
Jorge Nocedal
Northwestern University

IPAM Summer School 2012

Tutorial on

Optimization methods for machine learning

2

1.  We discuss some characteristics of optimization
 problems arising in deep learning, convex

 logistic regression and inverse covariance estimation.

2. There are many tools at our disposal: first and second
 order methods; batch and stochastic algorithms;
 regularization; primal and dual approaches; parallel
 computing

3. Yet the state of affairs with neural nets is confusing to
 me: too many challenges are confronted at once: local
 vs local minima, nonlinearity, stochasticity,
 initializations, heuristics

Overview

3

We need to isolate questions related to optimization, and study
them in a controlled setting

A key question is to understand the properties of stochastic vs
 batch methods in the context of deep learning.

After some clarity is obtained, we need to develop appropriate
algorithms and work complexity bounds, both in a sequential
and a parallel setting

Open Questions

4

I will discuss a few of optimization techniques and
provide some insights into their strengths and weaknesses

We will contrast the deterministic and stochastic settings.
This motivates dynamic sample selection methods

We emphasize the need for general purpose techniques,
second order methods and scale invariance, vs heuristics

Organization

5

Most of my practical experience in optimization methods
for machine learning is for speech recognition (Google)

But I am aware of many tests done in a variety of machine
learning applications due to my involvement in L-BFGS,
Newton-CG methods (Hessian-free), dynamic sampling
methods, etc

I am interested in designing new optimization methods
for machine applications, in particular for deep learning

My Background

6

‘The best optimization algorithms are not the best
 learning algorithms’

 Bottou and Bousquet (2009)

…when taking into account the Estimation and Optimization
Errors

``Stochastic methods best in spite of being worst optimization
 methods”

Intriguing Statements

7

Problem Characteristics
and

Second Order Methods

Part I

8

Neural nets are far more nonlinear than the functions
minimized in many other applications Farabet

The rate of convergence of an optimization algorithm
is still important even though in practice one stops the
iteration far from a minimizer”

Nonlinearity, Ill Conditioning

9

An objective function (Le,…Ng)

Loss function (logistic, least squares, etc):

Ignore regularization term at first: unconstrained optimization

10

General Formulation

min J(w) = 1
m

(w;(zi , yi))
i=1

m

∑ + ν ||w ||1

(w;(zi , yi))

�

 (zi,yi) training data
 zi vector of features; yi labels

min f (x)

 The Newton-CG Method (Hessian Free)

 ∇2 f (xk)p = −∇f (xk) xk+1 = xk +α p

-  This is a linear system of equations of size n
-  Apply the Conjugate Gradient (CG) method to compute an
 approximate solution to this system
-  CG is an iterative method endowed with very interesting
 properties (optimal Krylov method)
-  Hessian need not be computed explicitly
-  Continuum between 1st and 2nd order methods

Problem: min f (x)

Newton-CG: the Convex Case

 ∇2 f (xk)p = −∇f (xk)

-  We show below that
 any number of CG iterations yield a productive step
-  Not true of other iterative methods
-  better direction and length
 than 1st order methods

The conjugate gradient method

min φ(x) = 1
2
xT Ax − bT x ∇φ(x) = Ax − b

Two equivalent problems

solve Ax = b r = Ax − b

�

pk = −rk + βk pk−1

�

 βk =
pk−1
T Ark

pk−1
T Apk−1

Only product Apk is needed
Hessian-free
Choose some initial point: x0
Initial direction: p0 = −r0
For x0 = 0, -r0 = b

For the linear system

 ∇2 f (xk)p = −∇f (xk) Ax = b
r = Ax −b → b = − ∇f (xk)

 We noted -r = b if x0 = 0

Conclusion: if we terminate the CG algorithm after 1 iteration
we obtain a steepest descent step

Interaction between CG and Newton

Newton-CG Framework

Theorem (Newton-CG with any number of CG steps)
Suppose that f is strictly convex. Consider the iteration
 ∇2 f (xk)p = −∇f (xk) + r xk+1 = xk +α p
where α is chosen by a backtracking Armijo line search.
Then {xk}→ x*

Steepest Newton
descent

1 n

Rates of Convergence – Scale Invariance

The rate of convergence can be:
 linear superlinear quadratic
depending on the accuracy of the CG solution

•  It inherits some of the scale invariance properties of the exact
 Newton method: affine change of variables x← Dx

Newton-CG– The Nonconvex Case

If Hessian is not positive definite solve modified System

 [∇2 f (x0) + γ I] p = −∇f (x0) γ > 0

If γ is large enough system is positive definite

Let λ1 ≤ λ2 ≤ ... ≤ λn be the eigenvalues of ∇2 f (x0).
Then the eigenvalues of [∇2 f (x0) + γ I] are:
 λ1 + γ ≤ λ2 + γ ≤ ... ≤ λn + γ

Difficult to choose γ . Trust region method learns γ

The Nonconvex Case: Alternatives

 Bp = −∇f (x0)
Replace ∇2 f (xk) by a positive definite approximation

Option 1: Gauss-Newton Matrix J(xk)J(xk)T

Option 2: Stop CG early - negative curvature
Option 3: Trust region approach

For least squares Gauss-Newton matrix can be seen as an optimal
Inexact CG equivalent to solving in a “subspace inverse”

The Nonconvex Case: CG Termination

 ∇2 f (xk)p = −∇f (x0)
Iterate until negative curvature
is encountered:
 vT∇f (xk)v < 0 xk

Negative
Curvature

Trust region

 min q(d) = dT∇2 f (xk)d +∇f (xk)T d + f (xk)
 s.t. ‖d‖≤ Δ

History of Newton-CG

1.  Proposed in the 1980s for unconstrained optimization and
 systems of equations (Polyak 1960 (bounds))
2. Hessian-free option identified early on
3. Trust region (1980s): robust technique for choosing
4.  Considered today a premier technique for large problems
 (together with nonlinear CG and L-BFGS)
5.  Used in general nonlinear programming: Interior Point,
 Active Set, Augmented Lagrangian methods
6.  Application to stochastic problems (machine learning)
 Martens (2010), Byrd, Chin, Neveitt, Nocedal (2011)

γ

Newton-CG and global minimization

1.  I know of no argument to suggest that Newton-like methods
 are better able at locating lower minima than 1st order methods
2.  Some researchers report success with “Hessian-free methods”
 Martens (2010). Algorithms plagued with heuristics

3. Trust region methods should be explored
4.  Properties of objective functions should be understood: do we
 want to locate global minimizer?
5. More plausible for stochastic gradient descent

Understanding Newton’s Method

 ∇2 f (xk)p = −∇f (xk) → p = −∇2 f (xk)−1∇f (xk)

-  direction points along
 eigenvectors corresponding to smallest eigenvalues
- - get direction and length

 ∇2 f (xk) = λi
i=1

n

∑ vivi
T eigenvalue decomposition

 ∇2 f (xk)−1 =
1
λii=1

n

∑ vivi
T inverse

 p = −
1
λii=1

n

∑ vi (vi
T∇f (xk)

Inexact Newton’s Method

 If we can compute the Newton direction by gradually minimizing
The quadratic, we might obtain efficiency and regularization
(steplength control)

Therefore we need to explicitly
consider the minimization of a quadratic
model of the objective function f

 min q(d) = dT∇2 f (xk)d +∇f (xk)T d + f (xk)

Enter the Conjugate Gradient method

 - The (linear) CG method is an iterative method for solving
linear positive definite systems or minimizing the corresponding
quadratic model.
- Key property: expanding subspace minimization
Tends to minimize first along the largest eigenvectors

 min φ(d) = dT∇2 f (xk)d +∇f (xk)T d + f (xk)

 exact solution (convex case)
 ∇φ(d) = ∇2 f (xk)d +∇f (xk) = 0 Newton step

Steepest descent Coordinate relaxation

 A = ∇2 f (xk) b = −∇f (xk)

Coordinate relaxation does
not terminate in n steps!

The axis are no longer aligned
with the coordinate directions

Conjugate directions always
 work
(lead to solution in n steps)

Expanding Subspace Minimization

Each coordinate minimization determines 1
 component of the solution.
Thus we minimize over an expanding subspace
 and we must have

�

∇φ(xk)
T pi = 0 i = 0,1,...,k −1

Or equivalently

�

rk
T pi = 0 i = 0,1,...,k −1

Steepest descent does not have this property.

There are many conjugate direction methods. One of them is special….

Monotonicity

This provides regularization of the step
- Another choice used in practice is to start the CG method with
 the solution obtained at the previous iteration (monotonicity
 lost)

Theorem: Suppose that the CG method is started at zero. Then
the approximate solutions satisfy ‖d 0‖ ≤ ... ≤ ‖di‖

Hessian Sub Sampling

31

Hessian Sub-Sampling for Newton-CG

Function, gradient: large sample X (batch)
Curvature information: small sample S

•  Newton-like methods very robust with respect to choice
 of Hessian

�

m = 1 m = 168,000
�

S : 5%, 10% X

 ∇2 f (xk)p = −∇f (xk)

32

Stochastic Optimization Problem: (J(w)

Choose random sample of training points X

 JX (w) = 1
| X |

l(w;(zi , yi))i∈X∑

 whose expectation is J(w)

very small X : online, stochastic
large X : batch

 J(w) = 1
m

(w;(zi , yi))
i=1

m

∑

33

A sub-sampled Hessian Newton method

�

∇2JS (wk)dk = −∇JX (wk) wk+1 = wk + dk
�

Choose subsample S ⊂ X ∇2 JS (w) = ∇2(w; zi , yi)S∑

•  Coordinate size of subsample with number of CG steps
•  Example: S=5% and 10 CG steps
•  total step computation ~ 1 function evaluation
•  Similar in cost to steepest descent … but much faster
•  Experiments with logistic function: unit step acceptable

34

Hessian-vector Product without Computing Hessian

�

Define the function Φ(x;d) = ∇f (x)T d

∇xΦ(x;d) =
∂∇f (x)T d

∂x
⎛
⎝⎜

⎞
⎠⎟
= ∇2 f (x)T d

Given a function f :Rn → R and a direction d
Goal: compute ∇2 f (xk)d exactly

35

Example

�

f (x) = exp(x1x2)

∇Φ(x;ν) = ∇f (x)T v = x2 exp(x1x2)()v1 + x1 exp(x1x2)()v2

∇2
xΦ(x)ν =

x2
2 exp(x1x2)()v1 + exp(x1x2) + x1x2 exp(x1x2)()v2
exp(x1x2) + x1x2 exp(x1x2)()v1 + x1

2 exp(x1x2)()v2
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Cost of Hessian-vector product comparable to cost of
one gradient (factor of 3-5)

36

Logistic Regression

•  Cost of Hessian-vector product decreases linearly with |X|
•  Hessian-vector product parallelizes, same as function

�

 JX (w) = l(w;(zi,yi))i∈X
∑

�

 ∇2JX (w)d = h(w;(zi,yi))i∈X
∑ P(i)d

37

The Algorithm

�

Choose subsample Sk (| Sk |<<| X |)
Solve
 ∇2JS (wk)dk = −∇JX (wk)
by Hessian - free CG method
 wk+1 = wk + αkdk (Armijo)
Resample Sk+1 (| Sk+1 |<<| X |)

�

Function sample X given (and fixed)

Rather than one algorithm, this is general technique;
Can derive sub-sampled L-BFGS method
 Byrd, Chin, Neveitt, Nocedal (2011)

38

Characteristics:
•  168,000 training points
•  10,100 parameters (variables)
•  Hessian subsample: 5%
•  Solved on workstation

Speech Recognition Problem

�

J(w) = ln
h=1

N

∑ exp
i=0

NC

∑ (wijfhj)
j=1

NF

∑ − wch
* jfhj∑

39

Classical Newton-CG

Sub-sampled
Newton

L-BFGS (m=5,20)

Function

Time

40

Objective Function

�

J(w) = ln
h=1

N

∑ exp
i=0

NC

∑ (wijfhj)
j=1

NF

∑ − wch
* jfhj∑

1.  Compute gradient (sum…)
2.  Can code Hessian-vector product

Varying CG limit

5CG 2CG

L-BFGS

10-50CG

41

Varying Hessian subsample S

50%
100%

L-BFGS

10%-1%

Summary of results

Preconditioning?

Probability speedup

10% 1.7
12% 2.0
13.5% 4.2

43

How many CG iterations?

For quadratic with Gaussian noise, how to relate number of
 CG iterations to noise level?

∇2JS (wk)dk = −∇JX (wk) + rk

rk
X = ∇2JX (wk)dk +∇JX (wk)
 = ∇2JS (wk)dk +∇JX (wk) + [∇2JX (wk) +∇2JS (wk)]dk

Iteration residual Hessian error

Algorithmic solution.

 After every matrix-vector product compute

As an estimate to

44

Implementation

s{∇2JS (wk)pk}/ || pk ||

rk
X = ∇2JS (wk)dk +∇JX (wk) + [∇

2JX (wk) − ∇
2JS (wk)]dk

Iteration residual Hessian error

Set CG stop test to balance errors, use sample variance

45

Convergence - Scale Invariance

�

∇2JS (wk)dk = −∇JX (wk) wk+1 = wk + αkdk

Theorem: Suppose loss function l(w) is strictly convex.
 For any subsample size |S| and for any number of CG
steps

�

wk → w*

•  Newton-like method? 1st order method?
•  Scale invariant:
•  at almost all iterations

�

x← Ax

�

αk =1

