Some Relevant Topics in Optimization

Stephen Wright
University of Wisconsin-Madison

IPAM, July 2012
(1) Introduction/Overview
(2) Gradient Methods
(3) Stochastic Gradient Methods for Convex Minimization

4 Sparse and Regularized Optimization
(5) Decomposition Methods
(6) Augmented Lagrangian Methods and Splitting

Introduction

Learning from data leads naturally to optimization formulations. Typical ingredients of a learning problem include

- Collection of "training" data, from which we want to learn to make inferences about future data.
- Parametrized model, whose parameters can in principle be determined from training data + prior knowledge.
- Objective that captures prediction errors on the training data and deviation from prior knowledge or desirable structure.

Other typical properties of learning problems are huge underlying data set, and requirement for solutions with only low-medium accuracy.

Formulation as an optimization problem can be difficult and controversial. However there are several important paradigms in which the issue is well settled. (e.g. Support Vector Machines, Logistic Regression, Recommender Systems.)

Optimization Formulations

There is a wide variety of optimization formulations for machine learning problems. But several common issues and structures arise in many cases.

- Imposing structure. Can include regularization functions in the objective or constraints.
- $\|x\|_{1}$ to induce sparsity in the vector x;
- Nuclear norm $\|X\|_{*}$ (sum of singular values) to induce low rank in X.
- Objective: Can be derived from Bayesian statistics + maximum likelihood criterion. Can incorporate prior knowledge.

Objectives f have distinctive properties in several applications:

- Partially separable: $f(x)=\sum_{e \in E} f_{e}\left(x_{e}\right)$, where each x_{e} is a subvector of x, and each term f_{e} corresponds to a single item of data.
- Sometimes possible to compute subvectors of the gradient ∇f at proportionately lower cost than the full gradient.
- These two properties are often combined: In partially separable f, subvector x_{e} is often small.

Examples: Partially Separable Structure

1. SVM with hinge loss:

$$
f(w)=C \sum_{i=1}^{N} \max \left(1-y_{i}\left(w^{T} x_{i}\right), 0\right)+\frac{1}{2}\|w\|^{2}
$$

where variable vector w contains feature weights, x_{i} are feature vectors, $y_{i}= \pm 1$ are labels, and $C>0$ is a parameter.
2. Matrix completion. Given $k \times n$ marix M with entries $(u, v) \in E$ specified, seek $L(k \times r)$ and $R(n \times r)$ such that $M \approx L R^{T}$.

$$
\min _{L, R} \sum_{(u, v) \in E}\left\{\left(L_{u} \cdot R_{v \cdot}^{T}-M_{u v}\right)^{2}+\mu_{u}\left\|L_{u} \cdot\right\|_{F}^{2}+\mu_{v}\left\|R_{v} \cdot\right\|_{F}^{2}\right\} .
$$

Examples: Partially Separable Structure

3. Regularized logistic regression (2 classes):

$$
f(w)=-\frac{1}{N} \sum_{i=1}^{N} \log \left(1+\exp \left(y_{i} w^{T} x_{i}\right)\right)+\mu\|w\|_{1}
$$

4. Logistic regression (M classes): $y_{i j}=1$ if data point i is in class j; $y_{i j}=0$ otherwise. $w_{[j]}$ is the subvector of w for class j.

$$
f(w)=-\frac{1}{N} \sum_{i=1}^{N}\left[\sum_{j=1}^{M} y_{i j}\left(w_{[j]}^{T} x_{i}\right)-\log \left(\sum_{j=1}^{M} \exp \left(w_{[j]}^{T} x_{i}\right)\right)\right]+\sum_{j=1}^{M}\left\|w_{[j]}\right\|_{2}^{2}
$$

Examples: "Partial Gradient" Structure

1. Dual, nonlinear SVM:

$$
\min _{\alpha} \frac{1}{2} \alpha^{T} K \alpha-\mathbf{1}^{T} \alpha \text { s.t. } 0 \leq \alpha \leq C \mathbf{1}, y^{T} \alpha=0
$$

where $K_{i j}=y_{i} y_{j} k\left(x_{i}, x_{j}\right)$, with $k(\cdot, \cdot)$ a kernel function. Subvectors of the gradient $K \alpha-\mathbf{1}$ can be updated and maintained economically.
2. Logistic regression (again): Gradient of log-likelihood function is

$$
\frac{1}{N} X^{T} u, \text { where } u_{i}=-y_{i}\left(1+\exp \left(y_{i} w^{T} x_{i}\right)\right), i=1,2, \ldots, N
$$

If w is sparse, it may be cheap to evaluate u, which is dense. Then, evaluation of partial gradient $[\nabla f(x)]_{\mathcal{G}}$ may be cheap.
Partitioning of x may also arise naturally from problem structure, parallel implementation, or administrative reasons (e.g. decentralized control).
(Block) Coordinate Descent methods that exploit this property have been successful. (More tomorrow.)

Batch vs Incremental

Considering the partially separable form

$$
f(x)=\sum_{e \in E} f_{e}\left(x_{e}\right),
$$

the size $|E|$ of the training set can be very large. Practical considerations, and differing requirements for solution accuracy lead to a fundamental divide in algorithmic strategy.

Incremental: Select a single e at random, evaluate $\nabla f_{e}\left(x_{e}\right)$, and take a step in this direction. (Note that $E\left(\nabla f_{e}\left(x_{e}\right)\right)=|E|^{-1} \nabla f(x)$.)
Stochastic Approximation (SA).
Batch: Select a subset of data $\tilde{E} \subset E$, and minimize the function $\tilde{f}(x)=\sum_{e \in \tilde{E}} f_{e}\left(x_{e}\right)$. Sample-Average Approximation (SAA).

Minibatch is a kind of compromise: Aggregate the e into small groups, consisting of 10 or 100 individual terms, and apply incremental algorithms to the redefined summation. (Gives lower-variance gradient estimates,

Background: Optimization and Machine Learning

A long history of connections. Examples:

- Back-propagation for neural networks was recognized in the 80 s or earlier as an incremental gradient method.
- Support Vector machine formulated as a linear and quadratic program in the late 1980s. Duality allowed formulation of nonlinear SVM as a convex QP. From late 1990s, many specialized optimization methods were applied: interior-point, coordinate descent / decomposition, cutting-plane, stochastic gradient.
- Stochastic gradient. Originally Robbins-Munro (1951). Optimizers in Russia developed algorithms from 1980 onwards. Rediscovered by machine learning community around 2004 (Bottou, LeCun). Parallel and independent work in ML and Optimization communities until 2009. Intense research continues.

Connections are now stronger than ever, with much collaborative and crossover activity.

Gradient Methods

$\min f(x)$, with smooth convex f. Usually assume

$$
\mu I \preceq \nabla^{2} f(x) \preceq L I \text { for all } x,
$$

with $0 \leq \mu \leq L$. (L is thus a Lipschitz constant on the gradient ∇f.)
$\mu>0 \Rightarrow$ strongly convex. Have

$$
f(y)-f(x)-\nabla f(x)^{T}(y-x) \geq \frac{1}{2} \mu\|y-x\|^{2}
$$

(Mostly assume $\|\cdot\|:=\|\cdot\|_{2}$.) Define conditioning $\kappa:=L / \mu$.
Sometimes discuss convex quadratic f :

$$
f(x)=\frac{1}{2} x^{T} A x, \text { where } \mu I \preceq A \preceq L I .
$$

What's the Setup?

Assume in this part of talk that we can evaluate f and ∇f at each iterate x_{i}. But we are interested in extending to broader class of problems:

- nonsmooth f;
- f not available;
- only an estimate of the gradient (or subgradient) is available;
- impose a constraint $x \in \Omega$ for some simple set Ω (e.g. ball, box, simplex);
- a nonsmooth regularization term may be added to the objective f.

Focus on algorithms that can be adapted to these circumstances.

Steepest Descent

$$
x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right), \quad \text { for some } \alpha_{k}>0
$$

Different ways to identify an appropriate α_{k}.
(1) Hard: Interpolating scheme with safeguarding to identify an approximate minimizing α_{k}.
(2) Easy: Backtracking. $\bar{\alpha}, \frac{1}{2} \bar{\alpha}, \frac{1}{4} \bar{\alpha}, \frac{1}{8} \bar{\alpha}, \ldots$ until a sufficient decrease in f is obtained.
(3) Trivial: Don't test for function decrease. Use rules based on L and μ.

Traditional analysis for 1 and 2: Usually yields global convergence at unspecified rate. The "greedy" strategy of getting good decrease from the current search direction is appealing, and may lead to better practical results.

Analysis for 3: Focuses on convergence rate, and leads to accelerated multistep methods.

Line Search

Works for nonconvex f also.
Seek α_{k} that satisfies Wolfe conditions: "sufficient decrease" in f :

$$
f\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right) \leq f\left(x_{k}\right)-c_{1} \alpha_{k}\left\|\nabla f\left(x_{k}\right)\right\|^{2}, \quad\left(0<c_{1} \ll 1\right)
$$

while not being too small (significant increase in the directional derivative):

$$
\nabla f\left(x_{k+1}\right)^{T} \nabla f\left(x_{k}\right) \geq-c_{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}, \quad\left(c_{1}<c_{2}<1\right) .
$$

Can show that for convex f, accumulation points \bar{x} of $\left\{x_{k}\right\}$ are stationary: $\nabla f(\bar{x})=0$. (Optimal, when f is convex.)
Can do a one-dimensional line search for α_{k}, taking minima of quadratic or cubics that interpolate the function and gradient information at the last two values tried. Use brackets to ensure steady convergence. Often find a suitable α within 3 attempts.
(See e.g. Ch. 3 of Nocedal \& Wright, 2006)

Backtracking

Try $\alpha_{k}=\bar{\alpha}, \bar{\alpha} / 2, \bar{\alpha} / 4, \bar{\alpha} / 8, \ldots$ until the sufficient decrease condition is satisfied.
(No need to check the second Wolfe condition, as the value of α_{k} thus identified is "within striking distance" of a value that's too large - so it is not too short.)
These methods are widely used in many applications, but they don't work on nonsmooth problems when subgradients replace gradients, or when f is not available.

Constant (Short) Steplength

By elementary use of Taylor's theorem, obtain

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\alpha_{k}\left(1-\frac{\alpha_{k}}{2} L\right)\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}
$$

For $\alpha_{k} \equiv 1 / L$, have

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{1}{2 L}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}
$$

thus

$$
\left\|\nabla f\left(x_{k}\right)\right\|^{2} \leq 2 L\left[f\left(x_{k}\right)-f\left(x_{k+1}\right)\right] .
$$

By summing from $k=0$ to $k=N$, and telescoping the sum, we have

$$
\sum_{k=1}^{N}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \leq 2 L\left[f\left(x_{0}\right)-f\left(x_{N+1}\right)\right]
$$

(It follows that $\nabla f\left(x_{k}\right) \rightarrow 0$ if f is bounded below.)

Rate Analysis

Another elementary use of Taylor's theorem shows that

$$
\left\|x_{k+1}-x^{*}\right\|^{2} \leq\left\|x_{k}-x^{*}\right\|^{2}-\alpha_{k}\left(2 / L-\alpha_{k}\right)\left\|\nabla f\left(x_{k}\right)\right\|^{2}
$$

so that $\left\{\left\|x_{k}-x^{*}\right\|\right\}$ is decreasing.
Define for convenience: $\Delta_{k}:=f\left(x_{k}\right)-f\left(x^{*}\right)$.
By convexity, have

$$
\Delta_{k} \leq \nabla f\left(x_{k}\right)^{T}\left(x_{k}-x^{*}\right) \leq\left\|\nabla f\left(x_{k}\right)\right\|\left\|x_{k}-x^{*}\right\| \leq\left\|\nabla f\left(x_{k}\right)\right\|\left\|x_{0}-x^{*}\right\| .
$$

From previous page (subtracting $f\left(x^{*}\right)$ from both sides of the inequality), and using the inequality above, we have

$$
\Delta_{k+1} \leq \Delta_{k}-(1 / 2 L)\left\|\nabla f\left(x_{k}\right)\right\|^{2} \leq \Delta_{k}-\frac{1}{2 L\left\|x_{0}-x^{*}\right\|^{2}} \Delta_{k}^{2}
$$

Weakly convex: $1 / k$ sublinear; Strongly convex: linear

Take reciprocal of both sides and manipulate (using $(1-\epsilon)^{-1} \geq 1+\epsilon$):

$$
\frac{1}{\Delta_{k+1}} \geq \frac{1}{\Delta_{k}}+\frac{1}{2 L\left\|x_{0}-x^{*}\right\|^{2}} \geq \frac{1}{\Delta_{0}}+\frac{k+1}{2 L\left\|x_{0}-x^{*}\right\|^{2}}
$$

which yields

$$
f\left(x_{k+1}\right)-f\left(x^{*}\right) \leq \frac{2 L\left\|x_{0}-x\right\|^{2}}{k+1}
$$

The classic $1 / k$ convergence rate!
By assuming $\mu>0$, can set $\alpha_{k} \equiv 2 /(\mu+L)$ and get a linear (geometric) rate: Much better than sublinear, in the long run

$$
\left\|x_{k}-x^{*}\right\|^{2} \leq\left(\frac{L-\mu}{L+\mu}\right)^{2 k}\left\|x_{0}-x^{*}\right\|^{2}=\left(1-\frac{2}{\kappa+1}\right)^{2 k}\left\|x_{0}-x^{*}\right\|^{2}
$$

Since by Taylor's theorem we have

$$
\Delta_{k}=f\left(x_{k}\right)-f\left(x^{*}\right) \leq(L / 2)\left\|x_{k}-x^{*}\right\|^{2},
$$

it follows immediately that

$$
f\left(x_{k}\right)-f\left(x^{*}\right) \leq \frac{L}{2}\left(1-\frac{2}{\kappa+1}\right)^{2 k}\left\|x_{0}-x^{*}\right\|^{2}
$$

Note: A geometric / linear rate is generally much better than any sublinear $\left(1 / k\right.$ or $\left.1 / k^{2}\right)$ rate.

The $1 / k^{2}$ Speed Limit

Nesterov (2004) gives a simple example of a smooth function for which no method that generates iterates of the form $x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)$ can converge at a rate faster than $1 / k^{2}$, at least for its first $n / 2$ iterations. Note that $x_{k+1} \in x_{0}+\operatorname{span}\left(\nabla f\left(x_{0}\right), \nabla f\left(x_{1}\right), \ldots, \nabla f\left(x_{k}\right)\right)$.

$$
A=\left[\begin{array}{ccccccc}
2 & -1 & 0 & 0 & \ldots & \ldots & 0 \\
-1 & 2 & -1 & 0 & \ldots & \ldots & 0 \\
0 & -1 & 2 & -1 & 0 & \ldots & 0 \\
& & \ddots & \ddots & \ddots & & \\
0 & \ldots & & & 0 & -1 & 2
\end{array}\right], \quad e_{1}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

and set $f(x)=(1 / 2) x^{T} A x-e_{1}^{T} x$. The solution has $x^{*}(i)=1-i /(n+1)$. If we start at $x_{0}=0$, each $\nabla f\left(x_{k}\right)$ has nonzeros only in its first k entries. Hence, $x_{k+1}(i)=0$ for $i=k+1, k+2, \ldots, n$. Can show

$$
f\left(x_{k}\right)-f^{*} \geq \frac{3 L\left\|x_{0}-x^{*}\right\|^{2}}{32(k+1)^{2}}
$$

Exact minimizing α_{k} : Faster rate?

Take α_{k} to be the exact minimizer of f along $-\nabla f\left(x_{k}\right)$. Does this yield a better rate of linear convergence?
Consider the convex quadratic $f(x)=(1 / 2) x^{T} A x$. (Thus $x^{*}=0$ and $f\left(x^{*}\right)=0$.) Here κ is the condition number of A.
We have $\nabla f\left(x_{k}\right)=A x_{k}$. Exact minimizing α_{k} :

$$
\alpha_{k}=\frac{x_{k}^{T} A^{2} x_{k}}{x_{k}^{T} A^{3} x_{k}}=\arg \min _{\alpha} \frac{1}{2}\left(x_{k}-\alpha A x_{k}\right)^{T} A\left(x_{k}-\alpha A x_{k}\right)
$$

which is in the interval $\left[\frac{1}{L}, \frac{1}{\mu}\right]$. Thus

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{1}{2} \frac{\left(x_{k}^{T} A^{2} x_{k}\right)^{2}}{\left(x_{k}^{T} A x_{k}\right)\left(x_{k}^{T} A^{3} x_{k}\right)},
$$

so, defining $z_{k}:=A x_{k}$, we have

$$
\frac{f\left(x_{k+1}\right)-f\left(x^{*}\right)}{f\left(x_{k}\right)-f\left(x^{*}\right)} \leq 1-\frac{\left\|z_{k}\right\|^{4}}{\left(z_{k}^{T} A^{-1} z_{k}\right)\left(z_{k}^{T} A z_{k}\right)}
$$

Use Kantorovich inequality:

$$
\left(z^{T} A z\right)\left(z^{T} A^{-1} z\right) \leq \frac{(L+\mu)^{2}}{4 L \mu}\|z\|^{4}
$$

Thus

$$
\frac{f\left(x_{k+1}\right)-f\left(x^{*}\right)}{f\left(x_{k}\right)-f\left(x^{*}\right)} \leq 1-\frac{4 L \mu}{(L+\mu)^{2}}=\left(1-\frac{2}{\kappa+1}\right)^{2}
$$

and so

$$
f\left(x_{k}\right)-f\left(x^{*}\right) \leq\left(1-\frac{2}{\kappa+1}\right)^{2 k}\left[f\left(x_{0}\right)-f\left(x^{*}\right)\right] .
$$

No improvement in the linear rate over constant steplength.

The slow linear rate is typical!

Not just a pessimistic bound!

Multistep Methods: Heavy-Ball

Enhance the search direction by including a contribution from the previous step.

Consider first constant step lengths:

$$
x_{k+1}=x_{k}-\alpha \nabla f\left(x_{k}\right)+\beta\left(x_{k}-x_{k-1}\right)
$$

Analyze by defining a composite iterate vector:

$$
w_{k}:=\left[\begin{array}{c}
x_{k}-x^{*} \\
x_{k-1}-x^{*}
\end{array}\right] .
$$

Thus

$$
w_{k+1}=B w_{k}+o\left(\left\|w_{k}\right\|\right), \quad B:=\left[\begin{array}{cc}
-\alpha \nabla^{2} f\left(x^{*}\right)+(1+\beta) \iota & -\beta l \\
l & 0
\end{array}\right]
$$

B has same eigenvalues as

$$
\left[\begin{array}{cc}
-\alpha \Lambda+(1+\beta) I & -\beta I \\
l & 0
\end{array}\right], \quad \Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)
$$

where λ_{i} are the eigenvalues of $\nabla^{2} f\left(x^{*}\right)$. Choose α, β to explicitly minimize the max eigenvalue of B, obtain

$$
\alpha=\frac{4}{L} \frac{1}{(1+1 / \sqrt{\kappa})^{2}}, \quad \beta=\left(1-\frac{2}{\sqrt{\kappa}+1}\right)^{2} .
$$

Leads to linear convergence for $\left\|x_{k}-x^{*}\right\|$ with rate approximately

$$
\left(1-\frac{2}{\sqrt{\kappa}+1}\right) .
$$

Summary: Linear Convergence, Strictly Convex f

- Steepest descent: Linear rate approx $(1-2 / \kappa)$;
- Heavy-ball: Linear rate approx $(1-2 / \sqrt{\kappa})$.

Big difference! To reduce $\left\|x_{k}-x^{*}\right\|$ by a factor ϵ, need k large enough that

$$
\begin{aligned}
\left(1-\frac{2}{\kappa}\right)^{k} \leq \epsilon & \Leftarrow k \geq \frac{\kappa}{2}|\log \epsilon| \quad \text { (steepest descent) } \\
\left(1-\frac{2}{\sqrt{\kappa}}\right)^{k} \leq \epsilon & \Leftarrow k \geq \frac{\sqrt{\kappa}}{2}|\log \epsilon| \quad \text { (heavy-ball) }
\end{aligned}
$$

A factor of $\sqrt{\kappa}$ difference. e.g. if $\kappa=100$, need 10 times fewer steps.

Conjugate Gradient

Basic step is

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}, \quad p_{k}=-\nabla f\left(x_{k}\right)+\gamma_{k} p_{k-1}
$$

We can identify it with heavy-ball by setting $\beta_{k}=\alpha_{k} \gamma_{k} / \alpha_{k-1}$. However, CG can be implemented in a way that doesn't require knowledge (or estimation) of L and μ.

- Choose α_{k} to (approximately) miminize f along p_{k};
- Choose γ_{k} by a variety of formulae (Fletcher-Reeves, Polak-Ribiere, etc), all of which are equivalent if f is convex quadratic. e.g.

$$
\gamma_{k}=\left\|\nabla f\left(x_{k}\right)\right\|^{2} /\left\|\nabla f\left(x_{k-1}\right)\right\|^{2}
$$

CG, cont'd.

Nonlinear CG: Variants include Fletcher-Reeves, Polak-Ribiere, Hestenes.
Restarting periodically with $p_{k}=-\nabla f\left(x_{k}\right)$ is a useful feature (e.g. every n iterations, or when p_{k} is not a descent direction).

For f quadratic, convergence analysis is based on eigenvalues of A and Chebyshev polynomials, min-max arguments. Get

- Finite termination in as many iterations as there are distinct eigenvalues;
- Asymptotic linear convergence with rate approx $1-2 / \sqrt{\kappa}$. (Like heavy-ball.)

See e.g. Chap. 5 of Nocedal \& Wright (2006) and refs therein.

Accelerated First-Order Methods

Accelerate the rate to $1 / k^{2}$ for weakly convex, while retaining the linear rate (related to $\sqrt{\kappa}$) for strongly convex case.

Nesterov $(1983,2004)$ describes a method that requires κ.
0 : Choose $x_{0}, \alpha_{0} \in(0,1)$; set $y_{0} \leftarrow x_{0}$./
$k: x_{k+1} \leftarrow y_{k}-\frac{1}{L} \nabla f\left(y_{k}\right) ;\left({ }^{*}\right.$ short-step gradient $\left.{ }^{*}\right)$
solve for $\alpha_{k+1} \in(0,1)$: $\alpha_{k+1}^{2}=\left(1-\alpha_{k+1}\right) \alpha_{k}^{2}+\alpha_{k+1} / \kappa$;
set $\beta_{k}=\alpha_{k}\left(1-\alpha_{k}\right) /\left(\alpha_{k}^{2}+\alpha_{k+1}\right)$;
set $y_{k+1} \leftarrow x_{k+1}+\beta_{k}\left(x_{k+1}-x_{k}\right)$.
Still works for weakly convex $(\kappa=\infty)$.

Convergence Results: Nesterov

If $\alpha_{0} \geq 1 / \sqrt{\kappa}$, have

$$
f\left(x_{k}\right)-f\left(x^{*}\right) \leq c_{1} \min \left(\left(1-\frac{1}{\sqrt{\kappa}}\right)^{k}, \frac{4 L}{\left(\sqrt{L}+c_{2} k\right)^{2}}\right)
$$

where constants c_{1} and c_{2} depend on x_{0}, α_{0}, L.
Linear convergence at "heavy-ball" rate in strongly convex case, otherwise $1 / k^{2}$.
In the special case of $\alpha_{0}=1 / \sqrt{\kappa}$, this scheme yields

$$
\alpha_{k} \equiv \frac{1}{\sqrt{\kappa}}, \quad \beta_{k} \equiv 1-\frac{2}{\sqrt{\kappa}+1} .
$$

FISTA

(Beck \& Teboulle 2007). Similar to the above, but with a fairly short and elementary analysis (though still not very intuitive).

0 : Choose x_{0}; set $y_{1}=x_{0}, t_{1}=1$;
$k: x_{k} \leftarrow y_{k}-\frac{1}{L} \nabla f\left(y_{k}\right)$;
$t_{k+1} \leftarrow \frac{1}{2}\left(1+\sqrt{1+4 t_{k}^{2}}\right) ;$
$y_{k+1} \leftarrow x_{k}+\frac{t_{k}-1}{t_{k+1}}\left(x_{k}-x_{k-1}\right)$.
For (weakly) convex f, converges with $f\left(x_{k}\right)-f\left(x^{*}\right) \sim 1 / k^{2}$.
When L is not known, increase an estimate of L until it's big enough.
Beck \& Teboulle (2010) does the convergence analysis in 2-3 pages: elementary, technical.

A Non-Monotone Gradient Method: Barzilai-Borwein

(Barzilai \& Borwein 1988) BB is a gradient method, but with an unusual choice of α_{k}. Allows f to increase (sometimes dramatically) on some steps.

$$
x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right), \quad \alpha_{k}:=\arg \min _{\alpha}\left\|s_{k}-\alpha z_{k}\right\|^{2}
$$

where

$$
s_{k}:=x_{k}-x_{k-1}, \quad z_{k}:=\nabla f\left(x_{k}\right)-\nabla f\left(x_{k-1}\right)
$$

Explicitly, we have

$$
\alpha_{k}=\frac{s_{k}^{T} z_{k}}{z_{k}^{T} z_{k}} .
$$

Note that for convex quadratic $f=(1 / 2) x^{\top} A x$, we have

$$
\alpha_{k}=\frac{s_{k}^{T} A s_{k}}{s_{k}^{T} A^{2} s_{k}} \in\left[L^{-1}, \mu^{-1}\right] .
$$

Hence, can view BB as a kind of quasi-Newton method, with the Hessian approximated by $\alpha_{k}^{-1} l$.

Comparison: BB vs Greedy Steepest Descent

Many BB Variants

- can use $\alpha_{k}=s_{k}^{T} s_{k} / s_{k}^{T} z_{k}$ in place of $\alpha_{k}=s_{k}^{T} z_{k} / z_{k}^{T} z_{k}$;
- alternate between these two formulae;
- calculate α_{k} as above and hold it constant for 2,3 , or 5 successive steps;
- take α_{k} to be the exact steepest descent step from the previous iteration.

Nonmonotonicity appears essential to performance. Some variants get global convergence by requiring a sufficient decrease in f over the worst of the last 10 iterates.

The original 1988 analysis in BB's paper is nonstandard and illuminating (just for a 2-variable quadratic).
In fact, most analyses of BB and related methods are nonstandard, and consider only special cases. The precursor of such analyses is Akaike (1959). More recently, see Ascher, Dai, Fletcher, Hager and others.

Primal-Dual Averaging

(see Nesterov 2009) Basic step:

$$
\begin{aligned}
x_{k+1} & =\arg \min _{x} \frac{1}{k+1} \sum_{i=0}^{k}\left[f\left(x_{i}\right)+\nabla f\left(x_{i}\right)^{T}\left(x-x_{i}\right)\right]+\frac{\gamma}{\sqrt{k}}\left\|x-x_{0}\right\|^{2} \\
& =\arg \min _{x} \bar{g}_{k}^{T} x+\frac{\gamma}{\sqrt{k}}\left\|x-x_{0}\right\|^{2},
\end{aligned}
$$

where $\bar{g}_{k}:=\sum_{i=0}^{k} \nabla f\left(x_{i}\right) /(k+1)$ - the averaged gradient.

- The last term is always centered at the first iterate x_{0}.
- Gradient information is averaged over all steps, with equal weights.
- γ is constant - results can be sensitive to this value.
- The approach still works for convex nondifferentiable f, where $\nabla f\left(x_{i}\right)$ is replaced by a vector from the subgradient $\partial f\left(x_{i}\right)$.

Convergence Properties

Nesterov proves convergence for averaged iterates:

$$
\bar{x}_{k+1}=\frac{1}{k+1} \sum_{i=0}^{k} x_{i}
$$

Provided the iterates and the solution x^{*} lie within some ball of radius D around x_{0}, we have

$$
f\left(\bar{x}_{k+1}\right)-f\left(x^{*}\right) \leq \frac{C}{\sqrt{k}},
$$

where C depends on D, a uniform bound on $\|\nabla f(x)\|$, and γ (coefficient of stabilizing term).

Note: There's averaging in both primal $\left(x_{i}\right)$ and dual $\left(\nabla f\left(x_{i}\right)\right)$ spaces.
Generalizes easily and robustly to the case in which only estimated gradients or subgradients are available.
(Averaging smooths the errors in the individual gradient estimates.)

Extending to the Constrained Case: $x \in \Omega$

How do these methods change when we require $x \in \Omega$, with Ω closed and convex?

Some algorithms and theory stay much the same, provided we can involve Ω explicity in the subproblems.

Example: Primal-Dual Averaging for $\min _{x \in \Omega} f(x)$.

$$
x_{k+1}=\arg \min _{x \in \Omega} \bar{g}_{k}^{T} x+\frac{\gamma}{\sqrt{k}}\left\|x-x_{0}\right\|^{2},
$$

where $\bar{g}_{k}:=\sum_{i=0}^{k} \nabla f\left(x_{i}\right) /(k+1)$. When Ω is a box, this subproblem is easy to solve.

Example: Nesterov's Constant Step Scheme for $\min _{x \in \Omega} f(x)$. Requires just only calculation to be changed from the unconstrained version.

0 : Choose $x_{0}, \alpha_{0} \in(0,1)$; set $y_{0} \leftarrow x_{0}, q \leftarrow 1 / \kappa=\mu / L$.
$k: x_{k+1} \leftarrow \arg \min _{y \in \Omega} \frac{1}{2}\left\|y-\left[y_{k}-\frac{1}{L} \nabla f\left(y_{k}\right)\right]\right\|_{2}^{2}$;
solve for $\alpha_{k+1} \in(0,1)$: $\alpha_{k+1}^{2}=\left(1-\alpha_{k+1}\right) \alpha_{k}^{2}+q \alpha_{k+1}$;
set $\beta_{k}=\alpha_{k}\left(1-\alpha_{k}\right) /\left(\alpha_{k}^{2}+\alpha_{k+1}\right)$;
set $y_{k+1} \leftarrow x_{k+1}+\beta_{k}\left(x_{k+1}-x_{k}\right)$.
Convergence theory is unchanged.

Regularized Optimization (More Later)

FISTA can be applied with minimal changes to the regularized problem

$$
\min _{x} f(x)+\tau \psi(x),
$$

where f is convex and smooth, ψ convex and "simple" but usually nonsmooth, and τ is a positive parameter.

Simply replace the gradient step by

$$
x_{k}=\arg \min _{x} \frac{L}{2}\left\|x-\left[y_{k}-\frac{1}{L} \nabla f\left(y_{k}\right)\right]\right\|^{2}+\tau \psi(x)
$$

(This is the "shrinkage" step; when $\psi \equiv 0$ or $\psi=\|\cdot\|_{1}$, can be solved cheaply.)

More on this later.

Further Reading

(1) Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer Academic Publishers, 2004.
(2) A. Beck and M. Teboulle, "Gradient-based methods with application to signal recovery problems," in press, 2010. (See Teboulle's web site).
(3) B. T. Polyak, Introduction to Optimization, Optimization Software Inc, 1987.
(4) J. Barzilai and J. M. Borwein, "Two-point step size gradient methods," IMA Journal of Numerical Analysis, 8, pp. 141-148, 1988.
(5) Y. Nesterov, "Primal-dual subgradient methods for convex programs," Mathematical Programming, Series B, 120, pp. 221-259, 2009.
(6) J. Nocedal and S. Wright, Numerical Optimization, 2nd ed., Springer, 2006.

Stochastic Gradient Methods

Still deal with (weakly or strongly) convex f. But change the rules:

- Allow f nonsmooth.
- Can't get function values $f(x)$.
- At any feasible x, have access only to an unbiased estimate of an element of the subgradient ∂f.
Common settings are:

$$
f(x)=E_{\xi} F(x, \xi)
$$

where ξ is a random vector with distribution P over a set $\overline{\text {. Also the }}$ special case:

$$
f(x)=\sum_{i=1}^{m} f_{i}(x)
$$

where each f_{i} is convex and nonsmooth.

Applications

This setting is useful for machine learning formulations. Given data $x_{i} \in \mathbb{R}^{n}$ and labels $y_{i}= \pm 1, i=1,2, \ldots, m$, find w that minimizes

$$
\tau \psi(w)+\sum_{i=1}^{m} \ell\left(w ; x_{i}, y_{i}\right)
$$

where ψ is a regularizer, $\tau>0$ is a parameter, and ℓ is a loss. For linear classifiers/regressors, have the specific form $\ell\left(w^{\top} x_{i}, y_{i}\right)$.
Example: SVM with hinge loss $\ell\left(w^{\top} x_{i}, y_{i}\right)=\max \left(1-y_{i}\left(w^{\top} x_{i}\right), 0\right)$ and $\psi=\|\cdot\|_{1}$ or $\psi=\|\cdot\|_{2}^{2}$.
Example: Logistic regression: $\ell\left(w^{\top} x_{i}, y_{i}\right)=\log \left(1+\exp \left(y_{i} w^{\top} x_{i}\right)\right)$. In regularized version may have $\psi(w)=\|w\|_{1}$.

Subgradients

For each x in domain of f, g is a subgradient of f at x if

$$
f(z) \geq f(x)+g^{T}(z-x), \quad \text { for all } z \in \operatorname{dom} f
$$

Right-hand side is a supporting hyperplane.
The set of subgradients is called the subdifferential, denoted by $\partial f(x)$.
When f is differentiable at x, have $\partial f(x)=\{\nabla f(x)\}$.
We have strong convexity with modulus $\mu>0$ if
$f(z) \geq f(x)+g^{T}(z-x)+\frac{1}{2} \mu\|z-x\|^{2}, \quad$ for all $x, z \in \operatorname{dom} f$ with $g \in \partial f(x)$.
Generalizes the assumption $\nabla^{2} f(x) \succeq \mu I$ made earlier for smooth functions.

"Classical" Stochastic Approximation

Denote by $G(x, \xi)$ ths subgradient estimate generated at x. For unbiasedness need $E_{\xi} G(x, \xi) \in \partial f(x)$.

Basic SA Scheme: At iteration k, choose ξ_{k} i.i.d. according to distribution P, choose some $\alpha_{k}>0$, and set

$$
x_{k+1}=x_{k}-\alpha_{k} G\left(x_{k}, \xi_{k}\right)
$$

Note that x_{k+1} depends on all random variables up to iteration k, i.e.
$\xi_{[k]}:=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{k}\right\}$.
When f is strongly convex, the analysis of convergence of $E\left(\left\|x_{k}-x^{*}\right\|^{2}\right)$ is fairly elementary - see Nemirovski et al (2009).

Rate: $1 / k$

Define $a_{k}=\frac{1}{2} E\left(\left\|x_{k}-x^{*}\right\|^{2}\right)$. Assume there is $M>0$ such that $E\left(\|G(x, \xi)\|^{2}\right) \leq M^{2}$ for all x of interest. Thus

$$
\begin{aligned}
\frac{1}{2} \| x_{k+1} & -x^{*} \|_{2}^{2} \\
& =\frac{1}{2}\left\|x_{k}-\alpha_{k} G\left(x_{k}, \xi_{k}\right)-x^{*}\right\|^{2} \\
& =\frac{1}{2}\left\|x_{k}-x^{*}\right\|_{2}^{2}-\alpha_{k}\left(x_{k}-x^{*}\right)^{T} G\left(x_{k}, \xi_{k}\right)+\frac{1}{2} \alpha_{k}^{2}\left\|G\left(x_{k}, \xi_{k}\right)\right\|^{2} .
\end{aligned}
$$

Taking expectations, get

$$
a_{k+1} \leq a_{k}-\alpha_{k} E\left[\left(x_{k}-x^{*}\right)^{T} G\left(x_{k}, \xi_{k}\right)\right]+\frac{1}{2} \alpha_{k}^{2} M^{2}
$$

For middle term, have

$$
\begin{aligned}
E\left[\left(x_{k}-x^{*}\right)^{T} G\left(x_{k}, \xi_{k}\right)\right] & =E_{\xi_{[k-1]}} E_{\xi_{k}}\left[\left(x_{k}-x^{*}\right)^{T} G\left(x_{k}, \xi_{k}\right) \mid \xi_{[k-1]}\right] \\
& =E_{\xi_{[k-1]}}\left(x_{k}-x^{*}\right)^{T} g_{k}
\end{aligned}
$$

... where

$$
g_{k}:=E_{\xi_{k}}\left[G\left(x_{k}, \xi_{k}\right) \mid \xi_{[k-1]}\right] \in \partial f\left(x_{k}\right) .
$$

By strong convexity, have

$$
\left(x_{k}-x^{*}\right)^{T} g_{k} \geq f\left(x_{k}\right)-f\left(x^{*}\right)+\frac{1}{2} \mu\left\|x_{k}-x^{*}\right\|^{2} \geq \mu\left\|x_{k}-x^{*}\right\|^{2}
$$

Hence by taking expectations, we get $E\left[\left(x_{k}-x^{*}\right)^{T} g_{k}\right] \geq 2 \mu a_{k}$. Then, substituting above, we obtain

$$
a_{k+1} \leq\left(1-2 \mu \alpha_{k}\right) a_{k}+\frac{1}{2} \alpha_{k}^{2} M^{2}
$$

When

$$
\alpha_{k} \equiv \frac{1}{k \mu},
$$

a neat inductive argument (below) reveals the $1 / k$ rate:

$$
a_{k} \leq \frac{Q}{2 k}, \quad \text { for } Q:=\max \left(\left\|x_{1}-x^{*}\right\|^{2}, \frac{M^{2}}{\mu^{2}}\right)
$$

Proof: Clearly true for $k=1$. Otherwise:

$$
\begin{aligned}
a_{k+1} & \leq\left(1-2 \mu \alpha_{k}\right) a_{k}+\frac{1}{2} \alpha_{k}^{2} M^{2} \\
& \leq\left(1-\frac{2}{k}\right) a_{k}+\frac{M^{2}}{2 k^{2} \mu^{2}} \\
& \leq\left(1-\frac{2}{k}\right) \frac{Q}{2 k}+\frac{Q}{2 k^{2}} \\
& =\frac{(k-1)}{2 k^{2}} Q \\
& =\frac{k^{2}-1}{k^{2}} \frac{Q}{2(k+1)} \\
& \leq \frac{Q}{2(k+1)},
\end{aligned}
$$

as claimed.

But... What if we don't know μ ? Or if $\mu=0$?

The choice $\alpha_{k}=1 /(k \mu)$ requires strong convexity, with knowledge of the modulus μ. An underestimate of μ can greatly degrade the performance of the method (see example in Nemirovski et al. 2009).

Now describe a Robust Stochastic Approximation approach, which has a rate $1 / \sqrt{k}$ (in function value convergence), and works for weakly convex nonsmooth functions and is not sensitive to choice of parameters in the step length.

This is the approach that generalizes to mirror descent.

Robust SA

At iteration k :

- set $x_{k+1}=x_{k}-\alpha_{k} G\left(x_{k}, \xi_{k}\right)$ as before;
- set

$$
\bar{x}_{k}=\frac{\sum_{i=1}^{k} \alpha_{i} x_{i}}{\sum_{i=1}^{k} \alpha_{i}}
$$

For any $\theta>0$ (not critical), choose step lengths to be

$$
\alpha_{k}=\frac{\theta}{M \sqrt{k}} .
$$

Then $f\left(\bar{x}_{k}\right)$ converges to $f\left(x^{*}\right)$ in expectation with rate approximately $(\log k) / k^{1 / 2}$. The choice of θ is not critical.

Analysis of Robust SA

The analysis is again elementary. As above (using i instead of k), have:

$$
\alpha_{i} E\left[\left(x_{i}-x^{*}\right)^{T} g_{i}\right] \leq a_{i}-a_{i+1}+\frac{1}{2} \alpha_{i}^{2} M^{2}
$$

By convexity of f, and $g_{i} \in \partial f\left(x_{i}\right)$:

$$
f\left(x^{*}\right) \geq f\left(x_{i}\right)+g_{i}^{T}\left(x^{*}-x_{i}\right)
$$

thus

$$
\alpha_{i} E\left[f\left(x_{i}\right)-f\left(x^{*}\right)\right] \leq a_{i}-a_{i+1}+\frac{1}{2} \alpha_{i}^{2} M^{2}
$$

so by summing iterates $i=1,2, \ldots, k$, telescoping, and using $a_{k+1}>0$:

$$
\sum_{i=1}^{k} \alpha_{i} E\left[f\left(x_{i}\right)-f\left(x^{*}\right)\right] \leq a_{1}+\frac{1}{2} M^{2} \sum_{i=1}^{k} \alpha_{i}^{2}
$$

Thus dividing by $\sum_{i=1} \alpha_{i}$:

$$
E\left[\frac{\sum_{i=1}^{k} \alpha_{i} f\left(x_{i}\right)}{\sum_{i=1}^{k} \alpha_{i}}-f\left(x^{*}\right)\right] \leq \frac{a_{1}+\frac{1}{2} M^{2} \sum_{i=1}^{k} \alpha_{i}^{2}}{\sum_{i=1}^{k} \alpha_{i}}
$$

By convexity, we have

$$
f\left(\bar{x}_{k}\right) \leq \frac{\sum_{i=1}^{k} \alpha_{i} f\left(x_{i}\right)}{\sum_{i=1}^{k} \alpha_{i}}
$$

so obtain the fundamental bound:

$$
E\left[f\left(\bar{x}_{k}\right)-f\left(x^{*}\right)\right] \leq \frac{a_{1}+\frac{1}{2} M^{2} \sum_{i=1}^{k} \alpha_{i}^{2}}{\sum_{i=1}^{k} \alpha_{i}} .
$$

By substituting $\alpha_{i}=\frac{\theta}{M \sqrt{ } i}$, we obtain

$$
\begin{aligned}
E\left[f\left(\bar{x}_{k}\right)-f\left(x^{*}\right)\right] & \leq \frac{a_{1}+\frac{1}{2} \theta^{2} \sum_{i=1}^{k} \frac{1}{i}}{\frac{\theta}{M} \sum_{i=1}^{k} \frac{1}{\sqrt{i}}} \\
& \leq \frac{a_{1}+\theta^{2} \log (k+1)}{\frac{\theta}{M} \sqrt{k}} \\
& =M\left[\frac{a_{1}}{\theta}+\theta \log (k+1)\right] k^{-1 / 2}
\end{aligned}
$$

That's it!
Other variants: constant stepsizes α_{k} for a fixed "budget" of iterations; periodic restarting; averaging just over the recent iterates. All can be analyzed with the basic bound above.

Constant Step Size

We can also get rates of approximately $1 / k$ for the strongly convex case, without performing iterate averaging and without requiring an accurate estimate of μ. The tricks are to (a) define the desired threshold for a_{k} in advance and (b) use a constant step size
Recall the bound from a few slides back, and set $\alpha_{k} \equiv \alpha$:

$$
a_{k+1} \leq(1-2 \mu \alpha) a_{k}+\frac{1}{2} \alpha^{2} M^{2}
$$

Define the "limiting value" α_{∞} by

$$
a_{\infty}=(1-2 \mu \alpha) a_{\infty}+\frac{1}{2} \alpha^{2} M^{2}
$$

Take the difference of the two expressions above:

$$
\left(a_{k+1}-a_{\infty}\right) \leq(1-2 \mu \alpha)\left(a_{k}-a_{\infty}\right)
$$

from which it follows that $\left\{a_{k}\right\}$ decreases monotonically to a_{∞}, and

$$
\left(a_{k}-a_{\infty}\right) \leq(1-2 \mu \alpha)^{k}\left(a_{0}-a_{\infty}\right)
$$

Constant Step Size, continued

Rearrange the expression for a_{∞} to obtain

$$
a_{\infty}=\frac{\alpha M^{2}}{4 \mu}
$$

From the previous slide, we thus have

$$
\begin{aligned}
a_{k} & \leq(1-2 \mu \alpha)^{k}\left(a_{0}-a_{\infty}\right)+a_{\infty} \\
& \leq(1-2 \mu \alpha)^{k} a_{0}+\frac{\alpha M^{2}}{4 \mu}
\end{aligned}
$$

Given threshold $\epsilon>0$, we aim to find α and K such that $a_{k} \leq \epsilon$ for all $k \geq K$. We ensure that both terms on the right-hand side of the expression above are less than $\epsilon / 2$. The right values are:

$$
\alpha:=\frac{2 \epsilon \mu}{M^{2}}, \quad K:=\frac{M^{2}}{4 \epsilon \mu^{2}} \log \left(\frac{a_{0}}{2 \epsilon}\right)
$$

Constant Step Size, continued

Clearly the choice of α guarantees that the second term is less than $\epsilon / 2$.
For the first term, we obtain k from an elementary argument:

$$
\begin{array}{rlrl}
& & (1-2 \mu \alpha)^{k} a_{0} & \leq \epsilon / 2 \\
\Leftrightarrow & k \log (1-2 \mu \alpha) & \leq-\log \left(2 a_{0} / \epsilon\right) \\
\Leftrightarrow & k(-2 \mu \alpha) & \leq-\log \left(2 a_{0} / \epsilon\right) \quad \text { since } \log (1+x) \leq x \\
\Leftrightarrow & & k & \geq \frac{1}{2 \mu \alpha} \log \left(2 a_{0} / \epsilon\right),
\end{array}
$$

from which the result follows, by substituting for α in the right-hand side.
If μ is underestimated by a factor of β, we undervalue α by the same factor, and K increases by $1 / \beta$. (Easy modification of the analysis above.)

Underestimating μ gives a mild performance penalty.

Constant Step Size: Summary

PRO: Avoid averaging, $1 / k$ sublinear convergence, insensitive to underestimates of μ.
CON: Need to estimate probably unknown quantities: besides μ, we need M (to get α) and a_{0} (to get K).

We use constant size size in the parallel SG approach Hogwild!, to be described later.

Mirror Descent

The step from x_{k} to x_{k+1} can be viewed as the solution of a subproblem:

$$
x_{k+1}=\arg \min _{z} G\left(x_{k}, \xi_{k}\right)^{T}\left(z-x_{k}\right)+\frac{1}{2 \alpha_{k}}\left\|z-x_{k}\right\|_{2}^{2}
$$

a linear estimate of f plus a prox-term. This provides a route to handling constrained problems, regularized problems, alternative prox-functions.

For the constrained problem $\min _{x \in \Omega} f(x)$, simply add the restriction $z \in \Omega$ to the subproblem above. In some cases (e.g. when Ω is a box), the subproblem is still easy to solve.
We may use other prox-functions in place of $(1 / 2)\|z-x\|_{2}^{2}$ above. Such alternatives may be particularly well suited to particular constraint sets Ω.

Mirror Descent is the term used for such generalizations of the SA approaches above.

Mirror Descent cont'd

Given constraint set Ω, choose a norm $\|\cdot\|$ (not necessarily Euclidean). Define the distance-generating function ω to be a strongly convex function on Ω with modulus 1 with respect to $\|\cdot\|$, that is,

$$
\left(\omega^{\prime}(x)-\omega^{\prime}(z)\right)^{T}(x-z) \geq\|x-z\|^{2}, \quad \text { for all } x, z \in \Omega
$$

where $\omega^{\prime}(\cdot)$ denotes an element of the subdifferential.
Now define the prox-function $V(x, z)$ as follows:

$$
V(x, z)=\omega(z)-\omega(x)-\omega^{\prime}(x)^{T}(z-x)
$$

This is also known as the Bregman distance. We can use it in the subproblem in place of $\frac{1}{2}\|\cdot\|^{2}$:

$$
x_{k+1}=\arg \min _{z \in \Omega} G\left(x_{k}, \xi_{k}\right)^{T}\left(z-x_{k}\right)+\frac{1}{\alpha_{k}} V\left(z, x_{k}\right) .
$$

Bregman distance is the deviation from linearity:

Bregman Distances: Examples

For any Ω, we can use $\omega(x):=(1 / 2)\|x-\bar{x}\|_{2}^{2}$, leading to prox-function $V(x, z)=(1 / 2)\|x-z\|_{2}^{2}$.
For the simplex $\Omega=\left\{x \in \mathbb{R}^{n}: x \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}$, we can use instead the 1 -norm $\|\cdot\|_{1}$, choose ω to be the entropy function

$$
\omega(x)=\sum_{i=1}^{n} x_{i} \log x_{i}
$$

leading to Bregman distance

$$
V(x, z)=\sum_{i=1}^{n} z_{i} \log \left(z_{i} / x_{i}\right)
$$

These are the two most useful cases.
Convergence results for SA can be generalized to mirror descent.

Incremental Gradient

(See e.g. Bertsekas (2011) and references therein.) Finite sums:

$$
f(x)=\sum_{i=1}^{m} f_{i}(x)
$$

Step k typically requires choice of one index $i_{k} \in\{1,2, \ldots, m\}$ and evaluation of $\nabla f_{i_{k}}\left(x_{k}\right)$. Components i_{k} are selected sometimes randomly or cyclically. (Latter option does not exist in the setting $f(x):=E_{\xi} F(x ; \xi)$.)

- There are incremental versions of the heavy-ball method:

$$
x_{k+1}=x_{k}-\alpha_{k} \nabla f_{i_{k}}\left(x_{k}\right)+\beta\left(x_{k}-x_{k-1}\right)
$$

- Approach like dual averaging: assume a cyclic choice of i_{k}, and approximate $\nabla f\left(x_{k}\right)$ by the average of $\nabla f_{i}(x)$ over the last m iterates:

$$
x_{k+1}=x_{k}-\frac{\alpha_{k}}{m} \sum_{l=1}^{m} \nabla f_{i_{k-l+1}}\left(x_{k-l+1}\right)
$$

Achievable Accuracy

Consider the basic incremental method:

$$
x_{k+1}=x_{k}-\alpha_{k} \nabla f_{i_{k}}\left(x_{k}\right)
$$

How close can $f\left(x_{k}\right)$ come to $f\left(x^{*}\right)$ - deterministically (not just in expectation).
Bertsekas (2011) obtains results for constant steps $\alpha_{k} \equiv \alpha$.
cyclic choice of $i_{k}: \quad \lim \inf _{k \rightarrow \infty} f\left(x_{k}\right) \leq f\left(x^{*}\right)+\alpha \beta m^{2} c^{2}$.
random choice of $i_{k}: \quad \lim \inf _{k \rightarrow \infty} f\left(x_{k}\right) \leq f\left(x^{*}\right)+\alpha \beta m c^{2}$.
where β is close to 1 and c is a bound on the Lipschitz constants for ∇f_{i}.
(Bertsekas actually proves these results in the more general context of regularized optimization - see below.)

Applications to SVM

SA techniques have an obvious application to linear SVM classification. In fact, they were proposed in this context and analyzed independently by researchers in the ML community for some years.

Codes: SGD (Bottou), PEGASOS (Shalev-Schwartz et al, 2007).
Tutorial: Stochastic Optimization for Machine Learning, Tutorial by N. Srebro and A. Tewari, ICML 2010 for many more details on the connections between stochastic optimization and machine learning.

Related Work: Zinkevich (ICML, 2003) on online convex programming. Aiming to approximate the minimize the average of a sequence of convex functions, presented sequentially. No i.i.d. assumption, regret-based analysis. Take steplengths of size $O\left(k^{-1 / 2}\right)$ in gradient $\nabla f_{k}\left(x_{k}\right)$ of latest convex function. Average regret is $O\left(k^{-1 / 2}\right)$.

Parallel Stochastic Approximation

Several approaches tried for parallel stochastic approximation.

- Dual Averaging: Average gradient estimates evaluated in parallel on different cores. Requires message passing / synchronization (Dekel et al, 2011; Duchi et al, 2010).
- Round-Robin: Cores evaluate ∇f_{i} in parallel and update centrally stored x in round-robin fashion. Requires synchronization (Langford et al, 2009).
- Asynchronous: HogWild!: Each core grabs the centrally-stored x and evaluates $\nabla f_{e}\left(x_{e}\right)$ for some random e, then writes the updates back into x (Niu, Ré, Recht, Wright, NIPS, 2011).

Hogwild!: Each processor runs independently:
(1) Sample e from E;
(2) Read current state of x;
(3) for v in e do $x_{v} \leftarrow x_{v}-\alpha\left[\nabla f_{e}\left(x_{e}\right)\right]_{v}$;

Hogwild! Convergence

- Updates can be old by the time they are applied, but we assume a bound τ on their age.
- Nui et al (2011) analyze the case in which the update is applied to just one $v \in e$, but can be extended easily to update the full edge e, provided this is done atomically.
- Processors can overwrite each other's work, but sparsity of ∇f_{e} helps - updates to not interfere too much.

Analysis of Niu et al (2011) recently simplified and generalized by Richtarik (2012).

In addition to L, μ, M, D_{0} defined above, also define quantities that capture the size and interconnectivity of the subvectors x_{e}.

- $\rho_{e}=\left|\left\{e^{\prime}: e^{\prime} \cap e \neq \emptyset\right\}\right|:$ number of indices e^{\prime} such that x_{e} and $x_{e^{\prime}}$ have common components;
- $\rho=\sum_{e \in E} \rho_{e} /|E|^{2}$: average rate of overlapping subvectors.

Hogwild! Convergence

(Richtarik 2012) (for full atomic update of index e) Given $\epsilon \in\left(0, D_{0} / L\right)$, we have

$$
\min _{0 \leq j \leq k} E\left(f\left(x_{j}\right)-f\left(x^{*}\right)\right) \leq \epsilon,
$$

for

$$
\alpha_{k} \equiv \frac{\mu \epsilon}{(1+2 \tau \rho) L M^{2}|E|^{2}}
$$

and $k \geq K$, where

$$
K=\frac{(1+2 \tau \rho) L M^{2}|E|^{2}}{\mu^{2} \epsilon} \log \left(\frac{2 L D_{0}}{\epsilon}-1\right) .
$$

Broadly, recovers the sublinear $1 / k$ convergence rate seen in regular SGD, with the delay τ and overlap measure ρ both appearing linearly.

Hogwild! Performance

SVM
RCV1

MC
Netflix

CUTS
Abdomen

HogWild! compared with averaged gradient (AIG) and round-robin (RR). Experiments run on a 12-core machine. (10 cores used for gradient evaluations, 2 cores for data shuffling.)

Hogwild! Performance

data set	size (GB)	ρ	Δ	time (s)	speedup	
SVM	RCV1	0.9	$4.4 \mathrm{E}-01$	$1.0 \mathrm{E}+00$	10	4.5
	Netflix	1.5	$2.5 \mathrm{E}-03$	$2.3 \mathrm{E}-03$	301	5.3
	KDD	3.9	$3.0 \mathrm{E}-03$	$1.8 \mathrm{E}-03$	878	5.2
	JUMBO	30	$2.6 \mathrm{E}-07$	$1.4 \mathrm{E}-07$	9,454	6.8
CUTS	DBLife	0.003	$8.6 \mathrm{E}-03$	$4.3 \mathrm{E}-03$	230	8.8
	Abdomen	18	$9.2 \mathrm{E}-04$	$9.2 \mathrm{E}-04$	1,181	4.1

Extensions

To improve scalability, could restrict write access.

- Break x into blocks; assign one block per processor; allow a processor to update only components in its block;
- Share blocks by periodically writing to a central repository, or gossipping between processors.
Analysis in progress.
Le et al (2012) (featured recently in the NY Times) implemented an algorithm like this on 16,000 cores.

Another useful tool for splitting problems and coordinating information between processors is the Alternating Direction Method of Mulitipliers (ADMM).

Further Reading

(1) A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, "Robust stochastic approximation approach to stochastic programming," SIAM Journal on Optimization, 19, pp. 1574-1609, 2009.
(2) D. P. Bertsekas, "Incremental gradient, subgradient, and proximal methods for convex optimization: A Survey," Chapter 4 in Optimization and Machine Learning, S. Nowozin, S. Sra, and S. J. Wright (2011).
(3) A. Juditsky and A. Nemirovski, " First-order methods for nonsmooth convex large-scale optimization. I and II" methods," Chapters 5 and 6 in Optimization and Machine Learning (2011).
(4) O. L. Mangasarian and M. Solodov, "Serial and parallel backpropagation convergencevia nonmonotone perturbed minimization," Optimization Methods and Software 4 (1994), pp. 103-116.
(5) D. Blatt, A. O. Hero, and H. Gauchman, "A convergent incremental gradient method with constant step size," SIAM Journal on Optimization 18 (2008), pp. 29-51.
(6) Niu, F., Recht, B., Ré, C., and Wright, S. J., "HogWild!: A Lock-free approach to parallelizing stochastic gradient descent," NIPS 24, 2011.

