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OVERVIEW: THIS TALK

•Learning representations of temporal data:

- existing methods and challenges faced
- recent methods inspired by deep learning

and representation learning
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OVERVIEW: THIS TALK

•Learning representations of temporal data:

- existing methods and challenges faced
- recent methods inspired by deep learning

and representation learning

•Applications: in particular, modeling human pose and activity

- highly structured data: e.g. motion capture
- weakly structured data: e.g. video
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Existing methods, challenges
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OUTLINE

3

Composable, distributed-state models for sequences
Conditional Restricted Boltzmann Machines and their variants

Using learned representations to analyze video
A brief and (incomplete survey of deep learning for activity recognition
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•Time is an integral part of many human behaviours (motion, reasoning)

• In building statistical models, time is sometimes ignored, often problematic

•Models that do incorporate dynamics fail to account for the fact that data is 
often high-dimensional, nonlinear, and contains long-range dependencies
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Graphic: David McCandless, informationisbeautiful.net
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TIME SERIES DATA

•Time is an integral part of many human behaviours (motion, reasoning)

• In building statistical models, time is sometimes ignored, often problematic

•Models that do incorporate dynamics fail to account for the fact that data is 
often high-dimensional, nonlinear, and contains long-range dependencies
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Today we will discuss a number of models that have been developed to 
address these challenges.

Graphic: David McCandless, informationisbeautiful.net

Thursday, July 12, 2012



13 Jul 2012 /
Learning Representations of Sequences / G Taylor 

VECTOR AUTOREGRESSIVE MODELS

•Have dominated statistical time-series analysis for approx. 50 years

•Can be fit easily by least-squares regression

•Can fail even for simple nonlinearities present in the system
- but many data sets can be modeled well by a linear system

•Well understood; many extensions exist
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MARKOV (“N-GRAM”) MODELS

6

•Fully observable

•Sequential observations may have nonlinear dependence

•Derived by assuming sequences have Markov property:

•This leads to joint:

•Number of parameters exponential in     !

vt−2 vt−1 vt

p(vt|{vt−1
1 }) = p(vt|{vt−1

t−N})

p({vT
1 }) = p({vN

1 })
T�

t=N+1

p(vt|{vt−1
t−N})

N
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EXPONENTIAL INCREASE IN PARAMETERS
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1st order Markov

|θ| = QN+1

Here, Q = 3

(N = 1)
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p(a|a) p(b|a) p(c|a)

p(a|b) p(b|b) p(c|b)

p(a|c) p(b|c) p(c|c)

1st order Markov

|θ| = QN+1

Here, Q = 3

(N = 1)

p(a|{a,c}) p(b|{a,c}) p(c|{a,c})

p(a|{b,a}) p(b|{b,a}) p(c|{b,c})

p(a|{c,a}) p(b|{c,a}) p(c|{c,c})

p(a|{a,b}) p(b|{a,b}) p(c|{a,b})
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2nd order Markov (N = 2)
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state that controls the 
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HIDDEN MARKOV MODELS (HMM)

8

vt−2 vt−1 vt

ht−1 htht−2
Introduces a hidden 
state that controls the 
dependence of the 
current observation 
on the past

•Successful in speech & language modeling, biology

•Defined by 3 sets of parameters:
- Initial state parameters, 
- Transition matrix, 
- Emission distribution,

•Factored joint distribution:

π
A

p(vt|ht)

p({ht}, {vt}) = p(h1)p(v1|h1)
T�

t=2

p(ht|ht−1)p(vt|ht)
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INFERENCE AND LEARNING
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perform in an HMM:
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INFERENCE AND LEARNING

•Typically three tasks we want to 
perform in an HMM:

- Likelihood estimation
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INFERENCE AND LEARNING

•Typically three tasks we want to 
perform in an HMM:

- Likelihood estimation
- Inference
- Learning

•All are exact and tractable due to 
the simple structure of the HMM
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•Many high-dimensional data sets contain rich componential structure

•Hidden Markov Models cannot model such data efficiently: a single, discrete 
K-state multinomial must represent the history of the time series

•To model     bits of information, they need       hidden states

•We seek models with distributed hidden state:

- capacity linear in the number of components
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LINEAR DYNAMICAL SYSTEMS

11

vt−2 vt−1 vt

Graphical model is the 
same as HMM but 
with real-valued state 
vectors

ht−2 ht−1 ht

•Characterized by linear-Gaussian dynamics and observations:

• Inference is performed using Kalman smoothing (belief propagation)

•Learning can be done by EM

•Dynamics, observations may also depend on an observed input (control)

p(ht|ht−1) = N (ht;Aht−1, Q) p(vt|ht) = N (vt;Cht, R)
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Data for many real-world problems (e.g. vision, motion capture) is high-
dimensional, containing complex non-linear relationships between components
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LATENT REPRESENTATIONS FOR REAL-WORLD DATA

Data for many real-world problems (e.g. vision, motion capture) is high-
dimensional, containing complex non-linear relationships between components

12

K

Hidden Markov Models
Pro: complex, nonlinear emission model
Con: single     -state multinomial represents entire history

Linear Dynamical Systems
Pro: state can convey much more information
Con: emission model constrained to be linear
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LEARNING DISTRIBUTED REPRESENTATIONS

•Simple networks are capable of discovering useful 
and interesting internal representations of static 
data (e.g. many of the talks so far!)

•Can we learn, in a similar way, representations of 
temporal data?

•Simple idea: spatial representation of time:
- Need a buffer; not biologically plausible
- Cannot process inputs of differing length
- Cannot distinguish between absolute and relative 

position
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LEARNING DISTRIBUTED REPRESENTATIONS

•Simple networks are capable of discovering useful 
and interesting internal representations of static 
data (e.g. many of the talks so far!)

•Can we learn, in a similar way, representations of 
temporal data?

•Simple idea: spatial representation of time:
- Need a buffer; not biologically plausible
- Cannot process inputs of differing length
- Cannot distinguish between absolute and relative 

position

•This motivates an implicit representation of time in 
connectionist models where time is represented by 
its effect on processing
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Spectrogram: http://soundsofstanford.wordpress.com
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A RICH HISTORY

14

Elman networks
Time-delayed “context” units, truncated BPTT.
(Elman, 1990), (Jordan, 1986)

Mean-field Boltzmann Machines through Time
Inference is approximate, learning less efficient than HMMs.
(Williams and Hinton, 1990)

Spiking Boltzmann Machines
Hidden-state dynamics and smoothness constraints on observed data.
(Hinton and Brown, 2000)
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(Figure from Martens and Sutskever)

ht+1ht−1 ht
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xt = Whvvt +Whhht−1 + bh

hj,t = f(xj,t)
st = W yhht + by

ŷk,t = g(sk,t)
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RECURRENT NEURAL NETWORKS

15

•Neural network replicated in time

•At each step, receives input vector, updates its internal representation via 
nonlinear activation functions, and makes a prediction:

(Figure from Martens and Sutskever)

ht+1ht−1 ht

ŷtŷt−1 ŷt+1

vtvt−1 vt+1

xt = Whvvt +Whhht−1 + bh

hj,t = f(xj,t)
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•Possibly high-dimensional, distributed, internal representation and nonlinear 
dynamics allow model, in theory, model complex time series

•Exact gradients can be computed exactly via Backpropagation Through Time

• It is an interesting and powerful model. What’s the catch?
- Training RNNs via gradient descent fails on simple problems
- Attributed to “vanishing” or “exploding” gradients
- Much work in the 1990’s focused on identifying and addressing these 

issues: none of these methods were widely adopted
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TRAINING RECURRENT NEURAL NETWORKS

•Possibly high-dimensional, distributed, internal representation and nonlinear 
dynamics allow model, in theory, model complex time series

•Exact gradients can be computed exactly via Backpropagation Through Time

• It is an interesting and powerful model. What’s the catch?
- Training RNNs via gradient descent fails on simple problems
- Attributed to “vanishing” or “exploding” gradients
- Much work in the 1990’s focused on identifying and addressing these 

issues: none of these methods were widely adopted

•Best-known attempts to resolve the problem of RNN training:
- Long Short-term Memory (LSTM) (Hochreiter and Schmidhuber 1997)
- Echo-State Network (ESN) (Jaeger and Haas 2004)

16
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Two hypotheses for why gradient descent fails for NN:
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• increased frequency and severity of bad local minima

17

Two hypotheses for why gradient descent fails for NN:

(Figures from James Martens)
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FAILURE OF GRADIENT DESCENT

• increased frequency and severity of bad local minima

•pathological curvature, like the type seen in the 
Rosenbrock function:

17

Two hypotheses for why gradient descent fails for NN:

f(x, y) = (1− x)2 + 100(y − x2)2

(Figures from James Martens)

Thursday, July 12, 2012
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SECOND ORDER METHODS

•Model the objective function by the local approximation:

where      is the search direction and      is a matrix which quantifies curvature

• In Newton’s method,     is the Hessian matrix, 

•By taking the curvature information into account, Newton’s method “rescales” 
the gradient so it is a much more sensible direction to follow

•Not feasible for high-dimensional problems!

18

f(θ + p) ≈ qθ(p) ≡ f(θ) + ∆f(θ)T p+
1

2
pTBp

p B

B H

(Figure from James Martens)
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Based on exploiting two simple ideas (and some additional “tricks”):
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Based on exploiting two simple ideas (and some additional “tricks”):

•For an n-dimensional vector    , the Hessian-vector product         can easily be 
computed using finite differences at the cost of a single extra gradient evaluation

- In practice, the R-operator (Perlmutter 1994) is used instead of finite differences

Hdd
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HESSIAN-FREE OPTIMIZATION

19

Based on exploiting two simple ideas (and some additional “tricks”):

•For an n-dimensional vector    , the Hessian-vector product         can easily be 
computed using finite differences at the cost of a single extra gradient evaluation

- In practice, the R-operator (Perlmutter 1994) is used instead of finite differences

•There is a very effective algorithm for optimizing quadratic objectives which 
requires only Hessian-vector products: linear conjugate-gradient (CG)
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HESSIAN-FREE OPTIMIZATION

19

Based on exploiting two simple ideas (and some additional “tricks”):

•For an n-dimensional vector    , the Hessian-vector product         can easily be 
computed using finite differences at the cost of a single extra gradient evaluation

- In practice, the R-operator (Perlmutter 1994) is used instead of finite differences

•There is a very effective algorithm for optimizing quadratic objectives which 
requires only Hessian-vector products: linear conjugate-gradient (CG)

Hdd

This method was shown to effectively train RNNs in the pathological 
long-term dependency problems they were previously not able to solve 
(Martens and Sutskever 2011)

RNN demo code (using Theano): http://github.com/gwtaylor/theano-rnn
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•Many sequences are high-dimensional and have complex structure
- music, human motion, weather/climate data
- RNNs simply predict the expected value at the next time step
- They can’t capture multi-modality
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GENERATIVE MODELS WITH DISTRIBUTED STATE

•Many sequences are high-dimensional and have complex structure
- music, human motion, weather/climate data
- RNNs simply predict the expected value at the next time step
- They can’t capture multi-modality

•Generative models (like Restricted Boltzmann Machines) can capture 
complex distributions

•Use binary hidden state and gain the best of HMM & LDS:
- the nonlinear dynamics and observation model of the HMM without the 

limited hidden state
- the efficient, expressive state of the LDS without the linear-Gaussian 

restriction on dynamics and observations

20
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DISTRIBUTED BINARY HIDDEN STATE

•Using distributed binary representations 
for hidden state in directed models of time 
series makes inference difficult. But we 
can:

- Use a Restricted Boltzmann Machine 
(RBM) for the interactions between 
hidden and visible variables. A factorial 
posterior makes inference and sampling 
easy.

- Treat the visible variables in the previous 
time slice as additional fixed inputs

21

Visible variables (observations) at time t

Hidden variables (factors) at time t

One typically uses binary logistic 
units for both visibles and hiddens

p(hj = 1|v) = σ(bj +
�

i

viWij)

p(vi = 1|h) = σ(bi +
�

j

hjWij)

Thursday, July 12, 2012



13 Jul 2012 /
Learning Representations of Sequences / G Taylor 

MODELING OBSERVATIONS WITH AN RBM

22

•So the distributed binary latent (hidden) state of an RBM lets us:

- Model complex, nonlinear dynamics
- Easily and exactly infer the latent binary state given the observations 

•But RBMs treat data as static (i.i.d.)

Visible variables (joint angles) at time t

Hidden variables (factors) at time t
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CONDITIONAL RESTRICTED BOLTZMANN MACHINES

23

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)
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CONDITIONAL RESTRICTED BOLTZMANN MACHINES

•Start with a Restricted Boltzmann Machine (RBM)

23
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Hidden layer

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)
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•Add two types of directed connections:
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CONDITIONAL RESTRICTED BOLTZMANN MACHINES

•Start with a Restricted Boltzmann Machine (RBM)

•Add two types of directed connections:

- Autoregressive connections model short-term, linear structure

23

Visible layer

Hidden layer

Recent history

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)
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CONDITIONAL RESTRICTED BOLTZMANN MACHINES

•Start with a Restricted Boltzmann Machine (RBM)

•Add two types of directed connections:

- Autoregressive connections model short-term, linear structure
- History can also influence dynamics through hidden layer
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CONDITIONAL RESTRICTED BOLTZMANN MACHINES

•Start with a Restricted Boltzmann Machine (RBM)

•Add two types of directed connections:

- Autoregressive connections model short-term, linear structure
- History can also influence dynamics through hidden layer

•Conditioning does not change inference nor learning

23
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(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)
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CONTRASTIVE DIVERGENCE LEARNING IN A CRBM

•When updating visible and hidden units, we implement directed connections 
by treating data from previous time steps as a dynamically changing bias

• Inference and learning do not change

24
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STACKING: THE CONDITIONAL DEEP BELIEF NETWORK
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STACKING: THE CONDITIONAL DEEP BELIEF NETWORK

•Learn a CRBM
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STACKING: THE CONDITIONAL DEEP BELIEF NETWORK

•Learn a CRBM

•Now, treat the sequence of hidden units as “fully 
observed” data and train a second CRBM
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STACKING: THE CONDITIONAL DEEP BELIEF NETWORK

•Learn a CRBM

•Now, treat the sequence of hidden units as “fully 
observed” data and train a second CRBM

•The composition of CRBMs is a conditional deep 
belief net
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STACKING: THE CONDITIONAL DEEP BELIEF NETWORK

•Learn a CRBM

•Now, treat the sequence of hidden units as “fully 
observed” data and train a second CRBM

•The composition of CRBMs is a conditional deep 
belief net

• It can be fine-tuned generatively or discriminatively
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MOTION SYNTHESIS WITH A 2-LAYER CDBN

•Model is trained on ~8000 frames 
of 60fps data (49 dimensions)

•10 styles of walking: cat, chicken, 
dinosaur, drunk, gangly, graceful, 
normal, old-man, sexy and strong

•600 binary hidden units per layer

•< 1 hour training on a modern 
workstation

26
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•A single model was trained on 10 “styled” 
walks from CMU subject 137
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•A single model was trained on 10 “styled” 
walks from CMU subject 137

•The model can generate each style based 
on initialization
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•A single model was trained on 10 “styled” 
walks from CMU subject 137

•The model can generate each style based 
on initialization

•We cannot prevent nor control 
transitioning
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•A single model was trained on 10 “styled” 
walks from CMU subject 137

•The model can generate each style based 
on initialization

•We cannot prevent nor control 
transitioning

•How to blend styles?
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•A single model was trained on 10 “styled” 
walks from CMU subject 137

•The model can generate each style based 
on initialization

•We cannot prevent nor control 
transitioning

•How to blend styles?

•Style or person labels can be provided as 
part of the input to the top layer
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HOW TO MAKE CONTEXT INFLUENCE DYNAMICS?

28

! !

!!"#$!!!!!!!!!!"#%!!!!!!!!!!"!

Thursday, July 12, 2012



13 Jul 2012 /
Learning Representations of Sequences / G Taylor 

MULTIPLICATIVE INTERACTIONS

•Let latent variables act like gates, that dynamically 
change the connections between other variables

•This amounts to letting variables multiply 
connections between other variables: three-way 
multiplicative interactions

•Recently used in the context of learning 
correspondence between images (Memisevic & 
Hinton 2007, 2010) but long history before that

29
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•Let latent variables act like gates, that dynamically 
change the connections between other variables

•This amounts to letting variables multiply 
connections between other variables: three-way 
multiplicative interactions

•Recently used in the context of learning 
correspondence between images (Memisevic & 
Hinton 2007, 2010) but long history before that

29
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Roland Memisevic has a nice Tutorial and review paper on the subject: 
http://www.cs.toronto.edu/~rfm/multiview-feature-learning-cvpr/
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GATED RESTRICTED BOLTZMANN MACHINES (GRBM)
Two views: Memisevic & Hinton (2007)

30
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INFERRING OPTICAL FLOW: IMAGE “ANALOGIES”

31
Figure 2: Columns (left to right): Input images; output images; inferred flowfields;
random target images; inferred transformation applied to target images. For the trans-
formations (last column) gray values represent the probability that a pixel is ’on’ ac-
cording to the model, ranging from black for 0 to white for 1.

8

•Toy images (Memisevic & Hinton 2006)

•No structure in these images, only how 
they change

•Can infer optical flow from a pair of 
images and apply it to a random image
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BACK TO MOTION STYLE

• Introduce a set of latent “context” variables 
whose value is known at training time

• In our example, these represent “motion style” 
but could also represent height, weight, gender, 
etc.

•The contextual variables gate every existing 
pairwise connection in our model

32
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LEARNING AND INFERENCE

•Learning and inference remain almost the same 
as in the standard CRBM

•We can think of the context or style variables as 
“blending in” a whole “sub-network”

•This allows us to share parameters across 
styles but selectively adapt dynamics

33
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SUPERVISED MODELING OF STYLE

34

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
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SUPERVISED MODELING OF STYLE
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(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
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OVERPARAMETERIZATION

•Note: weight Matrix           has been replaced by 
a tensor              ! (Likewise for other weights)

•The number of parameters is             - per 
group of weights         

•More, if we want sparse, overcomplete hiddens 

•However, there is a simple yet powerful solution!
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FACTORING

36 (Figure adapted from Roland Memisevic)
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SUPERVISED MODELING OF STYLE

37

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
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SUPERVISED MODELING OF STYLE
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PARAMETER SHARING

38
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MOTION SYNTHESIS: 
FACTORED 3RD-ORDER CRBM

•Same 10-styles dataset

•600 binary hidden units

•3×200 deterministic factors

•100 real-valued style features

•< 1 hour training on a modern 
workstation

•Synthesis is real-time

39
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QUANTITATIVE EVALUATION

•Not computationally tractable to 
compute likelihoods

•Annealed Importance Sampling will not 
work in conditional models (open 
problem)

•Can evaluate predictive power (even 
though it has been trained generatively)

•Can also evaluate in denoising tasks

40
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3D CONVNETS FOR ACTIVITY RECOGNITION
Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu (ICML 2010)

•One approach: treat video frames as still images (LeCun et al. 2005)

•Alternatively, perform 3D convolution so that discriminative features across 
space and time are captured

41

Images from Ji et al. 2010

3D Convolutional Neural Networks for Human Action Recognition

(a) 2D convolution 

t e
 m

 p 
o r

 a l
 

(b) 3D convolution 

Figure 1. Comparison of 2D (a) and 3D (b) convolutions.
In (b) the size of the convolution kernel in the temporal
dimension is 3, and the sets of connections are color-coded
so that the shared weights are in the same color. In 3D
convolution, the same 3D kernel is applied to overlapping
3D cubes in the input video to extract motion features.
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ijm is the (p, q, r)th value of the
kernel connected to the mth feature map in the previ-
ous layer. A comparison of 2D and 3D convolutions is
given in Figure 1.

Note that a 3D convolutional kernel can only extract
one type of features from the frame cube, since the
kernel weights are replicated across the entire cube. A
general design principle of CNNs is that the number
of feature maps should be increased in late layers by
generating multiple types of features from the same
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Figure 2. Extraction of multiple features from contiguous
frames. Multiple 3D convolutions can be applied to con-
tiguous frames to extract multiple features. As in Figure 1,
the sets of connections are color-coded so that the shared
weights are in the same color. Note that all the 6 sets of
connections do not share weights, resulting in two different
feature maps on the right.

set of lower-level feature maps. Similar to the case
of 2D convolution, this can be achieved by applying
multiple 3D convolutions with distinct kernels to the
same location in the previous layer (Figure 2).

2.2. A 3D CNN Architecture

Based on the 3D convolution described above, a variety
of CNN architectures can be devised. In the following,
we describe a 3D CNN architecture that we have devel-
oped for human action recognition on the TRECVID
data set. In this architecture shown in Figure 3, we
consider 7 frames of size 60×40 centered on the current
frame as inputs to the 3D CNN model. We first apply a
set of hardwired kernels to generate multiple channels
of information from the input frames. This results in
33 feature maps in the second layer in 5 different chan-
nels known as gray, gradient-x, gradient-y, optflow-x,
and optflow-y. The gray channel contains the gray
pixel values of the 7 input frames. The feature maps
in the gradient-x and gradient-y channels are obtained
by computing gradients along the horizontal and ver-
tical directions, respectively, on each of the 7 input
frames, and the optflow-x and optflow-y channels con-
tain the optical flow fields, along the horizontal and
vertical directions, respectively, computed from adja-
cent input frames. This hardwired layer is used to en-
code our prior knowledge on features, and this scheme
usually leads to better performance as compared to
random initialization.

3D Convolutional Neural Networks for Human Action Recognition

(a) 2D convolution 

t e
 m

 p 
o r

 a l
 

(b) 3D convolution 

Figure 1. Comparison of 2D (a) and 3D (b) convolutions.
In (b) the size of the convolution kernel in the temporal
dimension is 3, and the sets of connections are color-coded
so that the shared weights are in the same color. In 3D
convolution, the same 3D kernel is applied to overlapping
3D cubes in the input video to extract motion features.

previous layer, thereby capturing motion information.
Formally, the value at position (x, y, z) on the jth fea-
ture map in the ith layer is given by

vxyz
ij =tanh

(

bij+
∑

m

Pi−1
∑

p=0

Qi−1
∑

q=0

Ri−1
∑

r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m

)

,

(2)
where Ri is the size of the 3D kernel along the tem-
poral dimension, wpqr

ijm is the (p, q, r)th value of the
kernel connected to the mth feature map in the previ-
ous layer. A comparison of 2D and 3D convolutions is
given in Figure 1.

Note that a 3D convolutional kernel can only extract
one type of features from the frame cube, since the
kernel weights are replicated across the entire cube. A
general design principle of CNNs is that the number
of feature maps should be increased in late layers by
generating multiple types of features from the same

t e
 m

 p 
o r

 a l
 

Figure 2. Extraction of multiple features from contiguous
frames. Multiple 3D convolutions can be applied to con-
tiguous frames to extract multiple features. As in Figure 1,
the sets of connections are color-coded so that the shared
weights are in the same color. Note that all the 6 sets of
connections do not share weights, resulting in two different
feature maps on the right.

set of lower-level feature maps. Similar to the case
of 2D convolution, this can be achieved by applying
multiple 3D convolutions with distinct kernels to the
same location in the previous layer (Figure 2).

2.2. A 3D CNN Architecture

Based on the 3D convolution described above, a variety
of CNN architectures can be devised. In the following,
we describe a 3D CNN architecture that we have devel-
oped for human action recognition on the TRECVID
data set. In this architecture shown in Figure 3, we
consider 7 frames of size 60×40 centered on the current
frame as inputs to the 3D CNN model. We first apply a
set of hardwired kernels to generate multiple channels
of information from the input frames. This results in
33 feature maps in the second layer in 5 different chan-
nels known as gray, gradient-x, gradient-y, optflow-x,
and optflow-y. The gray channel contains the gray
pixel values of the 7 input frames. The feature maps
in the gradient-x and gradient-y channels are obtained
by computing gradients along the horizontal and ver-
tical directions, respectively, on each of the 7 input
frames, and the optflow-x and optflow-y channels con-
tain the optical flow fields, along the horizontal and
vertical directions, respectively, computed from adja-
cent input frames. This hardwired layer is used to en-
code our prior knowledge on features, and this scheme
usually leads to better performance as compared to
random initialization.

3D Convolutional Neural Networks for Human Action Recognition

(a) 2D convolution 

t e
 m

 p 
o r

 a l
 

(b) 3D convolution 

Figure 1. Comparison of 2D (a) and 3D (b) convolutions.
In (b) the size of the convolution kernel in the temporal
dimension is 3, and the sets of connections are color-coded
so that the shared weights are in the same color. In 3D
convolution, the same 3D kernel is applied to overlapping
3D cubes in the input video to extract motion features.

previous layer, thereby capturing motion information.
Formally, the value at position (x, y, z) on the jth fea-
ture map in the ith layer is given by

vxyz
ij =tanh

(

bij+
∑

m

Pi−1
∑

p=0

Qi−1
∑

q=0

Ri−1
∑

r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m

)

,

(2)
where Ri is the size of the 3D kernel along the tem-
poral dimension, wpqr

ijm is the (p, q, r)th value of the
kernel connected to the mth feature map in the previ-
ous layer. A comparison of 2D and 3D convolutions is
given in Figure 1.

Note that a 3D convolutional kernel can only extract
one type of features from the frame cube, since the
kernel weights are replicated across the entire cube. A
general design principle of CNNs is that the number
of feature maps should be increased in late layers by
generating multiple types of features from the same

t e
 m

 p 
o r

 a l
 

Figure 2. Extraction of multiple features from contiguous
frames. Multiple 3D convolutions can be applied to con-
tiguous frames to extract multiple features. As in Figure 1,
the sets of connections are color-coded so that the shared
weights are in the same color. Note that all the 6 sets of
connections do not share weights, resulting in two different
feature maps on the right.

set of lower-level feature maps. Similar to the case
of 2D convolution, this can be achieved by applying
multiple 3D convolutions with distinct kernels to the
same location in the previous layer (Figure 2).

2.2. A 3D CNN Architecture

Based on the 3D convolution described above, a variety
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we describe a 3D CNN architecture that we have devel-
oped for human action recognition on the TRECVID
data set. In this architecture shown in Figure 3, we
consider 7 frames of size 60×40 centered on the current
frame as inputs to the 3D CNN model. We first apply a
set of hardwired kernels to generate multiple channels
of information from the input frames. This results in
33 feature maps in the second layer in 5 different chan-
nels known as gray, gradient-x, gradient-y, optflow-x,
and optflow-y. The gray channel contains the gray
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in the gradient-x and gradient-y channels are obtained
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tical directions, respectively, on each of the 7 input
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Multiple convolutions applied to contiguous frames 
to extract multiple features
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3D CNN ARCHITECTURE
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H1: 
33@60x40 C2: 

23*2@54x34 

7x7x3 3D 
convolution 

2x2 
subsampling 

S3: 
23*2@27x17 

7x6x3 3D 
convolution 

C4: 
13*6@21x12 

3x3 
subsampling 

S5: 
13*6@7x4 

7x4 
convolution 

C6: 
128@1x1 

full 
connnection 

hardwired 

input: 
7@60x40 

Figure 3. A 3D CNN architecture for human action recognition. This architecture consists of 1 hardwired layer, 3 convo-
lution layers, 2 subsampling layers, and 1 full connection layer. Detailed descriptions are given in the text.

We then apply 3D convolutions with a kernel size of
7 × 7 × 3 (7 × 7 in the spatial dimension and 3 in the
temporal dimension) on each of the 5 channels sepa-
rately. To increase the number of feature maps, two
sets of different convolutions are applied at each loca-
tion, resulting in 2 sets of feature maps in the C2 layer
each consisting of 23 feature maps. This layer con-
tains 1,480 trainable parameters. In the subsequent
subsampling layer S3, we apply 2 × 2 subsampling on
each of the feature maps in the C2 layer, which leads
to the same number of feature maps with reduced spa-
tial resolution. The number of trainable parameters in
this layer is 92. The next convolution layer C4 is ob-
tained by applying 3D convolution with a kernel size
of 7 × 6 × 3 on each of the 5 channels in the two sets
of feature maps separately. To increase the number
of feature maps, we apply 3 convolutions with differ-
ent kernels at each location, leading to 6 distinct sets
of feature maps in the C4 layer each containing 13
feature maps. This layer contains 3,810 trainable pa-
rameters. The next layer S5 is obtained by applying
3×3 subsampling on each feature maps in the C4 layer,
which leads to the same number of feature maps with
reduced spatial resolution. The number of trainable
parameters in this layer is 156. At this stage, the size
of the temporal dimension is already relatively small
(3 for gray, gradient-x, gradient-y and 2 for optflow-x
and optflow-y), so we perform convolution only in the
spatial dimension at this layer. The size of the con-
volution kernel used is 7 × 4 so that the sizes of the
output feature maps are reduced to 1×1. The C6 layer
consists of 128 feature maps of size 1 × 1, and each of
them is connected to all the 78 feature maps in the S5
layer, leading to 289,536 trainable parameters.

By the multiple layers of convolution and subsampling,

the 7 input frames have been converted into a 128D
feature vector capturing the motion information in the
input frames. The output layer consists of the same
number of units as the number of actions, and each
unit is fully connected to each of the 128 units in
the C6 layer. In this design we essentially apply a
linear classifier on the 128D feature vector for action
classification. For an action recognition problem with
3 classes, the number of trainable parameters at the
output layer is 384. The total number of trainable
parameters in this 3D CNN model is 295,458, and all
of them are initialized randomly and trained by on-
line error back-propagation algorithm as described in
(LeCun et al., 1998). We have designed and evalu-
ated other 3D CNN architectures that combine mul-
tiple channels of information at different stages, and
our results show that this architecture gives the best
performance.

3. Related Work

CNNs belong to the class of biologically inspired mod-
els for visual recognition, and some other variants have
also been developed within this family. Motivated
by the organization of visual cortex, a similar model,
called HMAX (Serre et al., 2005), has been developed
for visual object recognition. In the HMAX model,
a hierarchy of increasingly complex features are con-
structed by the alternating applications of template
matching and max pooling. In particular, at the S1
layer a still input image is first analyzed by an array of
Gabor filters at multiple orientations and scales. The
C1 layer is then obtained by pooling local neighbor-
hoods on the S1 maps, leading to increased invariance
to distortions on the input. The S2 maps are obtained

Image from Ji et al. 2010

Hardwired to extract: 
1)grayscale
2)grad-x
3)grad-y
4)flow-x
5)flow-y

2 different 3D filters 
applied to each of 5 
blocks independently

3 different 3D filters 
applied to each of 5 
channels in 2 blocks

Subsample 
spatially

Two fully-
connected 
layers

Action units
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3D CONVNET: DISCUSSION

•Good performance on TRECVID surveillance data (CellToEar, ObjectPut, 
Pointing)

•Good performance on KTH actions (box, handwave, handclap, jog, run, 
walk)

•Still a fair amount of engineering: person detection (TRECVID), foreground 
extraction (KTH), hard-coded first layer

43
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Figure 4. Sample human detection and tracking results from camera numbers 1, 2, 3, and 5, respectively from left to right.

against-all linear SVM is learned for each action class.
Specifically, we extract dense SIFT descriptors (Lowe,
2004) from raw gray images or motion edge history
images (MEHI) (Yang et al., 2009). Local features on
raw gray images preserve the appearance information,
while MEHI concerns with the shape and motion pat-
terns. These SIFT descriptors are calculated every 6
pixels from 7×7 and 16×16 local image patches in the
same cubes as in the 3D CNN model. Then they are
softly quantized using a 512-word codebook to build
the BoW features. To exploit the spatial layout in-
formation, we employ similar approach as the spatial
pyramid matching (SPM) (Lazebnik et al., 2006) to
partition the candidate region into 2×2 and 3×4 cells
and concatenate their BoW features. The dimension-
ality of the entire feature vector is 512×(2×2+3×4) =
8192. We denote the method based on gray images as
SPMcube

gray and the one based on MEHI as SPMcube
MEHI.

We report the 5-fold cross-validation results in which
the data for a single day are used as a fold. The per-
formance measures we used are precision, recall, and
area under the ROC curve (ACU) at multiple values of
false positive rates (FPR). The performance of the four
methods is summarized in Table 2. We can observe
from Table 2 that the 3D CNN model outperforms the
frame-based 2D CNN model, SPMcube

gray , and SPMcube
MEHI

significantly on the action classes CellToEar and Ob-
jectPut in all cases. For the action class Pointing, 3D
CNN model achieves slightly worse performance than
the other three methods. From Table 1 we can see that
the number of positive samples in the Pointing class is
significantly larger than those of the other two classes.
Hence, we can conclude that the 3D CNN model is
more effective when the number of positive samples is
small. Overall, the 3D CNN model outperforms other
three methods consistently as can be seen from the
average performance in Table 2.

4.2. Action Recognition on KTH Data

We evaluate the 3D CNN model on the KTH data
(Schüldt et al., 2004), which consist of 6 action classes

performed by 25 subjects. To follow the setup in the
HMAX model, we use a 9-frame cube as input and ex-
tract foreground as in (Jhuang et al., 2007). To reduce
the memory requirement, the resolutions of the input
frames are reduced to 80 × 60 in our experiments as
compared to 160 × 120 used in (Jhuang et al., 2007).
We use a similar 3D CNN architecture as in Figure
3 with the sizes of kernels and the number of feature
maps in each layer modified to consider the 80×60×9
inputs. In particular, the three convolutional layers
use kernels of sizes 9 × 7, 7 × 7, and 6 × 4, respec-
tively, and the two subsampling layers use kernels of
size 3 × 3. By using this setting, the 80 × 60 × 9 in-
puts are converted into 128D feature vectors. The final
layer consists of 6 units corresponding to the 6 classes.

As in (Jhuang et al., 2007), we use the data for 16 ran-
domly selected subjects for training, and the data for
the other 9 subjects for testing. The recognition per-
formance averaged across 5 random trials is reported
in Table 3 along with published results in the litera-
ture. The 3D CNN model achieves an overall accu-
racy of 90.2% as compared with 91.7% achieved by
the HMAX model. Note that the HMAX model use
handcrafted features computed from raw images with
4-fold higher resolution.

5. Conclusions and Discussions

We developed a 3D CNN model for action recognition
in this paper. This model construct features from both
spatial and temporal dimensions by performing 3D
convolutions. The developed deep architecture gener-
ates multiple channels of information from adjacent in-
put frames and perform convolution and subsampling
separately in each channel. The final feature represen-
tation is computed by combining information from all
channels. We evaluated the 3D CNN model using the
TRECVID and the KTH data sets. Results show that
the 3D CNN model outperforms compared methods
on the TRECVID data, while it achieves competitive
performance on the KTH data, demonstrating its su-
perior performance in real-world environments.

Image from Ji et al. 2010
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LEARNING FEATURES FOR VIDEO UNDERSTANDING

•Most work on unsupervised feature extraction 
has concentrated on static images

•We propose a model that extracts motion-
sensitive features from pairs of images

•Existing attempts (e.g. Memisevic & Hinton 
2007, Cadieu & Olshausen 2009) ignore the 
pictorial structure of the input

•Thus limited to modeling small image patches
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GATED RESTRICTED BOLTZMANN MACHINES (GRBM)
Two views: Memisevic & Hinton (2007)
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CONVOLUTIONAL GRBM
Graham Taylor, Rob Fergus, Yann LeCun, and Chris Bregler (ECCV 2010)

46

•Like the GRBM, captures third-order interactions

•Shares weights at all locations in an image

•As in a standard RBM, exact inference is efficient

• Inference and reconstruction are performed 
through convolution operations

X (Input) Y (Output)

    Z
k

Feature
layer

    P
k

Pooling
layer

Nx

Nx Ny

Ny

Nz

Nz

Np

Np

pk

zk
m,n

N
x
w

N
x
w

N
y
w

N
y
w

Thursday, July 12, 2012



13 Jul 2012 /
Learning Representations of Sequences / G Taylor 

MORE COMPLEX EXAMPLE OF “ANALOGIES”
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HUMAN ACTIVITY: KTH ACTIONS DATASET

•We learn 32 feature maps

•6 are shown here

•KTH contains 25 subjects 
performing 6 actions under 4 
conditions 

•Only preprocessing is local 
contrast normalization
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ACTIVITY RECOGNITION: KTH

•Compared to methods that do not use explicit interest point detection

•State of the art: 92.1% (Laptev et al. 2008) 93.9% (Le et al. 2011)

•Other reported result on 3D convnets uses a different evaluation scheme
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Prior Art
Acc
(%)

Convolutional
architectures

Acc.
(%)

HOG3D+KM+SVM 85.3 convGRBM+3D-convnet+logistic reg. 88.9

HOG/HOF+KM+SVM 86.1 convGRBM+3D convnet+MLP 90.0

HOG+KM+SVM 79.0 3D convnet+3D convnet+logistic reg. 79.4

HOF+KM+SVM 88.0 3D convnet+3D convnet+MLP 79.5

Thursday, July 12, 2012



13 Jul 2012 /
Learning Representations of Sequences / G Taylor 

ACTIVITY RECOGNITION: HOLLYWOOD 2

•12 classes of human action extracted from 69 movies (20 hours)

•Much more realistic and challenging than KTH (changing scenes, zoom, etc.)

•Performance is evaluated by mean average precision over classes
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Method Average Prec.

Prior Art (Wang et al. survey 2009):Prior Art (Wang et al. survey 2009):

HOG3D+KM+SVM 45.3

HOG/HOF+KM+SVM 47.4

HOG+KM+SVM 39.4

HOF+KM+SVM 45.5

Our method:Our method:

GRBM+SC+SVM 46.8
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SUMMARY
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SUMMARY

•Learning distributed representations of 
sequences

51

Thursday, July 12, 2012



13 Jul 2012 /
Learning Representations of Sequences / G Taylor 

SUMMARY

•Learning distributed representations of 
sequences

•For high-dimensional, multi-modal data: 
CRBM, FCRBM
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SUMMARY

•Learning distributed representations of 
sequences

•For high-dimensional, multi-modal data: 
CRBM, FCRBM

•Activity recognition: 2 methods
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