
A tutorial on sparse modeling.

Outline:

1. Why?

2. What?

3. How.

4. no really, why?

Sparse modeling is a component in many state of the art signal processing

and machine learning tasks.

• image processing (denoising, inpainting, superresolution): [Yu, Mal-

lat, Sapiro], [Mairal, Elad, Sapiro].

• Object recognition: [Yang, Yu, Gong, Huang], [Boureau, La Roux,

Bach, Ponce, LeCun].

• general supervised learning: [Mairal, Bach, Ponce, Sapiro, Zisser-

man].

• Building graphs for large scale semi-supervised learning: [Liu, Wang,

Kumar, Chang].

Sparse modeling and matrix factorizations

Given a d× n matrix X of n points in Rd.

• Want to factor X ≈WZ, where W is d×K, and Z is K ×N .

• W is a dictionary, Z are the coefficients.

• We need to choose an appropriate notion of “close” and conditions

on Z to force the decomposition to be parsimonious

• If we restrict the size of K < min(d,N), and “close” is operator or

Frobenious norm, we get PCA.

• If we restrict Zij ∈ {0,1}, and
∑

iZij = 1 (i.e. Zj is really sparse!), we

get K-means

• Everything in between (including the endpoints): dictionary learning.

E.g.

argmin
Z∈RK×n,W∈S(d−1)×K

n∑

j=1

||Wzj − xj||
2, ||zj||0 ≤ q,

• or the Z coordinate convexification:

argmin
Z∈RK×n,W∈S(d−1)×K

∑

j=1

||Wzj − xj||
2 + λ||zj||1.

Structured sparsity/Group sparsity

Coefficents lie in specified groups; constraints on or penalties for non-

sparse group activations rather than non-sparse elementwise activations

• A simple ”manifold” model: non-overlapping groups and 1-sparse

group activations.

• If the groups overlap, can encourage trees, grids, etc.

Manifold learning

• manifold=locally well approximated by affine spaces (for a true man-

ifold, the tangent spaces).

• It may be impractical to work with the tangent planes at every point

in X.

• if the “curvature” of X is not excessive, it may be possible to find

a set of l good q dimensional “secant” planes so that every point is

close to its secant plane.

Choosing the q−planes that minimize the average distance from each

point in X to its plane is minimizing

||WZ −X||2F ,

such that

W = d

{
(

q
︷︸︸︷

q
︷︸︸︷

q
︷︸︸︷

W1 W2 ... Wl

)

, Z =














|X1|
︷︸︸︷

|X2|
︷︸︸︷

|Xl|
︷︸︸︷

q
{

Z1 0 0 · · · 0

q
{

0 Z2 0 · · · 0

q
{

0 0 Z3 · · · 0
... 0

q
{

0 0 0 0 Zl














,

where Xi is the set of points whose nearest plane is the span of Wi

Thus we can interpret approximating the data set by l q-planes as a

“structured” sparse dictionary design problem with K = lq.

In fact, all the previous models are “manifold” models. For each of the

previous models:

• The analysis map from x to z with W fixed is a piecewise affine.

• The reconstruction map y = Wz is linear.

For example: for the map

z∗ = z∗(x,W) = argmin
z

||Wz − x||2 + λ||z||1,

• under mild regularity conditions on W , the solution z∗ is unique, and

has explicit solution once its sign is fixed:

z∗|Ω = (WT
ΩWΩ)−1(WT

Ωx− λǫ),

where ǫ = sign(z), and Ω is the set of nonzero entries in ǫ.

Sparse coding vs. compressive sensing

Compressive sensing: argmin
z∈RK

||Wz − x||2 + λ||z||1.

Here, z is the data, and x is the code. Encoding is trivial (multiplication

by W), decoding requires an optimization. W is universal.

Sparse coding: argmin
z∈RK

||Wz − x||2 + λ||z||1.

Here, z is the code, and x is the data. Decoding is trivial (multiplication

by W), encoding requires an optimization. W is adapted.

Greedy methods for the forward l0 problem with W fixed

min
z
||Wz − x||2,

||z||0 ≤ q,

where the d×K matrix W is the dictionary, the K × 1 z is the code, and

x is an d× 1 data vector.

• matching pursuit, orthogonal matching pursuit, order recursive match-

ing pursuit

• CoSaMP [Needell and Tropp].

(O)MP:

1. Initialize: coefficients z = 0, residual r = x, active set Ω = ∅.

2. j = argmaxi |W
T
i r|

3. Ω = Ω
⋃
j

4. For MP zj = WT
Ωr

For OMP z =
(

WT
ΩWΩ

)−1
WT

ΩX

5. r = x−Wz. Goto 2 until q iterations.

Note that with a bit of bookkeeping, it is only necessary to multiply W
against x once, instead of q times. This at a cost of an extra O(k2)
storage for the Gram matrix Q of W . We can also keep a running update

of Q−1Ω =
(

WT
ΩWΩ

)−1
using a Cholesky factorization, and the submatrix

QΩ = WTWΩ of Q. Critical for many inferences with a fixed dictionary.

1. Initialize: t = s = WTx, active set Ω = ∅.

2. j = argmaxi |ti|

3. Ω = Ω
⋃
j, update Q−1Ω

4. t = sΩ −QΩQ−1Ω sΩ

5. goto 2 until q iterations.

when to use what method?

• ORMP>OMP>>MP, in terms of accuracy. Exactly opposite in terms

of runtime.

• don’t use MP unless you have to (need every cpu cycle, or in convo-

lutional problems).

• if problem is large, and only being done once, solution is not very

sparse, and dictionary is well conditioned, use CoSaMP.

In general, greedy methods good when you expect/will enforce extreme

sparsity. Computation time is roughly on the order of one multiplication

of the data by the dictionary, assuming you have stored the Q.

methods for the forward relaxed problem with W fixed:

argmin
z

||Wz − x||2 + λ||z||1

too many methods to discuss. Will focus on two good ones.

LARS [Efron, Hastie, Johnstone, Tibshirani] uses the explicit solution

once the active set is fixed to generate a path in solution space param-

eterized by the regularity. As before, can store WTW and keep running

updates of all variables in compact form for large speedup.

1. set Ω = argmax |WT
j x|, λ = |WT

Ωx|,

2. choose the next smallest λ such that with

z|Ω = (WT
ΩWΩ)−1(WT

Ωx− λǫΩ), zΩc = 0,

(a) ∃ i ∈ Ωc such that |WT
i (Wz − x)| = λ; in this case, Ω = Ω

⋃
i.

(b) ∃ i ∈ Ω such that zi = 0; in this case, Ω = Ω− i.

3. Update ǫ

ISTA: Iterated Shrinkage Thresholding Algorithm or proximal gradient

descent:

1. Initialize: z = 0.

2. y = z − ηWT(Wz − x)

(gradient step with respect to the smooth part).

3. z = argminp ||p− y||2 + ηλ|p|1
= shrink(y, ηλ)

= (|y| − ηλ)+ sign(y)

(optimize the nonsmooth part with a penalty for straying too far from

smooth update).

4. goto 2 until stopping criteria.

As before, we can precompute things and make the algorithm a little

faster. Set Q = WTW , b = WTx.

1. Initialize: z = 0, t1 = 1.

2. xk = shrink((I −Q)z − b, ηλ)

3. tk +1

4. repeat until stopping criteria.

Notice: linear map, followed by offset, followed by nonlinearity. Repeat.

Using a clever (magic) momentum term convergence can be greatly sped

up! [Nesterov 1983, Beck and Teboulle 2009]

1. yk = shrink((I −Q)zk − b, ηλ)

2. tk+1 =
(

1+
√

1+ t2k+1

)

/2

3. zk+1 = yk +
tk−1
tk+1

(yk − yk−1)

when to use what method?

• for many small, very sparse problems use LARS (almost as fast as

OMP there).

• if problem is large, and only being done once, solution is not very

sparse, and dictionary is well conditioned, use Nesterov accelerated

proximal gradient descent.

Note: an introduction to methods for basis pursuit could easily be a

weeklong affair.

Learning the W

General good practice: some version of stochastic gradient descent.

• Gradient w.r.t. W :

∇W = (Wz − x)xT .

Can sometimes do better with averaging type sgd. e.g. [Mairal, Bach,

Ponce, Sapiro].

Batch: alternate between updating the codes and updating the filters,

as in K-SVD [Aharon el. al]:

1. Initialize W .

2. Solve for Z as above.

3. For each Wj,

• find all x where Wj is activated

• for each such xp, find ep by removing the contribution of Wj (that

is ep = xp −Wjzjp).

• update Wj ← PCA(Ep)

What do we know theoretically?:

About the compressed sensing problem, Lots!

• if W is sufficiently regular (e.g. incoherent), and z is sufficiently

sparse, both greedy methods and l1 relaxations are guaranteed to

recover the true z

• Mutual coherence: µ(W) = maxi 6=j(| < Wj,Wi > |)

• Problem: dictionaries we train will often be coherent.

What do we know theoretically about dictionary learning (that is,

when does it work?):

Very little!

Dictionary identification:

• If enough data is sampled i.i.d. from distribution built from an inco-

herent dictionary, then w.h.p. the “true solution” is a local minimum

for the dictionary learning problem [Gribonval and Schnass], [Geng

and Wright].

• These works are for the constrained problem

min |z|1 s.t. Wz = x.

Generalization bounds [Maurer and Pontil]:

Define

z(x,W) = argmin
|z|1=1

||Wz − x||2

suppose the n point set X ⊂ Rd is generated i.i.d. from µ, and W∗ is the

minimizer of
∑

x∈X

||W∗z(x,W∗)− x||2,

and Ŵ is the minimizer of

Eµ(x)||Ŵz(x, Ŵ)− x||2,

and B is the value of that expression at the minimizer. Then

Eµ(x)||W∗z(x,W∗)− x||2 < B +O



K

√

lnm

m
+

√

log(1/δ

m





with probability δ. (see also [Vainsencher, Mannor, Bruckstein])

• But all of these discuss our ability to succesfully use the model. They

do not give much insight to when the model makes sense and should

be used.

• Can we look at a set of data points, extract some geometric statistics,

and then decide sparse modeling is a reasonable approach for that

data? and estimate the correct method and parameters for maximum

generalization?

• even in simple cases?

let R(X,K, q) be the minimal error ||W∗Z∗−X||2FRO for a given K, q, and

X in the pure sparse coding model.

• Question 1: What is the worst possible reconstruction error for a

data set with n points? In equations, the problem is to describe

f(K, q, n) = max
X∈Sd−1,|X|=n

R(X,K, q).

Here X is constrained to the unit sphere to avoid a trivial answer via

scaling, and |X| is the number of elements in X.

• Question 2: Suppose that we know X is actually close to a given set

of q′-planes in Rd, that is, there exist orthogonal matrices P1, ..., Pm

of size d× q′

∑

j

min
i
||xj − PiP

T
i xj||

2 ≤ ǫ.

Then describe

f(K, q, n) = min
X∈Sd−1,|X|=n

R(X,K, q).

Also: how to get from a representation of X via the P to a represen-

tation via W and Z?

• Question 3: More generally, what kinds of geometries (if not locally

approximated by planes) allow for good representations via the various

sparse coding models? In other words, given a data set, how can we

decide which (if any) of the models are appropriate?

– Not completely trivial/nontrivial even for PCA, depending on the

(kind of) noise in the data

– Or even: how can we decide on the parameters of the model if

we know the correct one?!

– Just deciding q is a serious issue (even in the PCA case, with

certain kinds of noise)....

• What about the relationship between sparse modeling and pooling?

