.15. We let n = 2, d = (2, 1), r = 4, µ = (2, 2) as in Example 3.2, and consider
the 2-partition λ = (λ1, λ2), with λ1 = (5, 3), λ2 = (2, 1, 1). We have

cλ ·
1, 6 1
2, 3 4
4, 5 2
7, 8 3

1 2 2 3 3
1 4 4

⊗
1 3
4
2

cλ ·
2, 3 4
7, 8 3
1, 6 1
4, 5 2

3 1 1 4 4
3 2 2

⊗
3 4
2
1

Let’s write down the action of the map πµ on the tableaux pictured above

πµ


 1 2 2 3 3

1 4 4
⊗

1 3
4
2


 = 1 1 1 2 2

1 2 2
⊗

1 2
2
1

+ 1 2 2 1 1
1 2 2

⊗
1 1
2
2

+ 1 2 2 2 2
1 1 1

⊗
1 2
1
2

.

We collect in the following lemma the basic relations that n-tableaux satisfy.

Lemma 3.16. Fix an n partition λ `n r, and let T be an n-tableau of shape λ. The
following relations hold:

(1) If σ is a permutation of the entries of T that preserves the set of entries in each
column of T , then

σ(T ) = sgn(σ) · T.
In particular, if T has repeated entries in a column, then T = 0.
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Equations of the naiv̈e Bayes model (secant

varieties of Segre varieties)

Good news/bad news

Good News: We know them for small number of states

Bad News: But we don’t know them for large numbers of states.

Good News: In some cases, just minors of flattenings

Bad News: But not in general.

Good News: Many models (trees, RBM, DBN) are built by
gluing näıve Bayes models together, so we have some
information and the good news above propagates

Bad News: But so does the bad news.
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Algebraic description of Hidden Markov Models

A simplified (circular) version. Fix parameter matrices A1, . . . ,Ad .
Then up to a global rescaling,

p =
∑

i1,...,in

tr(Ai1 · · ·Ain)ei1i2···in
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Algebraic description of Hidden Markov Models

A simplified (circular) version. Fix parameter matrices A1, . . . ,Ad .
Then up to a global rescaling,

p =
∑

i1,...,in

tr(Ai1 · · ·Ain)ei1i2···in

What are the polynomial relations that hold among the coefficients

pi1,...in = tr(Ai1 · · ·Ain)?

That is, the ideal I = {f : f (pi1,...in) = 0} of polynomials f in the
coefficients such that f (pi1,...in) = 0.

Series of papers [Bray and M- 2006], [Schönhuth 2008, 2011], [Critch
2012] provide characterizations, membership tests, identifiability, etc.
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(Phylogenetic) Trees
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Trees
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Trees and the General Markov Model

Studied in a long series of papers by authors including
Sturmfels-Sullivant, Casanellas, Draisma-Kuttler,
Allman-Rhodes, many others

I Many techniques were developed first on this reasonably
tractable class

Ideas include changes of coordinates (Fourier transform,
cumulant coordinates), gluing constructions, hard work

Now have complete algebraic description of many special classes

Complete semi-algebraic description of GMM for small number
of states [Allman et al. 2012]

This is a submodel of the DBN.
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Restricted Boltzmann Machines
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pre-RBM: graphical model on a bipartite graph
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︷ ︸︸ ︷m variables
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n variables

real
parameters

c

b

W

Unnormalized potential is built from node and edge parameters

ψ(v , h) = exp(h>Wv + b>v + c>h).

The probability distribution on the binary random variables is

p(v , h) =
1

Z
·ψ(v , h), Z =

∑

v ,h

ψ(v , h).
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Restricted Boltzmann machines
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Unnormalized fully-observed potential is

ψ(v , h) = exp(h>Wv + b>v + c>h).

The probability distribution on the visible random variables is

p(v) =
1

Z
·
∑

h∈{0,1}k
ψ(v , h), Z =

∑

v ,h

ψ(v , h).
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Restricted Boltzmann machines
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The restricted Boltzmann machine (RBM) is the undirected
graphical model for binary random variables thus specified.

Denote by Mm
n the set of joint distributions as

b ∈ Rn, c ∈ Rk ,W ∈ Rm×n vary.

Mm
n is a subset of the probability simplex ∆2n−1.
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Hadamard Products of Varieties
Given two projective varieties X and Y in P`, their Hadamard
product X∗Y is the closure of the image of

X × Y 99K P` , (x , y) 7→ (x0y0 : x1y1 : . . . : x`y`).

We also define Hadamard powers X [m] = X ∗ X [m−1].

If M is a subset of the simplex ∆`−1 then M [m] is also defined by
componentwise multiplication followed by rescaling so that the
coordinates sum to one. This is compatible with taking Zariski

closure: M [m] = M
[m]

Lemma
RBM variety and RBM model factor as

Vm
n = (V 1

n )[m] and Mm
n = (M1

n )[m].
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RBM as Hadamard product of näıve Bayes
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Representational power of RBMs

Conjecture

The restricted Boltzmann machine has the expected dimension.

That is, Mm
n is a semialgebraic set of dimension

min{nm + n + m, 2n − 1} in ∆2n−1.
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Expected dimension
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Figure: The expected dimension of the model RBMn,m, and of Mn,m+1,
min{2n − 1, nm + n + m}. There is a barely noticeable irregularity on the
left side of the image, where the dimension of RBMn,m equals the
dimension of the ambient probability simplex Pn for all large enough m.
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Representational power of RBMs

We can show many special cases and the following general result:

Theorem (Cueto M- Sturmfels)

The restricted Boltzmann machine has the expected dimension

nm + n + m when m < 2n−dlog2(n+1)e

min{nm + n + m, 2n − 1} when m = 2n−dlog2(n+1)e and

2n − 1 when m ≥ 2n−blog2(n+1)c.

Covers most cases of restricted Boltzmann machines in practice,
as those generally satisfy m ≤ 2n−dlog2(n+1)e.

Proof uses tropical geometry, coding theory
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Tropical RBM Model

Tropical geometry is the “polyhedral shadow” of algebraic
geometry.

The process of passing from ordinary arithmetic to the max-plus
algebra is known as tropicalization.

The tropicalization Φ of our RBM parameterization is the map
Φ : Rnm+n+m → TP2n−1 = R2n/R(1, 1, . . . , 1) whose 2n

coordinates are the tropical polynomials

qv = max
{
h>Wv + b>v + c>h : h ∈ {0, 1}m

}

This yields a piecewise-linear concave function Rnm+n+m → R on
the space of model parameters (W , b, c).

Its image TMm
n is called the tropical RBM model.
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Tropical RBM Variety

The tropical hypersurface T (f ) is the union of all codimension
one cones in the normal fan of the Newton polytope of f .

The tropical RBM variety TVm
n is the intersection in TP2n−1 of

all the tropical hypersurfaces T (f ) where f runs over all
polynomials that vanish on Vm

n (or on Mm
n ).

Understand tropical variety, use:

dim(TMm
n ) ≤ dim(TVm

n ) = dim(Vm
n ) =

dim(Mm
n ) ≤ min{nm + n + m, 2n − 1}

and coding theory to obtain the result.
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Relative representational power

Another way to study the representational power of RBMs and
DBNs is to compare them with other models

When does one potential model contain another?
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When does a mixture of products contain a

product of mixtures?

{0, 1}{0, 1}{0, 1}{0, 1} {0, 1, . . . , k − 1}
Product of Mixtures (RBM) Mixture of Products

RBM6,4 M6,k

Problem

Given some n,m ∈ N, what is the smallest k ∈ N for which the
k-mixture of product distributions on n binary variables contains the
RBM model with n visible and m hidden units?
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Exponentially more efficient
From Yoshua’s first talk

#2 The need for distributed 
representations 
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  efficient	
  than	
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  or	
  clustering-­‐like	
  models	
  

Jason Morton (Penn State) Algebraic Deep Learning 7/19/2012 89 / 103



When does a mixture of products contain a

product of mixtures?

The number of parameters of the smallest mixture of products
containing the RBM

I grows exponentially in the number of parameters of the RBM
I for any fixed ratio of hidden vs. visible units 0<m/n<∞

Such results aid our understanding of
I how models complement each other,
I why techniques such as deep learning can be expected to

succeed, and
I when model selection can be based on theory.
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Not very often

m

n

log2(k) = m

3
4n≤ log2(k)≤n−1

3
4

1

dim(RBM) = const.

Figure: Plot of the smallest k for which Mn,k contains RBMn,m. Fixing
dimension (grey line), the RBMs which are hardest to represent as
mixtures are those where m/n ≈ 1.
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Modes and strong modes

Definition

Call x ∈ {0, 1}n a mode of p ∈ Pn if p(x) > p(x̂) for all x̂ with
dH(x̂ , x) = 1, and a strong mode if p(x) >

∑
x̂ :dH(x̂ ,x)=1 p(x̂).

One way to make precise that the RBM can represent more
complicated distributions than a mixture model of similar size is
to study this bumpiness in Hamming space.

On the one hand the sets of strong modes C⊂{0, 1}n realizable
by a mixture model Mn,k are exactly the binary codes of
minimum Hamming distance two and cardinality at most k .

On the other hand. . .
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RBMs and Linear Threshold Codes

11

55

33

77

22

66

44

Definition
A subset C ⊆ {0, 1}n is an (n,m)-linear threshold code (LTC) iff
there exist n linear threshold functions fi : {0, 1}m → {0, 1}, i ∈ [n]
with

{(f1(x), f2(x), . . . , fn(x)) ∈ {0, 1}n : x ∈ {0, 1}m} = C.

If the functions fi can be chosen self-dual (hyperplanes are central),
then C is called homogeneous.

Jason Morton (Penn State) Algebraic Deep Learning 7/19/2012 93 / 103



Strong modes and linear threshold codes

On the other hand,

for codes C ⊆ {0, 1}n, |C| = 2m of minimum distance two,

when C is a homogeneous linear threshold code (LTC)

then RBMn,m can represent a distribution with strong modes C.

And, if RBMn,m can represent a distribution with strong modes
C, then C is a LTC.
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Combining these results gives our answer to

Problem

Given some n,m ∈ N, what is the smallest k ∈ N for which the
k-mixture of product distributions on n binary variables contains the
RBM model with n visible and m hidden units?

Namely, if 4dm/3e≤n, then Mn,k⊇RBMn,m if and only if
k≥2m;

and if 4dm/3e>n, then Mn,k⊇RBMn,m only if
k≥min{2l +m−l , 2n−1}, where l is max{l ∈ N : 4dl/3e≤n}.
Thus an exponentially larger mixture model, with an
exponentially larger number of parameters, is required to
represent distributions that can be represented by the RBM.

There’s another way to see that the RBM has points of rank 2m

when 2m ≤ n
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Not very often

m

n

log2(k) = m

3
4n≤ log2(k)≤n−1

3
4

1

dim(RBM) = const.

Figure: Plot of the smallest k for which Mn,k contains RBMn,m. Fixing
dimension (grey line), the RBMs which are hardest to represent as
mixtures are those where m/n ≈ 1.
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Identifiability: uniqueness of parameter estimates

A parameterization of a set of probability distributions is
identifiable if it is injective.

A parameterization of a set of probability distributions is
generically identifiable if it is injective except on a proper
algebraic subvariety of parameter space.

Identifiability questions can be answered with algebraic geometry
(e.g. many recent results in phylogenetics)

A weaker question: What conditions guarantee generic
identifiability up to known symmetries?

A still weaker question: is the dimension of the space of
representable distributions (states) equal to the expected
dimension (number of parameters)? Or are parameters wasted?
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Uniqueness up to known symmetries and normal

forms

Identify internal symmetries (here SL2)

Reparameterize to choose a normal form

Jason Morton (Penn State) Algebraic Deep Learning 7/19/2012 99 / 103



Singular learning theory
A model is more than its implicitization; the parameterization map is
critically important to learning performance and quality.

How fast and how well can a model learn?

When a statistical model is regular, we can use central limit
theorems to figure out their behavior for large data.

But most hidden variable models are not regular (identifiable w/
positive definite Fisher information matrix) but singular.

Singular learning theory [Watanabe 2009] offers one avenue for
progress in this situation based on algebraic geometry.

Asymptotics, generalization error, etc are governed by the real
log canonical threshold.

Resolve the model singularities and develop new limit theorems.
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Comparing Architectures
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Bulge Column
(9,11,6): 191 parameters (9,9,9): 189 parameters
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Optimal architectures for learning

The real log canonical threshold λq of a parameterization at true
distribution q = p(x |θ) determines Bayes generalization error,

Gn(q) = Eq[KL(q||p∗n)]− Sq = λq
n

+ o( 1
n

) [Watanabe 2009].
I Expected KL-divergence
I from the true model to the predicted distribution p∗

I after seeing n observations and updating to the posterior.

E.g. what do we have to believe about which qs appear in
nature for the deep model to be better, λRBM(q) > λCOL(q)?

Techniques for calculating λ are rapidly evolving; known for
simple binary graphical models such as trees [Zwiernik 2011].
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Advertisement

Modern applications of representation theory
I an IMA PI Graduate Summer School
I at the University of Chicago
I Summer 2014

≈ 12 Lectures on tensor networks
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