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1.  We discuss some characteristics of optimization
 problems arising in deep learning, convex 

       logistic regression and inverse covariance estimation. 

2.   There are many tools at our disposal: first and second
 order methods; batch and stochastic algorithms;
 regularization; primal and dual approaches; parallel
 computing 

3.   Yet the state of affairs with neural nets is confusing to
 me: too many challenges are confronted at once: local
 vs local minima, nonlinearity, stochasticity,
 initializations, heuristics 

Overview 
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We need to isolate questions related to optimization, and study  
them in a controlled setting 

A key question is to understand the properties of stochastic vs 
 batch methods in the context of deep learning.  

After some clarity is obtained, we need to develop appropriate 
algorithms and work complexity bounds, both in a sequential  
and a parallel setting 

Open Questions 
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I will discuss a few of optimization techniques and  
provide some insights into their strengths and weaknesses 

We will contrast the deterministic and stochastic settings. 
This motivates dynamic sample selection methods 

We emphasize the need for general purpose techniques, 
second order methods and scale invariance, vs heuristics 

Organization 
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Most of my practical experience in optimization methods  
for machine learning is for speech recognition (Google) 

But I am aware of many tests done in a variety of machine  
learning applications due to my involvement in L-BFGS,  
Newton-CG methods (Hessian-free), dynamic sampling  
methods, etc 

I am interested in designing new optimization methods 
for machine applications, in particular for deep learning 

My Background 
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‘The best optimization algorithms are not the best 
 learning algorithms’ 

           Bottou and Bousquet  (2009) 

…when taking into account the Estimation and Optimization  
Errors 

``Stochastic methods best in spite of being worst optimization  
    methods” 

Intriguing Statements 
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Problem Characteristics 
and 

Second Order Methods 

Part I 
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Neural nets are far more nonlinear than the functions 
minimized in many other applications           Farabet 

The rate of convergence of an optimization algorithm 
is still important even though in practice one stops the 
iteration far from a minimizer” 

Nonlinearity, Ill Conditioning 
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An objective function  (Le,…Ng) 



Loss function (logistic, least squares, etc): 

Ignore regularization term at first: unconstrained optimization    
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General Formulation 

min  J(w) = 1
m

(w;(zi , yi ))
i=1

m

∑ + ν ||w ||1

(w;(zi , yi ))

� 

       (zi,yi)   training data
       zi         vector of features;    yi   labels

min  f (x)



                    The Newton-CG Method       (Hessian Free) 

       ∇2 f (xk )p = −∇f (xk )       xk+1 = xk +α p  

-  This is a linear system of equations of size n 
-  Apply the Conjugate Gradient (CG) method to compute an 
     approximate solution to this system 
-  CG is an iterative method endowed with very interesting 
     properties (optimal Krylov method) 
-  Hessian need not be computed explicitly 
-  Continuum between 1st and 2nd order methods 

Problem:     min f (x)



Newton-CG: the Convex Case 

       ∇2 f (xk )p = −∇f (xk )   

-  We show below that 
    any number of CG iterations yield a productive step 
-  Not true of other iterative methods 
-  better direction and length 
   than 1st order methods 



The conjugate gradient method 

min φ(x) = 1
2
xT Ax − bT x           ∇φ(x) = Ax − b

Two equivalent problems 

solve    Ax = b                                   r = Ax − b

� 

pk = −rk + βk pk−1

� 

 βk =
pk−1
T Ark

pk−1
T Apk−1

Only product Apk  is needed
Hessian-free
Choose some initial point: x0  
Initial direction:   p0 = −r0
For x0 = 0,   -r0 = b



For the linear system 

       ∇2 f (xk )p = −∇f (xk )       Ax = b
r = Ax −b    →    b = − ∇f (xk )

       We noted   -r = b  if x0 = 0

Conclusion: if we terminate the CG algorithm after 1 iteration 
we obtain a steepest descent step 

Interaction between CG and Newton 



Newton-CG Framework 

Theorem (Newton-CG with any number of CG steps)
Suppose that f  is strictly convex. Consider the  iteration
             ∇2 f (xk )p = −∇f (xk ) + r        xk+1 = xk +α p
where α  is chosen by a backtracking Armijo line search.  
Then     {xk}→ x*

Steepest                            Newton 
descent 

1                                               n 



Rates of Convergence – Scale Invariance 

The rate of convergence can be: 
                linear       superlinear    quadratic 
depending on the accuracy of the CG solution 

•  It inherits some of the scale invariance properties of the exact 
   Newton method: affine change of variables         x← Dx  



Newton-CG– The Nonconvex Case 

If Hessian is not positive definite solve modified  System 

       [∇2 f (x0 ) + γ I ] p = −∇f (x0 )           γ > 0   

If γ  is large enough system is positive definite

Let  λ1 ≤ λ2 ≤ ... ≤ λn  be the eigenvalues of ∇2 f (x0 ).
Then the eigenvalues of   [∇2 f (x0 ) + γ I ] are:
                 λ1 + γ ≤ λ2 + γ ≤ ... ≤ λn + γ
  

Difficult to choose γ .   Trust region method learns γ



The Nonconvex Case: Alternatives 

       Bp = −∇f (x0 )              
Replace ∇2 f (xk ) by a positive definite approximation

Option 1:  Gauss-Newton Matrix J(xk )J(xk )T

Option 2: Stop CG early  -  negative curvature
Option 3: Trust region approach

For least squares Gauss-Newton matrix can be seen as an optimal 
Inexact CG equivalent to solving in a “subspace inverse” 



The Nonconvex Case: CG Termination 

       ∇2 f (xk )p = −∇f (x0 )              
Iterate until negative curvature 
is encountered:
      vT∇f (xk )v < 0 xk 

Negative 
Curvature 

Trust region 

       min  q(d) = dT∇2 f (xk )d +∇f (xk )T d + f (xk ) 
       s.t.               ‖d‖≤ Δ



History of Newton-CG 

1.  Proposed in the 1980s for unconstrained optimization and 
      systems of equations  (Polyak 1960 (bounds)) 
2.   Hessian-free option identified early on 
3.   Trust region (1980s): robust technique for choosing  
4.  Considered today a premier technique for large problems 
      (together with nonlinear CG and L-BFGS) 
5.  Used in general nonlinear programming: Interior Point, 
      Active Set, Augmented Lagrangian methods 
6.  Application to stochastic problems (machine learning) 
      Martens (2010),   Byrd, Chin, Neveitt, Nocedal (2011) 

γ



Newton-CG and global minimization 

1.  I know of no argument to suggest that Newton-like methods 
      are better able at locating lower minima than 1st order methods 
2.  Some researchers report success with “Hessian-free methods” 
       Martens (2010). Algorithms plagued with heuristics 

3.   Trust region methods should be explored 
4.  Properties of objective functions should be understood: do we 
      want to locate global minimizer? 
5.   More plausible for stochastic gradient descent 



Understanding Newton’s Method 

       ∇2 f (xk )p = −∇f (xk )   → p = −∇2 f (xk )−1∇f (xk )

-  direction points along 
    eigenvectors corresponding to smallest eigenvalues 
- - get direction and length 

       ∇2 f (xk ) = λi
i=1

n

∑ vivi
T     eigenvalue decomposition   

       ∇2 f (xk )−1 =
1
λii=1

n

∑ vivi
T        inverse

       p = −
1
λii=1

n

∑ vi (vi
T∇f (xk )       



Inexact Newton’s Method 

 If we can compute the Newton direction by gradually minimizing 
The quadratic, we might obtain efficiency and regularization  
(steplength control) 

Therefore we need to explicitly  
consider the minimization of a quadratic 
model of the objective function f 

       min  q(d) = dT∇2 f (xk )d +∇f (xk )T d + f (xk ) 



Enter the Conjugate Gradient method 

 - The (linear) CG method is an iterative method for solving 
linear positive definite systems or minimizing the corresponding  
quadratic model. 
- Key property: expanding subspace minimization 
Tends to minimize first along the largest eigenvectors 

       min  φ(d) = dT∇2 f (xk )d +∇f (xk )T d + f (xk ) 

                        exact solution (convex case)
         ∇φ(d) = ∇2 f (xk )d +∇f (xk ) = 0          Newton step 



Steepest descent Coordinate relaxation 

       A = ∇2 f (xk )      b = −∇f (xk ) 



Coordinate relaxation does 
not terminate in n steps!  

The axis are no longer aligned  
with the coordinate directions 



Conjugate directions always
 work 
(lead to solution in n steps) 



Expanding Subspace Minimization 

Each coordinate minimization determines 1  
    component of the solution. 
Thus we minimize over an expanding subspace
 and we must have 

� 

∇φ(xk )
T pi = 0      i = 0,1,...,k −1

Or equivalently 

� 

rk
T pi = 0      i = 0,1,...,k −1

Steepest descent does not have this property. 

There are many conjugate direction methods. One of them is special…. 



Monotonicity 

This provides regularization of the step 
- Another choice used in practice is to start the CG method with  
   the solution obtained at the previous iteration (monotonicity 
   lost) 

Theorem: Suppose that the CG method is started at zero. Then 
the approximate solutions satisfy ‖d 0‖ ≤ ... ≤ ‖di‖



Hessian Sub Sampling 
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Hessian Sub-Sampling for Newton-CG 

Function, gradient: large sample X                (batch) 
Curvature information: small sample S 

•  Newton-like methods very robust with respect to choice  
      of Hessian     

� 

m = 1                                                       m = 168,000
� 

S : 5%, 10%                                          X

       ∇2 f (xk )p = −∇f (xk )   
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Stochastic Optimization Problem: (J(w) 

Choose random sample of training points  X

  JX (w) = 1
| X |

l(w;(zi , yi ))i∈X∑         

                                               whose expectation is  J(w)

very small X : online, stochastic          
large  X : batch

  J(w) = 1
m

(w;(zi , yi ))
i=1

m

∑
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A sub-sampled Hessian Newton method  

� 

∇2JS (wk )dk = −∇JX (wk )      wk+1 = wk + dk
� 

Choose subsample   S ⊂ X                    ∇2  JS (w) = ∇2(w; zi , yi )S∑         

•  Coordinate size of subsample with number of CG steps 
•  Example: S=5%  and 10 CG steps          
•   total step computation ~ 1 function evaluation 
•  Similar in cost to steepest descent … but much faster 
•  Experiments with logistic function: unit step acceptable 
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Hessian-vector Product without Computing Hessian 

� 

Define the function  Φ(x;d) = ∇f (x)T d

∇xΦ(x;d) =
∂∇f (x)T d

∂x
⎛
⎝⎜

⎞
⎠⎟
= ∇2 f (x)T d

Given a function f :Rn → R  and a direction d
Goal:  compute   ∇2 f (xk )d     exactly
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Example 

� 

f (x) = exp(x1x2)

∇Φ(x;ν) = ∇f (x)T v = x2 exp(x1x2 )( )v1 + x1 exp(x1x2 )( )v2

∇2
xΦ(x)ν =

x2
2 exp(x1x2 )( )v1 + exp(x1x2 ) + x1x2 exp(x1x2 )( )v2
exp(x1x2 ) + x1x2 exp(x1x2 )( )v1 + x1

2 exp(x1x2 )( )v2
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Cost of Hessian-vector product comparable to cost of 
one gradient (factor of 3-5) 
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Logistic Regression 

•  Cost of Hessian-vector product decreases linearly with |X| 
•  Hessian-vector product parallelizes, same as function 

� 

  JX (w) = l(w;(zi,yi))i∈X
∑    

� 

   ∇2JX (w)d = h(w;(zi,yi))i∈X
∑ P(i)d      
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The Algorithm 

� 

Choose subsample  Sk   (| Sk |<<| X |)
Solve
     ∇2JS (wk )dk = −∇JX (wk )       
by Hessian - free CG method    
      wk+1 = wk + αkdk         (Armijo)
Resample  Sk+1   (| Sk+1 |<<| X |)

� 

Function sample X  given (and fixed)

Rather than one algorithm, this is general technique; 
Can derive sub-sampled L-BFGS method  
                                         Byrd, Chin, Neveitt, Nocedal  (2011) 
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Characteristics: 
•  168,000 training points 
•  10,100 parameters (variables) 
•  Hessian subsample: 5% 
•  Solved on workstation 

Speech Recognition Problem  

� 

J(w) = ln
h=1

N

∑ exp
i=0

NC

∑ ( wijfhj)
j=1

NF

∑ − wch
* jfhj∑
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Classical Newton-CG 

Sub-sampled  
Newton 

L-BFGS (m=5,20) 

Function 

Time 
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Objective Function  

� 

J(w) = ln
h=1

N

∑ exp
i=0

NC

∑ ( wijfhj)
j=1

NF

∑ − wch
* jfhj∑

1.  Compute gradient (sum…) 
2.  Can code Hessian-vector product 

Varying CG limit 

5CG 2CG 

L-BFGS 

10-50CG 
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Varying Hessian subsample S 

50% 
100% 

L-BFGS 

10%-1% 



Summary of results 

Preconditioning? 

Probability speedup 

10% 1.7 
12% 2.0 
13.5% 4.2 
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How many CG iterations? 

For quadratic with Gaussian noise, how to relate number of
 CG iterations to noise level? 

∇2JS (wk )dk = −∇JX (wk ) + rk

rk
X = ∇2JX (wk )dk +∇JX (wk ) 
    = ∇2JS (wk )dk +∇JX (wk ) + [∇2JX (wk ) +∇2JS (wk )]dk

Iteration residual                          Hessian error 

Algorithmic solution. 



  After every matrix-vector product compute 

As an estimate to 
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Implementation 

s{∇2JS (wk )pk}/ || pk ||

rk
X = ∇2JS (wk )dk +∇JX (wk ) + [∇

2JX (wk ) − ∇
2JS (wk )]dk

Iteration residual                          Hessian error 

Set CG stop test to balance errors, use sample variance 
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Convergence  - Scale Invariance 

� 

∇2JS (wk )dk = −∇JX (wk )      wk+1 = wk + αkdk

Theorem: Suppose loss function l(w) is strictly convex. 
 For any subsample size |S| and for any number of CG 
steps 

� 

wk  →  w*

•  Newton-like method? 1st order method? 
•  Scale invariant:  
•            at almost all iterations   

� 

x← Ax

� 

αk =1


