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Introduction

Learning from data leads naturally to optimization formulations. Typical
ingredients of a learning problem include

Collection of “training” data, from which we want to learn to make
inferences about future data.

Parametrized model, whose parameters can in principle be determined
from training data + prior knowledge.

Objective that captures prediction errors on the training data and
deviation from prior knowledge or desirable structure.

Other typical properties of learning problems are huge underlying data set,
and requirement for solutions with only low-medium accuracy.

Formulation as an optimization problem can be difficult and controversial.
However there are several important paradigms in which the issue is well
settled. (e.g. Support Vector Machines, Logistic Regression,
Recommender Systems.)
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Optimization Formulations

There is a wide variety of optimization formulations for machine learning
problems. But several common issues and structures arise in many cases.

Imposing structure. Can include regularization functions in the
objective or constraints.

‖x‖1 to induce sparsity in the vector x ;
Nuclear norm ‖X‖∗ (sum of singular values) to induce low rank in X .

Objective: Can be derived from Bayesian statistics + maximum
likelihood criterion. Can incorporate prior knowledge.

Objectives f have distinctive properties in several applications:

Partially separable: f (x) =
∑

e∈E fe(xe), where each xe is a subvector
of x , and each term fe corresponds to a single item of data.

Sometimes possible to compute subvectors of the gradient ∇f at
proportionately lower cost than the full gradient.

These two properties are often combined: In partially separable f ,
subvector xe is often small.
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Examples: Partially Separable Structure

1. SVM with hinge loss:

f (w) = C
N∑
i=1

max(1− yi (wT xi ), 0) +
1

2
‖w‖2,

where variable vector w contains feature weights, xi are feature
vectors, yi = ±1 are labels, and C > 0 is a parameter.

2. Matrix completion. Given k × n marix M with entries (u, v) ∈ E
specified, seek L (k × r) and R (n × r) such that M ≈ LRT .

min
L,R

∑
(u,v)∈E

{
(Lu·R

T
v · −Muv )2 + µu‖Lu·‖2

F + µv‖Rv ·‖2
F

}
.
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Examples: Partially Separable Structure

3. Regularized logistic regression (2 classes):

f (w) = − 1

N

N∑
i=1

log(1 + exp(yiw
T xi )) + µ‖w‖1.

4. Logistic regression (M classes): yij = 1 if data point i is in class j ;
yij = 0 otherwise. w[j] is the subvector of w for class j .

f (w) = − 1

N

N∑
i=1

 M∑
j=1

yij(wT
[j]xi )− log(

M∑
j=1

exp(wT
[j]xi ))

+
M∑
j=1

‖w[j]‖2
2.
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Examples: “Partial Gradient” Structure

1. Dual, nonlinear SVM:

min
α

1

2
αTKα− 1Tα s.t. 0 ≤ α ≤ C1, yTα = 0,

where Kij = yiyjk(xi , xj), with k(·, ·) a kernel function. Subvectors of
the gradient Kα− 1 can be updated and maintained economically.

2. Logistic regression (again): Gradient of log-likelihood function is

1

N
XTu, where ui = −yi (1 + exp(yiw

T xi )), i = 1, 2, . . . ,N.

If w is sparse, it may be cheap to evaluate u, which is dense. Then,
evaluation of partial gradient [∇f (x)]G may be cheap.

Partitioning of x may also arise naturally from problem structure, parallel
implementation, or administrative reasons (e.g. decentralized control).

(Block) Coordinate Descent methods that exploit this property have been
successful. (More tomorrow.)
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Batch vs Incremental

Considering the partially separable form

f (x) =
∑
e∈E

fe(xe),

the size |E | of the training set can be very large. Practical considerations,
and differing requirements for solution accuracy lead to a fundamental
divide in algorithmic strategy.

Incremental: Select a single e at random, evaluate ∇fe(xe), and
take a step in this direction. (Note that E (∇fe(xe)) = |E |−1∇f (x).)
Stochastic Approximation (SA).

Batch: Select a subset of data Ẽ ⊂ E , and minimize the function
f̃ (x) =

∑
e∈Ẽ fe(xe). Sample-Average Approximation (SAA).

Minibatch is a kind of compromise: Aggregate the e into small groups,
consisting of 10 or 100 individual terms, and apply incremental algorithms
to the redefined summation. (Gives lower-variance gradient estimates.)
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Background: Optimization and Machine Learning

A long history of connections. Examples:

Back-propagation for neural networks was recognized in the 80s or
earlier as an incremental gradient method.

Support Vector machine formulated as a linear and quadratic program
in the late 1980s. Duality allowed formulation of nonlinear SVM as a
convex QP. From late 1990s, many specialized optimization methods
were applied: interior-point, coordinate descent / decomposition,
cutting-plane, stochastic gradient.

Stochastic gradient. Originally Robbins-Munro (1951). Optimizers in
Russia developed algorithms from 1980 onwards. Rediscovered by
machine learning community around 2004 (Bottou, LeCun). Parallel
and independent work in ML and Optimization communities until
2009. Intense research continues.

Connections are now stronger than ever, with much collaborative and
crossover activity.
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Gradient Methods

min f (x), with smooth convex f . Usually assume

µI � ∇2f (x) � LI for all x ,

with 0 ≤ µ ≤ L. (L is thus a Lipschitz constant on the gradient ∇f .)

µ > 0 ⇒ strongly convex. Have

f (y)− f (x)−∇f (x)T (y − x) ≥ 1

2
µ‖y − x‖2.

(Mostly assume ‖ · ‖ := ‖ · ‖2.) Define conditioning κ := L/µ.

Sometimes discuss convex quadratic f :

f (x) =
1

2
xTAx , where µI � A � LI .
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What’s the Setup?

Assume in this part of talk that we can evaluate f and ∇f at each iterate
xi . But we are interested in extending to broader class of problems:

nonsmooth f ;

f not available;

only an estimate of the gradient (or subgradient) is available;

impose a constraint x ∈ Ω for some simple set Ω (e.g. ball, box,
simplex);

a nonsmooth regularization term may be added to the objective f .

Focus on algorithms that can be adapted to these circumstances.
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Steepest Descent

xk+1 = xk − αk∇f (xk), for some αk > 0.

Different ways to identify an appropriate αk .

1 Hard: Interpolating scheme with safeguarding to identify an
approximate minimizing αk .

2 Easy: Backtracking. ᾱ, 1
2 ᾱ, 1

4 ᾱ, 1
8 ᾱ, ... until a sufficient decrease in

f is obtained.

3 Trivial: Don’t test for function decrease. Use rules based on L and µ.

Traditional analysis for 1 and 2: Usually yields global convergence at
unspecified rate. The “greedy” strategy of getting good decrease from the
current search direction is appealing, and may lead to better practical
results.

Analysis for 3: Focuses on convergence rate, and leads to accelerated
multistep methods.
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Line Search

Works for nonconvex f also.

Seek αk that satisfies Wolfe conditions: “sufficient decrease” in f :

f (xk − αk∇f (xk)) ≤ f (xk)− c1αk‖∇f (xk)‖2, (0 < c1 � 1)

while not being too small (significant increase in the directional derivative):

∇f (xk+1)T∇f (xk) ≥ −c2‖∇f (xk)‖2, (c1 < c2 < 1).

Can show that for convex f , accumulation points x̄ of {xk} are stationary:
∇f (x̄) = 0. (Optimal, when f is convex.)

Can do a one-dimensional line search for αk , taking minima of quadratic
or cubics that interpolate the function and gradient information at the last
two values tried. Use brackets to ensure steady convergence. Often find a
suitable α within 3 attempts.

(See e.g. Ch. 3 of Nocedal & Wright, 2006)
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Backtracking

Try αk = ᾱ, ᾱ/2, ᾱ/4, ᾱ/8, ... until the sufficient decrease condition is
satisfied.

(No need to check the second Wolfe condition, as the value of αk thus
identified is “within striking distance” of a value that’s too large — so it is
not too short.)

These methods are widely used in many applications, but they don’t work
on nonsmooth problems when subgradients replace gradients, or when f is
not available.
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Constant (Short) Steplength

By elementary use of Taylor’s theorem, obtain

f (xk+1) ≤ f (xk)− αk

(
1− αk

2
L
)
‖∇f (xk)‖2

2.

For αk ≡ 1/L, have

f (xk+1) ≤ f (xk)− 1

2L
‖∇f (xk)‖2

2.

thus
‖∇f (xk)‖2 ≤ 2L[f (xk)− f (xk+1)].

By summing from k = 0 to k = N, and telescoping the sum, we have

N∑
k=1

‖∇f (xk)‖2 ≤ 2L[f (x0)− f (xN+1)].

(It follows that ∇f (xk)→ 0 if f is bounded below.)
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Rate Analysis

Another elementary use of Taylor’s theorem shows that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − αk(2/L− αk)‖∇f (xk)‖2,

so that {‖xk − x∗‖} is decreasing.

Define for convenience: ∆k := f (xk)− f (x∗).

By convexity, have

∆k ≤ ∇f (xk)T (xk − x∗) ≤ ‖∇f (xk)‖ ‖xk − x∗‖ ≤ ‖∇f (xk)‖ ‖x0 − x∗‖.

From previous page (subtracting f (x∗) from both sides of the inequality),
and using the inequality above, we have

∆k+1 ≤ ∆k − (1/2L)‖∇f (xk)‖2 ≤ ∆k −
1

2L‖x0 − x∗‖2
∆2

k .
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Weakly convex: 1/k sublinear; Strongly convex: linear

Take reciprocal of both sides and manipulate (using (1− ε)−1 ≥ 1 + ε):

1

∆k+1
≥ 1

∆k
+

1

2L‖x0 − x∗‖2
≥ 1

∆0
+

k + 1

2L‖x0 − x∗‖2
,

which yields

f (xk+1)− f (x∗) ≤ 2L‖x0 − x‖2

k + 1
.

The classic 1/k convergence rate!

By assuming µ > 0, can set αk ≡ 2/(µ+ L) and get a linear (geometric)
rate: Much better than sublinear, in the long run

‖xk − x∗‖2 ≤
(

L− µ
L + µ

)2k

‖x0 − x∗‖2 =

(
1− 2

κ+ 1

)2k

‖x0 − x∗‖2.
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Since by Taylor’s theorem we have

∆k = f (xk)− f (x∗) ≤ (L/2)‖xk − x∗‖2,

it follows immediately that

f (xk)− f (x∗) ≤ L

2

(
1− 2

κ+ 1

)2k

‖x0 − x∗‖2.

Note: A geometric / linear rate is generally much better than any
sublinear (1/k or 1/k2) rate.
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The 1/k2 Speed Limit

Nesterov (2004) gives a simple example of a smooth function for which no
method that generates iterates of the form xk+1 = xk − αk∇f (xk) can
converge at a rate faster than 1/k2, at least for its first n/2 iterations.

Note that xk+1 ∈ x0 + span(∇f (x0),∇f (x1), . . . ,∇f (xk)).

A =


2 −1 0 0 . . . . . . 0
−1 2 −1 0 . . . . . . 0
0 −1 2 −1 0 . . . 0

. . .
. . .

. . .

0 . . . 0 −1 2

 , e1 =


1
0
0
...
0


and set f (x) = (1/2)xTAx − eT1 x . The solution has x∗(i) = 1− i/(n + 1).

If we start at x0 = 0, each ∇f (xk) has nonzeros only in its first k entries.
Hence, xk+1(i) = 0 for i = k + 1, k + 2, . . . , n. Can show

f (xk)− f ∗ ≥ 3L‖x0 − x∗‖2

32(k + 1)2
.
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Exact minimizing αk : Faster rate?

Take αk to be the exact minimizer of f along −∇f (xk). Does this yield a
better rate of linear convergence?

Consider the convex quadratic f (x) = (1/2)xTAx . (Thus x∗ = 0 and
f (x∗) = 0.) Here κ is the condition number of A.
We have ∇f (xk) = Axk . Exact minimizing αk :

αk =
xT
k A2xk

xT
k A3xk

= arg min
α

1

2
(xk − αAxk)TA(xk − αAxk),

which is in the interval
[

1
L ,

1
µ

]
. Thus

f (xk+1) ≤ f (xk)− 1

2

(xT
k A2xk)2

(xT
k Axk)(xT

k A3xk)
,

so, defining zk := Axk , we have

f (xk+1)− f (x∗)

f (xk)− f (x∗)
≤ 1− ‖zk‖4

(zT
k A−1zk)(zT

k Azk)
.
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Use Kantorovich inequality:

(zTAz)(zTA−1z) ≤ (L + µ)2

4Lµ
‖z‖4.

Thus
f (xk+1)− f (x∗)

f (xk)− f (x∗)
≤ 1− 4Lµ

(L + µ)2
=

(
1− 2

κ+ 1

)2

,

and so

f (xk)− f (x∗) ≤
(

1− 2

κ+ 1

)2k

[f (x0)− f (x∗)].

No improvement in the linear rate over constant steplength.
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The slow linear rate is typical!

Not just a pessimistic bound!
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Multistep Methods: Heavy-Ball

Enhance the search direction by including a contribution from the previous
step.

Consider first constant step lengths:

xk+1 = xk − α∇f (xk) + β(xk − xk−1)

Analyze by defining a composite iterate vector:

wk :=

[
xk − x∗

xk−1 − x∗

]
.

Thus

wk+1 = Bwk + o(‖wk‖), B :=

[
−α∇2f (x∗) + (1 + β)I −βI

I 0

]
.
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B has same eigenvalues as[
−αΛ + (1 + β)I −βI

I 0

]
, Λ = diag(λ1, λ2, . . . , λn),

where λi are the eigenvalues of ∇2f (x∗). Choose α, β to explicitly
minimize the max eigenvalue of B, obtain

α =
4

L

1

(1 + 1/
√
κ)2

, β =

(
1− 2√

κ+ 1

)2

.

Leads to linear convergence for ‖xk − x∗‖ with rate approximately(
1− 2√

κ+ 1

)
.
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Summary: Linear Convergence, Strictly Convex f

Steepest descent: Linear rate approx (1− 2/κ);

Heavy-ball: Linear rate approx (1− 2/
√
κ).

Big difference! To reduce ‖xk − x∗‖ by a factor ε, need k large enough that(
1− 2

κ

)k

≤ ε ⇐ k ≥ κ

2
| log ε| (steepest descent)(

1− 2√
κ

)k

≤ ε ⇐ k ≥
√
κ

2
| log ε| (heavy-ball)

A factor of
√
κ difference. e.g. if κ = 100, need 10 times fewer steps.
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Conjugate Gradient

Basic step is

xk+1 = xk + αkpk , pk = −∇f (xk) + γkpk−1.

We can identify it with heavy-ball by setting βk = αkγk/αk−1. However,
CG can be implemented in a way that doesn’t require knowledge (or
estimation) of L and µ.

Choose αk to (approximately) miminize f along pk ;

Choose γk by a variety of formulae (Fletcher-Reeves, Polak-Ribiere,
etc), all of which are equivalent if f is convex quadratic. e.g.

γk = ‖∇f (xk)‖2/‖∇f (xk−1)‖2.
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CG, cont’d.

Nonlinear CG: Variants include Fletcher-Reeves, Polak-Ribiere, Hestenes.

Restarting periodically with pk = −∇f (xk) is a useful feature (e.g. every n
iterations, or when pk is not a descent direction).

For f quadratic, convergence analysis is based on eigenvalues of A and
Chebyshev polynomials, min-max arguments. Get

Finite termination in as many iterations as there are distinct
eigenvalues;

Asymptotic linear convergence with rate approx 1− 2/
√
κ. (Like

heavy-ball.)

See e.g. Chap. 5 of Nocedal & Wright (2006) and refs therein.
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Accelerated First-Order Methods

Accelerate the rate to 1/k2 for weakly convex, while retaining the linear
rate (related to

√
κ) for strongly convex case.

Nesterov (1983, 2004) describes a method that requires κ.

0: Choose x0, α0 ∈ (0, 1); set y0 ← x0./

k : xk+1 ← yk − 1
L∇f (yk); (*short-step gradient*)

solve for αk+1 ∈ (0, 1): α2
k+1 = (1− αk+1)α2

k + αk+1/κ;
set βk = αk(1− αk)/(α2

k + αk+1);
set yk+1 ← xk+1 + βk(xk+1 − xk).

Still works for weakly convex (κ =∞).
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k

xk+1

xk

y
k+1

xk+2

y
k+2

y
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Convergence Results: Nesterov

If α0 ≥ 1/
√
κ, have

f (xk)− f (x∗) ≤ c1 min

((
1− 1√

κ

)k

,
4L

(
√

L + c2k)2

)
,

where constants c1 and c2 depend on x0, α0, L.

Linear convergence at “heavy-ball” rate in strongly convex case, otherwise
1/k2.

In the special case of α0 = 1/
√
κ, this scheme yields

αk ≡
1√
κ
, βk ≡ 1− 2√

κ+ 1
.
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FISTA

(Beck & Teboulle 2007). Similar to the above, but with a fairly short and
elementary analysis (though still not very intuitive).

0: Choose x0; set y1 = x0, t1 = 1;

k : xk ← yk − 1
L∇f (yk);

tk+1 ← 1
2

(
1 +

√
1 + 4t2

k

)
;

yk+1 ← xk + tk−1
tk+1

(xk − xk−1).

For (weakly) convex f , converges with f (xk)− f (x∗) ∼ 1/k2.

When L is not known, increase an estimate of L until it’s big enough.

Beck & Teboulle (2010) does the convergence analysis in 2-3 pages:
elementary, technical.
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A Non-Monotone Gradient Method: Barzilai-Borwein

(Barzilai & Borwein 1988) BB is a gradient method, but with an unusual
choice of αk . Allows f to increase (sometimes dramatically) on some steps.

xk+1 = xk − αk∇f (xk), αk := arg min
α
‖sk − αzk‖2,

where
sk := xk − xk−1, zk := ∇f (xk)−∇f (xk−1).

Explicitly, we have

αk =
sTk zk

zT
k zk

.

Note that for convex quadratic f = (1/2)xTAx , we have

αk =
sTk Ask

sTk A2sk
∈ [L−1, µ−1].

Hence, can view BB as a kind of quasi-Newton method, with the Hessian
approximated by α−1

k I .
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Comparison: BB vs Greedy Steepest Descent
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Many BB Variants

can use αk = sTk sk/sTk zk in place of αk = sTk zk/zT
k zk ;

alternate between these two formulae;

calculate αk as above and hold it constant for 2, 3, or 5 successive
steps;

take αk to be the exact steepest descent step from the previous
iteration.

Nonmonotonicity appears essential to performance. Some variants get
global convergence by requiring a sufficient decrease in f over the worst of
the last 10 iterates.

The original 1988 analysis in BB’s paper is nonstandard and illuminating
(just for a 2-variable quadratic).

In fact, most analyses of BB and related methods are nonstandard, and
consider only special cases. The precursor of such analyses is Akaike
(1959). More recently, see Ascher, Dai, Fletcher, Hager and others.
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Primal-Dual Averaging

(see Nesterov 2009) Basic step:

xk+1 = arg min
x

1

k + 1

k∑
i=0

[f (xi ) +∇f (xi )
T (x − xi )] +

γ√
k
‖x − x0‖2

= arg min
x

ḡT
k x +

γ√
k
‖x − x0‖2,

where ḡk :=
∑k

i=0∇f (xi )/(k + 1) — the averaged gradient.

The last term is always centered at the first iterate x0.

Gradient information is averaged over all steps, with equal weights.

γ is constant - results can be sensitive to this value.

The approach still works for convex nondifferentiable f , where ∇f (xi )
is replaced by a vector from the subgradient ∂f (xi ).
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Convergence Properties

Nesterov proves convergence for averaged iterates:

x̄k+1 =
1

k + 1

k∑
i=0

xi .

Provided the iterates and the solution x∗ lie within some ball of radius D
around x0, we have

f (x̄k+1)− f (x∗) ≤ C√
k
,

where C depends on D, a uniform bound on ‖∇f (x)‖, and γ (coefficient
of stabilizing term).

Note: There’s averaging in both primal (xi ) and dual (∇f (xi )) spaces.

Generalizes easily and robustly to the case in which only estimated
gradients or subgradients are available.

(Averaging smooths the errors in the individual gradient estimates.)
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Extending to the Constrained Case: x ∈ Ω

How do these methods change when we require x ∈ Ω, with Ω closed and
convex?

Some algorithms and theory stay much the same, provided we can involve
Ω explicity in the subproblems.

Example: Primal-Dual Averaging for minx∈Ω f (x).

xk+1 = arg min
x∈Ω

ḡT
k x +

γ√
k
‖x − x0‖2,

where ḡk :=
∑k

i=0∇f (xi )/(k + 1). When Ω is a box, this subproblem is
easy to solve.
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Example: Nesterov’s Constant Step Scheme for minx∈Ω f (x). Requires
just only calculation to be changed from the unconstrained version.

0: Choose x0, α0 ∈ (0, 1); set y0 ← x0, q ← 1/κ = µ/L.

k : xk+1 ← arg miny∈Ω
1
2‖y − [yk − 1

L∇f (yk)]‖2
2;

solve for αk+1 ∈ (0, 1): α2
k+1 = (1− αk+1)α2

k + qαk+1;
set βk = αk(1− αk)/(α2

k + αk+1);
set yk+1 ← xk+1 + βk(xk+1 − xk).

Convergence theory is unchanged.
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Regularized Optimization (More Later)

FISTA can be applied with minimal changes to the regularized problem

min
x

f (x) + τψ(x),

where f is convex and smooth, ψ convex and “simple” but usually
nonsmooth, and τ is a positive parameter.

Simply replace the gradient step by

xk = arg min
x

L

2

∥∥∥∥x −
[

yk −
1

L
∇f (yk)

]∥∥∥∥2

+ τψ(x).

(This is the “shrinkage” step; when ψ ≡ 0 or ψ = ‖ · ‖1, can be solved
cheaply.)

More on this later.
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3 B. T. Polyak, Introduction to Optimization, Optimization Software Inc, 1987.

4 J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,” IMA
Journal of Numerical Analysis, 8, pp. 141-148, 1988.

5 Y. Nesterov, “Primal-dual subgradient methods for convex programs,”
Mathematical Programming, Series B, 120, pp. 221-259, 2009.

6 J. Nocedal and S. Wright, Numerical Optimization, 2nd ed., Springer, 2006.
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Stochastic Gradient Methods

Still deal with (weakly or strongly) convex f . But change the rules:

Allow f nonsmooth.

Can’t get function values f (x).

At any feasible x , have access only to an unbiased estimate of an
element of the subgradient ∂f .

Common settings are:
f (x) = EξF (x , ξ),

where ξ is a random vector with distribution P over a set Ξ. Also the
special case:

f (x) =
m∑
i=1

fi (x),

where each fi is convex and nonsmooth.
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Applications

This setting is useful for machine learning formulations. Given data
xi ∈ Rn and labels yi = ±1, i = 1, 2, . . . ,m, find w that minimizes

τψ(w) +
m∑
i=1

`(w ; xi , yi ),

where ψ is a regularizer, τ > 0 is a parameter, and ` is a loss. For linear
classifiers/regressors, have the specific form `(wT xi , yi ).

Example: SVM with hinge loss `(wT xi , yi ) = max(1− yi (wT xi ), 0) and
ψ = ‖ · ‖1 or ψ = ‖ · ‖2

2.

Example: Logistic regression: `(wT xi , yi ) = log(1 + exp(yiw
T xi )). In

regularized version may have ψ(w) = ‖w‖1.
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Subgradients

For each x in domain of f , g is a subgradient of f at x if

f (z) ≥ f (x) + gT (z − x), for all z ∈ domf .

Right-hand side is a supporting hyperplane.
The set of subgradients is called the subdifferential, denoted by ∂f (x).
When f is differentiable at x , have ∂f (x) = {∇f (x)}.

We have strong convexity with modulus µ > 0 if

f (z) ≥ f (x)+gT (z−x)+
1

2
µ‖z−x‖2, for all x , z ∈ domf with g ∈ ∂f (x).

Generalizes the assumption ∇2f (x) � µI made earlier for smooth
functions.
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“Classical” Stochastic Approximation

Denote by G (x , ξ) ths subgradient estimate generated at x . For
unbiasedness need EξG (x , ξ) ∈ ∂f (x).

Basic SA Scheme: At iteration k, choose ξk i.i.d. according to distribution
P, choose some αk > 0, and set

xk+1 = xk − αkG (xk , ξk).

Note that xk+1 depends on all random variables up to iteration k , i.e.
ξ[k] := {ξ1, ξ2, . . . , ξk}.

When f is strongly convex, the analysis of convergence of E (‖xk − x∗‖2) is
fairly elementary - see Nemirovski et al (2009).
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Rate: 1/k

Define ak = 1
2 E (‖xk − x∗‖2). Assume there is M > 0 such that

E (‖G (x , ξ)‖2) ≤ M2 for all x of interest. Thus

1

2
‖xk+1 − x∗‖2

2

=
1

2
‖xk − αkG (xk , ξk)− x∗‖2

=
1

2
‖xk − x∗‖2

2 − αk(xk − x∗)TG (xk , ξk) +
1

2
α2
k‖G (xk , ξk)‖2.

Taking expectations, get

ak+1 ≤ ak − αkE [(xk − x∗)TG (xk , ξk)] +
1

2
α2
kM2.

For middle term, have

E [(xk − x∗)TG (xk , ξk)] = Eξ[k−1]
Eξk [(xk − x∗)TG (xk , ξk)|ξ[k−1]]

= Eξ[k−1]
(xk − x∗)Tgk ,
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... where
gk := Eξk [G (xk , ξk)|ξ[k−1]] ∈ ∂f (xk).

By strong convexity, have

(xk − x∗)Tgk ≥ f (xk)− f (x∗) +
1

2
µ‖xk − x∗‖2 ≥ µ‖xk − x∗‖2.

Hence by taking expectations, we get E [(xk − x∗)Tgk ] ≥ 2µak . Then,
substituting above, we obtain

ak+1 ≤ (1− 2µαk)ak +
1

2
α2
kM2

When

αk ≡
1

kµ
,

a neat inductive argument (below) reveals the 1/k rate:

ak ≤
Q

2k
, for Q := max

(
‖x1 − x∗‖2,

M2

µ2

)
.
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Proof: Clearly true for k = 1. Otherwise:

ak+1 ≤ (1− 2µαk)ak +
1

2
α2
kM2

≤
(

1− 2

k

)
ak +

M2

2k2µ2

≤
(

1− 2

k

)
Q

2k
+

Q

2k2

=
(k − 1)

2k2
Q

=
k2 − 1

k2

Q

2(k + 1)

≤ Q

2(k + 1)
,

as claimed.
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But... What if we don’t know µ? Or if µ = 0?

The choice αk = 1/(kµ) requires strong convexity, with knowledge of the
modulus µ. An underestimate of µ can greatly degrade the performance of
the method (see example in Nemirovski et al. 2009).

Now describe a Robust Stochastic Approximation approach, which has a
rate 1/

√
k (in function value convergence), and works for weakly convex

nonsmooth functions and is not sensitive to choice of parameters in the
step length.

This is the approach that generalizes to mirror descent.
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Robust SA

At iteration k :

set xk+1 = xk − αkG (xk , ξk) as before;

set

x̄k =

∑k
i=1 αixi∑k
i=1 αi

.

For any θ > 0 (not critical), choose step lengths to be

αk =
θ

M
√

k
.

Then f (x̄k) converges to f (x∗) in expectation with rate approximately
(log k)/k1/2. The choice of θ is not critical.
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Analysis of Robust SA

The analysis is again elementary. As above (using i instead of k), have:

αiE [(xi − x∗)Tgi ] ≤ ai − ai+1 +
1

2
α2
i M2.

By convexity of f , and gi ∈ ∂f (xi ):

f (x∗) ≥ f (xi ) + gT
i (x∗ − xi ),

thus

αiE [f (xi )− f (x∗)] ≤ ai − ai+1 +
1

2
α2
i M2,

so by summing iterates i = 1, 2, . . . , k , telescoping, and using ak+1 > 0:

k∑
i=1

αiE [f (xi )− f (x∗)] ≤ a1 +
1

2
M2

k∑
i=1

α2
i .
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Thus dividing by
∑

i=1 αi :

E

[∑k
i=1 αi f (xi )∑k

i=1 αi

− f (x∗)

]
≤

a1 + 1
2 M2

∑k
i=1 α

2
i∑k

i=1 αi

.

By convexity, we have

f (x̄k) ≤
∑k

i=1 αi f (xi )∑k
i=1 αi

,

so obtain the fundamental bound:

E [f (x̄k)− f (x∗)] ≤
a1 + 1

2 M2
∑k

i=1 α
2
i∑k

i=1 αi

.
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By substituting αi = θ
M
√
i
, we obtain

E [f (x̄k)− f (x∗)] ≤
a1 + 1

2θ
2
∑k

i=1
1
i

θ
M

∑k
i=1

1√
i

≤ a1 + θ2 log(k + 1)
θ
M

√
k

= M
[a1

θ
+ θ log(k + 1)

]
k−1/2.

That’s it!

Other variants: constant stepsizes αk for a fixed “budget” of iterations;
periodic restarting; averaging just over the recent iterates. All can be
analyzed with the basic bound above.
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Constant Step Size

We can also get rates of approximately 1/k for the strongly convex case,
without performing iterate averaging and without requiring an accurate
estimate of µ. The tricks are to (a) define the desired threshold for ak in
advance and (b) use a constant step size

Recall the bound from a few slides back, and set αk ≡ α:

ak+1 ≤ (1− 2µα)ak +
1

2
α2M2.

Define the “limiting value” α∞ by

a∞ = (1− 2µα)a∞ +
1

2
α2M2.

Take the difference of the two expressions above:

(ak+1 − a∞) ≤ (1− 2µα)(ak − a∞)

from which it follows that {ak} decreases monotonically to a∞, and

(ak − a∞) ≤ (1− 2µα)k(a0 − a∞).
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Constant Step Size, continued

Rearrange the expression for a∞ to obtain

a∞ =
αM2

4µ
.

From the previous slide, we thus have

ak ≤ (1− 2µα)k(a0 − a∞) + a∞

≤ (1− 2µα)ka0 +
αM2

4µ
.

Given threshold ε > 0, we aim to find α and K such that ak ≤ ε for all
k ≥ K . We ensure that both terms on the right-hand side of the
expression above are less than ε/2. The right values are:

α :=
2εµ

M2
, K :=

M2

4εµ2
log
(a0

2ε

)
.
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Constant Step Size, continued

Clearly the choice of α guarantees that the second term is less than ε/2.

For the first term, we obtain k from an elementary argument:

(1− 2µα)ka0 ≤ ε/2

⇔ k log(1− 2µα) ≤ − log(2a0/ε)

⇐ k(−2µα) ≤ − log(2a0/ε) since log(1 + x) ≤ x

⇔ k ≥ 1

2µα
log(2a0/ε),

from which the result follows, by substituting for α in the right-hand side.

If µ is underestimated by a factor of β, we undervalue α by the same
factor, and K increases by 1/β. (Easy modification of the analysis above.)

Underestimating µ gives a mild performance penalty.
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Constant Step Size: Summary

PRO: Avoid averaging, 1/k sublinear convergence, insensitive to
underestimates of µ.

CON: Need to estimate probably unknown quantities: besides µ, we need
M (to get α) and a0 (to get K ).

We use constant size size in the parallel SG approach Hogwild!, to be
described later.
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Mirror Descent

The step from xk to xk+1 can be viewed as the solution of a subproblem:

xk+1 = arg min
z

G (xk , ξk)T (z − xk) +
1

2αk
‖z − xk‖2

2,

a linear estimate of f plus a prox-term. This provides a route to handling
constrained problems, regularized problems, alternative prox-functions.

For the constrained problem minx∈Ω f (x), simply add the restriction z ∈ Ω
to the subproblem above. In some cases (e.g. when Ω is a box), the
subproblem is still easy to solve.

We may use other prox-functions in place of (1/2)‖z − x‖2
2 above. Such

alternatives may be particularly well suited to particular constraint sets Ω.

Mirror Descent is the term used for such generalizations of the SA
approaches above.
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Mirror Descent cont’d

Given constraint set Ω, choose a norm ‖ · ‖ (not necessarily Euclidean).
Define the distance-generating function ω to be a strongly convex function
on Ω with modulus 1 with respect to ‖ · ‖, that is,

(ω′(x)− ω′(z))T (x − z) ≥ ‖x − z‖2, for all x , z ∈ Ω,

where ω′(·) denotes an element of the subdifferential.

Now define the prox-function V (x , z) as follows:

V (x , z) = ω(z)− ω(x)− ω′(x)T (z − x).

This is also known as the Bregman distance. We can use it in the
subproblem in place of 1

2‖ · ‖
2:

xk+1 = arg min
z∈Ω

G (xk , ξk)T (z − xk) +
1

αk
V (z , xk).
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Bregman distance is the deviation from linearity:

ω

x z

V(x,z)
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Bregman Distances: Examples

For any Ω, we can use ω(x) := (1/2)‖x − x̄‖2
2, leading to prox-function

V (x , z) = (1/2)‖x − z‖2
2.

For the simplex Ω = {x ∈ Rn : x ≥ 0,
∑n

i=1 xi = 1}, we can use instead
the 1-norm ‖ · ‖1, choose ω to be the entropy function

ω(x) =
n∑

i=1

xi log xi ,

leading to Bregman distance

V (x , z) =
n∑

i=1

zi log(zi/xi ).

These are the two most useful cases.

Convergence results for SA can be generalized to mirror descent.
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Incremental Gradient

(See e.g. Bertsekas (2011) and references therein.) Finite sums:

f (x) =
m∑
i=1

fi (x).

Step k typically requires choice of one index ik ∈ {1, 2, . . . ,m} and
evaluation of ∇fik (xk). Components ik are selected sometimes randomly or
cyclically. (Latter option does not exist in the setting f (x) := EξF (x ; ξ).)

There are incremental versions of the heavy-ball method:

xk+1 = xk − αk∇fik (xk) + β(xk − xk−1).

Approach like dual averaging: assume a cyclic choice of ik , and
approximate ∇f (xk) by the average of ∇fi (x) over the last m iterates:

xk+1 = xk −
αk

m

m∑
l=1

∇fik−l+1
(xk−l+1).
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Achievable Accuracy

Consider the basic incremental method:

xk+1 = xk − αk∇fik (xk).

How close can f (xk) come to f (x∗) — deterministically (not just in
expectation).

Bertsekas (2011) obtains results for constant steps αk ≡ α.

cyclic choice of ik : lim inf
k→∞

f (xk) ≤ f (x∗) + αβm2c2.

random choice of ik : lim inf
k→∞

f (xk) ≤ f (x∗) + αβmc2.

where β is close to 1 and c is a bound on the Lipschitz constants for ∇fi .

(Bertsekas actually proves these results in the more general context of
regularized optimization - see below.)
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Applications to SVM

SA techniques have an obvious application to linear SVM classification. In
fact, they were proposed in this context and analyzed independently by
researchers in the ML community for some years.

Codes: SGD (Bottou), PEGASOS (Shalev-Schwartz et al, 2007).

Tutorial: Stochastic Optimization for Machine Learning, Tutorial by N.
Srebro and A. Tewari, ICML 2010 for many more details on the
connections between stochastic optimization and machine learning.

Related Work: Zinkevich (ICML, 2003) on online convex programming.
Aiming to approximate the minimize the average of a sequence of convex
functions, presented sequentially. No i.i.d. assumption, regret-based
analysis. Take steplengths of size O(k−1/2) in gradient ∇fk(xk) of latest
convex function. Average regret is O(k−1/2).
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Parallel Stochastic Approximation

Several approaches tried for parallel stochastic approximation.

Dual Averaging: Average gradient estimates evaluated in parallel on
different cores. Requires message passing / synchronization (Dekel et
al, 2011; Duchi et al, 2010).

Round-Robin: Cores evaluate ∇fi in parallel and update centrally
stored x in round-robin fashion. Requires synchronization (Langford
et al, 2009).

Asynchronous: Hogwild!: Each core grabs the centrally-stored x
and evaluates ∇fe(xe) for some random e, then writes the updates
back into x (Niu, Ré, Recht, Wright, NIPS, 2011).

Hogwild!: Each processor runs independently:

1 Sample e from E ;

2 Read current state of x ;

3 for v in e do xv ← xv − α[∇fe(xe)]v ;
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Hogwild! Convergence

Updates can be old by the time they are applied, but we assume a
bound τ on their age.

Nui et al (2011) analyze the case in which the update is applied to
just one v ∈ e, but can be extended easily to update the full edge e,
provided this is done atomically.

Processors can overwrite each other’s work, but sparsity of ∇fe helps
— updates to not interfere too much.

Analysis of Niu et al (2011) recently simplified and generalized by
Richtarik (2012).

In addition to L, µ, M, D0 defined above, also define quantities that
capture the size and interconnectivity of the subvectors xe .

ρe = |{e ′ : e ′ ∩ e 6= ∅}|: number of indices e ′ such that xe and xe′

have common components;

ρ =
∑

e∈E ρe/|E |2: average rate of overlapping subvectors.
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Hogwild! Convergence

(Richtarik 2012) (for full atomic update of index e) Given ε ∈ (0,D0/L),
we have

min
0≤j≤k

E (f (xj)− f (x∗)) ≤ ε,

for
αk ≡

µε

(1 + 2τρ)LM2|E |2

and k ≥ K , where

K =
(1 + 2τρ)LM2|E |2

µ2ε
log

(
2LD0

ε
− 1

)
.

Broadly, recovers the sublinear 1/k convergence rate seen in regular SGD,
with the delay τ and overlap measure ρ both appearing linearly.
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Hogwild! Performance

Hogwild! compared with averaged gradient (AIG) and round-robin (RR).
Experiments run on a 12-core machine. (10 cores used for gradient
evaluations, 2 cores for data shuffling.)
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Hogwild! Performance
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Extensions

To improve scalability, could restrict write access.

Break x into blocks; assign one block per processor; allow a processor
to update only components in its block;

Share blocks by periodically writing to a central repository, or
gossipping between processors.

Analysis in progress.

Le et al (2012) (featured recently in the NY Times) implemented an
algorithm like this on 16,000 cores.

Another useful tool for splitting problems and coordinating information
between processors is the Alternating Direction Method of Mulitipliers
(ADMM).
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