LEARNING REPRESENTATIONS OF SEQUENCES
IPAM GRADUATE SUMMER SCHOOL ON DEEP LEARNING

GRAHAM TAYLOR
SCHOOL OF ENGINEERING
UNIVERSITY OF GUELPH

Papers and software available at: http://www.uoguelph.ca/~gwtaylor
OVERVIEW: THIS TALK
OVERVIEW: THIS TALK

• Learning representations of temporal data:
 - existing methods and challenges faced
 - recent methods inspired by deep learning and representation learning
OVERVIEW: THIS TALK

• Learning representations of temporal data:
 - existing methods and challenges faced
 - recent methods inspired by deep learning and representation learning

• Applications: in particular, modeling human pose and activity
 - highly structured data: e.g. motion capture
 - weakly structured data: e.g. video
OUTLINE

Learning representations from sequences
Existing methods, challenges
OUTLINE

Learning representations from sequences
Existing methods, challenges

Composable, distributed-state models for sequences
Conditional Restricted Boltzmann Machines and their variants
OUTLINE

Learning representations from sequences
Existing methods, challenges

Composable, distributed-state models for sequences
Conditional Restricted Boltzmann Machines and their variants

Using learned representations to analyze video
A brief and (incomplete) survey of deep learning for activity recognition
TIME SERIES DATA

- Time is an integral part of many human behaviours (motion, reasoning)
- In building statistical models, time is sometimes ignored, often problematic
- Models that do incorporate dynamics fail to account for the fact that data is often high-dimensional, nonlinear, and contains long-range dependencies

Graphic: David McCandless, informationisbeautiful.net
TIME SERIES DATA

• Time is an integral part of many human behaviours (motion, reasoning)
• In building statistical models, time is sometimes ignored, often problematic
• Models that do incorporate dynamics fail to account for the fact that data is often high-dimensional, nonlinear, and contains long-range dependencies

Today we will discuss a number of models that have been developed to address these challenges.
VECTOR AUTOREGRESSIVE MODELS

\[\mathbf{v}_t = \mathbf{b} + \sum_{m=1}^{M} A_m \mathbf{v}_{t-m} + \mathbf{e}_t \]

- Have dominated statistical time-series analysis for approx. 50 years
- Can be fit easily by least-squares regression
- Can fail even for simple nonlinearities present in the system
 - but many data sets can be modeled well by a linear system
- Well understood; many extensions exist
MARKOV ("N-GRAM") MODELS

- Fully observable
- Sequential observations may have nonlinear dependence
- Derived by assuming sequences have Markov property:

\[p(v_t | \{v_{t-1}^{t-N}\}) = p(v_t | \{v_{t-N}^{t-1}\}) \]

- This leads to joint:

\[p(\{v_1^T\}) = p(\{v_1^N\}) \prod_{t=N+1}^{T} p(v_t | \{v_{t-N}^{t-1}\}) \]

- Number of parameters exponential in \(N \)!
EXPONENTIAL INCREASE IN PARAMETERS

\[|\theta| = Q^{N+1} \]

Here, \(Q = 3 \)

\(p(a	a) \)	\(p(b	a) \)	\(p(c	a) \)
\(p(a	b) \)	\(p(b	b) \)	\(p(c	b) \)
\(p(a	c) \)	\(p(b	c) \)	\(p(c	c) \)

1st order Markov \((N = 1)\)
EXPOENTIAL INCREASE IN PARAMETERS

$$|\theta| = Q^N + 1$$

Here, $Q = 3$

1st order Markov ($N = 1$)

2nd order Markov ($N = 2$)
HIDDEN MARKOV MODELS (HMM)
HIDDEN MARKOV MODELS (HMM)

Introduces a hidden state that controls the dependence of the current observation on the past.
HIDDEN MARKOV MODELS (HMM)

Introduces a hidden state that controls the dependence of the current observation on the past

- Successful in speech & language modeling, biology
- Defined by 3 sets of parameters:
 - Initial state parameters, π
 - Transition matrix, A
 - Emission distribution, $p(v_t|h_t)$
- Factored joint distribution: $p(h_t; \{v_t\}) = p(h_1)p(v_1|h_1)\prod_{t=2}^{T} p(h_t|h_{t-1})p(v_t|h_t)$
INFERENCEx AND LEARNING
INFERECE AND LEARNING

• Typically three tasks we want to perform in an HMM:
INFEREN CE AND LEARNING

- Typically three tasks we want to perform in an HMM:
 - Likelihood estimation
INFERENCE AND LEARNING

• Typically three tasks we want to perform in an HMM:
 - Likelihood estimation
 - Inference

\[p(\{v_1, \ldots, v_T\}|\theta) \]
INFERENCE AND LEARNING

- Typically three tasks we want to perform in an HMM:
 - Likelihood estimation
 - Inference
 - Learning
INFEERENCE AND LEARNING

• Typically three tasks we want to perform in an HMM:
 - Likelihood estimation
 - Inference
 - Learning

• All are exact and tractable due to the simple structure of the HMM

\[p(\{v_1, \ldots, v_T\}|\theta) \]
LIMITATIONS OF HMMS
LIMITATIONS OF HMMS

• Many high-dimensional data sets contain rich componential structure
LIMITATIONS OF HMMS

• Many high-dimensional data sets contain rich componential structure
• Hidden Markov Models cannot model such data efficiently: a single, discrete K-state multinomial must represent the history of the time series
LIMITATIONS OF HMMS

• Many high-dimensional data sets contain rich componential structure
• Hidden Markov Models cannot model such data efficiently: a single, discrete K-state multinomial must represent the history of the time series
• To model K bits of information, they need 2^K hidden states
LIMITATIONS OF HMMS

• Many high-dimensional data sets contain rich componential structure
• Hidden Markov Models cannot model such data efficiently: a single, discrete K-state multinomial must represent the history of the time series
• To model K bits of information, they need 2^K hidden states
LIMITATIONS OF HMMs

• Many high-dimensional data sets contain rich componential structure
• Hidden Markov Models cannot model such data efficiently: a single, discrete K-state multinomial must represent the history of the time series
• To model K bits of information, they need 2^K hidden states
LIMITATIONS OF HMMS

• Many high-dimensional data sets contain rich componential structure
• Hidden Markov Models cannot model such data efficiently: a single, discrete K-state multinomial must represent the history of the time series
• To model K bits of information, they need 2^K hidden states
• We seek models with distributed hidden state:

![Diagram showing distributed hidden states]
LIMITATIONS OF HMMS

• Many high-dimensional data sets contain rich componential structure.
• Hidden Markov Models cannot model such data efficiently: a single, discrete K-state multinomial must represent the history of the time series.
• To model K bits of information, they need 2^K hidden states.
• We seek models with distributed hidden state:
 - capacity linear in the number of components.

![Diagram showing two states with transition arrows.]
LIMITATIONS OF HMMS

• Many high-dimensional data sets contain rich componential structure
• Hidden Markov Models cannot model such data efficiently: a single, discrete K-state multinomial must represent the history of the time series
• To model K bits of information, they need 2^K hidden states
• We seek models with distributed hidden state:
 - capacity linear in the number of components
LINEAR DYNAMICAL SYSTEMS
LINEAR DYNAMICAL SYSTEMS

Graphical model is the same as HMM but with real-valued state vectors
LINEAR DYNAMICAL SYSTEMS

Graphical model is the same as HMM but with real-valued state vectors

• Characterized by linear-Gaussian dynamics and observations:
 \[p(h_t|h_{t-1}) = \mathcal{N}(h_t; Ah_{t-1}, Q) \quad p(v_t|h_t) = \mathcal{N}(v_t; Ch_t, R) \]

• Inference is performed using Kalman smoothing (belief propagation)
• Learning can be done by EM
• Dynamics, observations may also depend on an observed input (control)
LATENT REPRESENTATIONS FOR REAL-WORLD DATA

Data for many real-world problems (e.g. vision, motion capture) is high-dimensional, containing complex non-linear relationships between components.
LATENT REPRESENTATIONS FOR REAL-WORLD DATA

Data for many real-world problems (e.g. vision, motion capture) is high-dimensional, containing complex non-linear relationships between components.

Hidden Markov Models
Pro: complex, nonlinear emission model
Con: single K-state multinomial represents entire history
LATENT REPRESENTATIONS FOR REAL-WORLD DATA

Data for many real-world problems (e.g. vision, motion capture) is high-dimensional, containing complex non-linear relationships between components.

Hidden Markov Models
- Pro: complex, nonlinear emission model
- Con: single K-state multinomial represents entire history

Linear Dynamical Systems
- Pro: state can convey much more information
- Con: emission model constrained to be linear
LEARNING DISTRIBUTED REPRESENTATIONS
LEARNING DISTRIBUTED REPRESENTATIONS

- Simple networks are capable of discovering useful and interesting internal representations of static data (e.g. many of the talks so far!)
LEARNING DISTRIBUTED REPRESENTATIONS

- Simple networks are capable of discovering useful and interesting internal representations of static data (e.g. many of the talks so far!)
- Can we learn, in a similar way, representations of temporal data?
LEARNING DISTRIBUTED REPRESENTATIONS

• Simple networks are capable of discovering useful and interesting internal representations of static data (e.g. many of the talks so far!)

• Can we learn, in a similar way, representations of temporal data?

• Simple idea: spatial representation of time:
LEARNING DISTRIBUTED REPRESENTATIONS

• Simple networks are capable of discovering useful and interesting internal representations of static data (e.g. many of the talks so far!)
• Can we learn, in a similar way, representations of temporal data?
• Simple idea: spatial representation of time:

Spectrogram: http://soundsofstanford.wordpress.com
LEARNING DISTRIBUTED REPRESENTATIONS

• Simple networks are capable of discovering useful and interesting internal representations of static data (e.g. many of the talks so far!)

• Can we learn, in a similar way, representations of temporal data?

• Simple idea: spatial representation of time:

Spectrogram: http://soundsofstanford.wordpress.com
LEARNING DISTRIBUTED REPRESENTATIONS

• Simple networks are capable of discovering useful and interesting internal representations of static data (e.g. many of the talks so far!)
• Can we learn, in a similar way, representations of temporal data?
• Simple idea: spatial representation of time:

Spectrogram: http://soundsofstanford.wordpress.com
LEARNING DISTRIBUTED REPRESENTATIONS

• Simple networks are capable of discovering useful and interesting internal representations of static data (e.g. many of the talks so far!)

• Can we learn, in a similar way, representations of temporal data?

• Simple idea: spatial representation of time:
 - Need a buffer; not biologically plausible
 - Cannot process inputs of differing length
 - Cannot distinguish between absolute and relative position

Spectrogram: http://soundsofstanford.wordpress.com
LEARNING DISTRIBUTED REPRESENTATIONS

• Simple networks are capable of discovering useful and interesting internal representations of static data (e.g. many of the talks so far!)

• Can we learn, in a similar way, representations of temporal data?

• Simple idea: spatial representation of time:
 - Need a buffer; not biologically plausible
 - Cannot process inputs of differing length
 - Cannot distinguish between absolute and relative position

• This motivates an implicit representation of time in connectionist models where time is represented by its effect on processing

Spectrogram: http://soundsofstanford.wordpress.com
A RICH HISTORY
A RICH HISTORY

Elman networks
Time-delayed “context” units, truncated BPTT.
(Elman, 1990), (Jordan, 1986)
A RICH HISTORY

Elman networks
Time-delayed “context” units, truncated BPTT.
(Elman, 1990), (Jordan, 1986)

Mean-field Boltzmann Machines through Time
Inference is approximate, learning less efficient than HMMs.
(Williams and Hinton, 1990)
A RICH HISTORY

Elman networks
Time-delayed “context” units, truncated BPTT.
(Elman, 1990), (Jordan, 1986)

Mean-field Boltzmann Machines through Time
Inference is approximate, learning less efficient than HMMs.
(Williams and Hinton, 1990)

Spiking Boltzmann Machines
Hidden-state dynamics and smoothness constraints on observed data.
(Hinton and Brown, 2000)
RECURRENT NEURAL NETWORKS

\[x_t = W^{hv} v_t + W^{hh} h_{t-1} + b_h \]
\[h_{j,t} = f(x_{j,t}) \]
\[s_t = W^y h_t + b_y \]
\[\hat{y}_{k,t} = g(s_{k,t}) \]
RECURRENT NEURAL NETWORKS

- Neural network replicated in time

\[
x_t = W^{hv}v_t + W^{hh}h_{t-1} + b_h \\
h_{j,t} = f(x_{j,t}) \\
s_t = W^{yh}h_t + b_y \\
\hat{y}_{k,t} = g(s_{k,t})
\]
RECURRENT NEURAL NETWORKS

- Neural network replicated in time
- At each step, receives input vector, updates its internal representation via nonlinear activation functions, and makes a prediction:

\[
\begin{align*}
x_t &= W^{hv}v_t + W^{hh}h_{t-1} + b_h \\
h_{j,t} &= f(x_{j,t}) \\
s_t &= W^{yh}h_t + b_y \\
\hat{y}_{k,t} &= g(s_{k,t})
\end{align*}
\]

(Figure from Martens and Sutskever)
TRAINING RECURRENT NEURAL NETWORKS
TRAINING RECURRENT NEURAL NETWORKS

- Possibly high-dimensional, distributed, internal representation and nonlinear dynamics allow model, in theory, model complex time series
TRAINING RECURRENT NEURAL NETWORKS

• Possibly high-dimensional, distributed, internal representation and nonlinear dynamics allow model, in theory, model complex time series
• Exact gradients can be computed exactly via Backpropagation Through Time
TRAINING RECURRENT NEURAL NETWORKS

• Possibly high-dimensional, distributed, internal representation and nonlinear
dynamics allow model, in theory, model complex time series
• Exact gradients can be computed exactly via Backpropagation Through Time
• It is an interesting and powerful model. What’s the catch?
 - Training RNNs via gradient descent fails on simple problems
 - Attributed to “vanishing” or “exploding” gradients
 - Much work in the 1990’s focused on identifying and addressing these
 issues: none of these methods were widely adopted
TRAINING RECURRENT NEURAL NETWORKS

• Possibly high-dimensional, distributed, internal representation and nonlinear dynamics allow model, in theory, model complex time series

• Exact gradients can be computed exactly via Backpropagation Through Time

• It is an interesting and powerful model. What’s the catch?
 - Training RNNs via gradient descent fails on simple problems
 - Attributed to “vanishing” or “exploding” gradients
 - Much work in the 1990’s focused on identifying and addressing these issues: none of these methods were widely adopted

(Figure adapted from James Martens)
TRAINING RECURRENT NEURAL NETWORKS

- Possibly high-dimensional, distributed, internal representation and nonlinear dynamics allow model, in theory, model complex time series
- Exact gradients can be computed exactly via Backpropagation Through Time
- It is an interesting and powerful model. What’s the catch?
 - Training RNNs via gradient descent fails on simple problems
 - Attributed to “vanishing” or “exploding” gradients
 - Much work in the 1990’s focused on identifying and addressing these issues: none of these methods were widely adopted
- Best-known attempts to resolve the problem of RNN training:
 - Long Short-term Memory (LSTM) (Hochreiter and Schmidhuber 1997)
 - Echo-State Network (ESN) (Jaeger and Haas 2004)
FAILURE OF GRADIENT DESCENT

Two hypotheses for why gradient descent fails for NN:
FAILURE OF GRADIENT DESCENT

Two hypotheses for why gradient descent fails for NN:

• increased frequency and severity of bad local minima
FAILURE OF GRADIENT DESCENT

Two hypotheses for why gradient descent fails for NN:

• increased frequency and severity of bad local minima

• pathological curvature, like the type seen in the Rosenbrock function:

\[f(x, y) = (1 - x)^2 + 100(y - x^2)^2 \]

(Figures from James Martens)
SECOND ORDER METHODS

• Model the objective function by the local approximation:

\[\frac{\theta + p}{q_{\theta}(p)} \approx f(\theta) + \Delta f(\theta)^T p + \frac{1}{2}p^T Bp \]

where \(p \) is the search direction and \(B \) is a matrix which quantifies curvature

• In Newton’s method, \(B \) is the Hessian matrix, \(H \)

• By taking the curvature information into account, Newton’s method “rescales” the gradient so it is a much more sensible direction to follow

• Not feasible for high-dimensional problems!
HESSIAN-FREE OPTIMIZATION

Based on exploiting two simple ideas (and some additional “tricks”):
HESSIAN-FREE OPTIMIZATION

Based on exploiting two simple ideas (and some additional “tricks”):

• For an n-dimensional vector d, the Hessian-vector product Hd can easily be computed using finite differences at the cost of a single extra gradient evaluation.
- In practice, the R-operator (Perlmutter 1994) is used instead of finite differences.
HESSIAN-FREE OPTIMIZATION

Based on exploiting two simple ideas (and some additional “tricks”):

• For an n-dimensional vector \(d \), the Hessian-vector product \(Hd \) can easily be computed using finite differences at the cost of a single extra gradient evaluation.
 - In practice, the R-operator (Perlmutter 1994) is used instead of finite differences.

• There is a very effective algorithm for optimizing quadratic objectives which requires only Hessian-vector products: linear conjugate-gradient (CG).
HESSIAN-FREE OPTIMIZATION

Based on exploiting two simple ideas (and some additional “tricks”):

- For an n-dimensional vector d, the Hessian-vector product Hd can easily be computed using finite differences at the cost of a single extra gradient evaluation.
- In practice, the R-operator (Perlmutter 1994) is used instead of finite differences.

- There is a very effective algorithm for optimizing quadratic objectives which requires only Hessian-vector products: linear conjugate-gradient (CG).

This method was shown to effectively train RNNs in the pathological long-term dependency problems they were previously not able to solve (Martens and Sutskever 2011).
HESSIAN-FREE OPTIMIZATION

Based on exploiting two simple ideas (and some additional “tricks”):

• For an n-dimensional vector d, the Hessian-vector product Hd can easily be computed using finite differences at the cost of a single extra gradient evaluation.
 - In practice, the R-operator (Perlmutter 1994) is used instead of finite differences.

• There is a very effective algorithm for optimizing quadratic objectives which requires only Hessian-vector products: linear conjugate-gradient (CG).

This method was shown to effectively train RNNs in the pathological long-term dependency problems they were previously not able to solve (Martens and Sutskever 2011).

GENERATIVE MODELS WITH DISTRIBUTED STATE
GENERATIVE MODELS WITH DISTRIBUTED STATE

• Many sequences are high-dimensional and have complex structure
 - music, human motion, weather/climate data
 - RNNs simply predict the expected value at the next time step
 - They can’t capture multi-modality
GENERATIVE MODELS WITH DISTRIBUTED STATE

• Many sequences are high-dimensional and have complex structure
 - music, human motion, weather/climate data
 - RNNs simply predict the expected value at the next time step
 - They can’t capture multi-modality

• Generative models (like Restricted Boltzmann Machines) can capture complex distributions
GENERATIVE MODELS WITH DISTRIBUTED STATE

• Many sequences are high-dimensional and have complex structure
 - music, human motion, weather/climate data
 - RNNs simply predict the expected value at the next time step
 - They can’t capture multi-modality

• Generative models (like Restricted Boltzmann Machines) can capture complex distributions

• Use binary hidden state and gain the best of HMM & LDS:
 - the nonlinear dynamics and observation model of the HMM without the limited hidden state
 - the efficient, expressive state of the LDS without the linear-Gaussian restriction on dynamics and observations
DISTRIBUTED BINARY HIDDEN STATE

- Using distributed binary representations for hidden state in directed models of time series makes inference difficult. But we can:
 - Use a Restricted Boltzmann Machine (RBM) for the interactions between hidden and visible variables. A factorial posterior makes inference and sampling easy.
 - Treat the visible variables in the previous time slice as additional fixed inputs

\[
p(h_j = 1|v) = \sigma(b_j + \sum_i v_i W_{ij})
\]
\[
p(v_i = 1|h) = \sigma(b_i + \sum_j h_j W_{ij})
\]
MODELING OBSERVATIONS WITH AN RBM

So the distributed binary latent (hidden) state of an RBM lets us:

- Model complex, nonlinear dynamics
- Easily and exactly infer the latent binary state given the observations

But RBMs treat data as static (i.i.d.)

Hidden variables (factors) at time t

Visible variables (joint angles) at time t
MODELING OBSERVATIONS WITH AN RBM

• So the distributed binary latent (hidden) state of an RBM lets us:
 - Model complex, nonlinear dynamics
 - Easily and exactly infer the latent binary state given the observations
• But RBMs treat data as static (i.i.d.)

Visible variables (joint angles) at time t

Hidden variables (factors) at time t
So the distributed binary latent (hidden) state of an RBM lets us:
- Model complex, nonlinear dynamics
- Easily and exactly infer the latent binary state given the observations
But RBMs treat data as static (i.i.d.)

MODELING OBSERVATIONS WITH AN RBM
CONDITIONAL RESTRICTED BOLTZMANN MACHINES

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)
CONDITIONAL RESTRICTED BOLTZMANN MACHINES

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

• Start with a Restricted Boltzmann Machine (RBM)
CONDITIONAL RESTRICTED BOLTZMANN MACHINES
(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

• Start with a Restricted Boltzmann Machine (RBM)

• Add two types of directed connections:

\[
\begin{array}{c}
\text{Visible layer} \\
\downarrow \\
\text{Hidden layer}
\end{array}
\]

\[h_t \quad i \quad v_t\]
CONDITIONAL RESTRICTED BOLTZMANN MACHINES

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

• Start with a Restricted Boltzmann Machine (RBM)

• Add two types of directed connections:
 - Autoregressive connections model short-term, linear structure
CONDITIONAL RESTRICTED BOLTZMANN MACHINES
(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

• Start with a Restricted Boltzmann Machine (RBM)

• Add two types of directed connections:
 - Autoregressive connections model short-term, linear structure
 - History can also influence dynamics through hidden layer
CONDITIONAL RESTRICTED BOLTZMANN MACHINES

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

• Start with a Restricted Boltzmann Machine (RBM)

• Add two types of directed connections:
 - Autoregressive connections model short-term, linear structure
 - History can also influence dynamics through hidden layer

• Conditioning does not change inference nor learning
When updating visible and hidden units, we implement directed connections by treating data from previous time steps as a dynamically changing bias.

Inference and learning do not change.
STACKING: THE CONDITIONAL DEEP BELIEF NETWORK
STACKING: THE CONDITIONAL DEEP BELIEF NETWORK

- Learn a CRBM
STACKING: THE CONDITIONAL DEEP BELIEF NETWORK

- Learn a CRBM
- Now, treat the sequence of hidden units as “fully observed” data and train a second CRBM
STACKING: THE CONDITIONAL DEEP BELIEF NETWORK

- Learn a CRBM
- Now, treat the sequence of hidden units as “fully observed” data and train a second CRBM
- The composition of CRBMs is a conditional deep belief net
STACKING: THE CONDITIONAL DEEP BELIEF NETWORK

• Learn a CRBM

• Now, treat the sequence of hidden units as “fully observed” data and train a second CRBM

• The composition of CRBMs is a conditional deep belief net

• It can be fine-tuned generatively or discriminatively
MOTION SYNTHESIS WITH A 2-LAYER CDBN

- Model is trained on ~8000 frames of 60fps data (49 dimensions)
- 10 styles of walking: cat, chicken, dinosaur, drunk, gangly, graceful, normal, old-man, sexy and strong
- 600 binary hidden units per layer
- < 1 hour training on a modern workstation
MOTION SYNTHESIS WITH A 2-LAYER CDBN

• Model is trained on ~8000 frames of 60fps data (49 dimensions)
• 10 styles of walking: cat, chicken, dinosaur, drunk, gangly, graceful, normal, old-man, sexy and strong
• 600 binary hidden units per layer
• < 1 hour training on a modern workstation
MODELING CONTEXT
A single model was trained on 10 “styled” walks from CMU subject 137
A single model was trained on 10 “styled” walks from CMU subject 137.

The model can generate each style based on initialization.
MODELING CONTEXT

• A single model was trained on 10 “styled” walks from CMU subject 137
• The model can generate each style based on initialization
• We cannot prevent nor control transitioning
MODELING CONTEXT

• A single model was trained on 10 “styled” walks from CMU subject 137
• The model can generate each style based on initialization
• We cannot prevent nor control transitioning
• How to blend styles?

13 Jul 2012 / 27
Learning Representations of Sequences / G Taylor
MODELING CONTEXT

• A single model was trained on 10 “styled” walks from CMU subject 137
• The model can generate each style based on initialization
• We cannot prevent nor control transitioning
• How to blend styles?
• Style or person labels can be provided as part of the input to the top layer
HOW TO MAKE CONTEXT INFLUENCE DYNAMICS?
MULTIPLICATIVE INTERACTIONS

• Let latent variables act like gates, that dynamically change the connections between other variables

• This amounts to letting variables multiply connections between other variables: three-way multiplicative interactions

• Recently used in the context of learning correspondence between images (Memisevic & Hinton 2007, 2010) but long history before that
MULTIPLICATIVE INTERACTIONS

• Let latent variables act like *gates*, that dynamically change the connections between other variables.

• This amounts to letting variables multiply connections between other variables: *three-way multiplicative interactions*.

• Recently used in the context of learning *correspondence* between images (Memisevic & Hinton 2007, 2010) but long history before that.

GATED RESTRICTED BOLTZMANN MACHINES (GRBM)
Two views: Memisevic & Hinton (2007)
INFERRING OPTICAL FLOW: IMAGE “ANALOGIES”

- Toy images (Memisevic & Hinton 2006)
- No structure in these images, only how they change
- Can infer optical flow from a pair of images and apply it to a random image
BACK TO MOTION STYLE

- Introduce a set of latent “context” variables whose value is known at training time.

- In our example, these represent “motion style” but could also represent height, weight, gender, etc.

- The contextual variables gate every existing pairwise connection in our model.

\[
\begin{align*}
& h_j \\
& z_k \\
& v_i
\end{align*}
\]
LEARNING AND INFERENCE

• Learning and inference remain almost the same as in the standard CRBM

• We can think of the context or style variables as “blending in” a whole “sub-network”

• This allows us to share parameters across styles but selectively adapt dynamics
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)

Hidden layer

Style Features

Input layer
(e.g. data at time t-1:t-N)

Output layer
(e.g. data at time t)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
OVERPARAMETERIZATION

• Note: weight Matrix $W^{v,h}$ has been replaced by a tensor $W^{v,h,z}$! (Likewise for other weights)

• The number of parameters is $O(N^3)$ - per group of weights

• More, if we want sparse, overcomplete hiddens

• However, there is a simple yet powerful solution!
FACTORIZING

\[W_{ijl}^{vh} = \sum_f W_{if}^v W_{jf}^h W_{lf}^z \]

(Figure adapted from Roland Memisevic)

Wednesday, July 12, 2012
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Input layer (e.g. data at time t-1:t-N)
\[v_{<t} \]

Output layer (e.g. data at time t)
\[h_t \]

Hidden layer
\[j \]

Input layer (e.g. data at time t-1:t-N)
\[v_{<t} \]

Output layer (e.g. data at time t)
\[v_t \]
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
PARAMETER SHARING
MOTION SYNTHESIS:
FACTORED 3RD-ORDER CRBM

• Same 10-styles dataset
• 600 binary hidden units
• 3×200 deterministic factors
• 100 real-valued style features
• < 1 hour training on a modern workstation
• Synthesis is real-time
MOTION SYNTHESIS: FACTORED 3RD-ORDER CRBM

- Same 10-styles dataset
- 600 binary hidden units
- 3×200 deterministic factors
- 100 real-valued style features
- < 1 hour training on a modern workstation
- Synthesis is real-time
QUANTITATIVE EVALUATION

• Not computationally tractable to compute likelihoods

• Annealed Importance Sampling will not work in conditional models (open problem)

• Can evaluate predictive power (even though it has been trained generatively)

• Can also evaluate in denoising tasks
3D CONVNETS FOR ACTIVITY RECOGNITION
Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu (ICML 2010)

• One approach: treat video frames as still images (LeCun et al. 2005)

• Alternatively, perform 3D convolution so that discriminative features across space and time are captured
3D CNN ARCHITECTURE

![Diagram of 3D CNN Architecture](image)

- **Hardwired to extract:**
 1) grayscale
 2) grad-x
 3) grad-y
 4) flow-x
 5) flow-y

- **2 different 3D filters applied to each of 5 blocks independently**

- **Subsample spatially**

- **3 different 3D filters applied to each of 5 channels in 2 blocks**

- **Two fully-connected layers**

- **Action units**

Image from Ji et al. 2010

13 Jul 2012 / 42

Learning Representations of Sequences / G Taylor
3D CONVNET: DISCUSSION

- Good performance on TRECVID surveillance data (CellToEar, ObjectPut, Pointing)
- Good performance on KTH actions (box, handwave, handclap, jog, run, walk)
- Still a fair amount of engineering: person detection (TRECVID), foreground extraction (KTH), hard-coded first layer

Image from Ji et al. 2010
LEARNING FEATURES FOR VIDEO UNDERSTANDING

• Most work on unsupervised feature extraction has concentrated on static images

• We propose a model that extracts motion-sensitive features from pairs of images

• Existing attempts (e.g. Memisevic & Hinton 2007, Cadieu & Olshausen 2009) ignore the pictorial structure of the input

• Thus limited to modeling small image patches
GATED RESTRICTED BOLTZMANN MACHINES (GRBM)
Two views: Memisevic & Hinton (2007)
CONVOLUTIONAL GRBM
Graham Taylor, Rob Fergus, Yann LeCun, and Chris Bregler (ECCV 2010)

• Like the GRBM, captures third-order interactions

• Shares weights at all locations in an image

• As in a standard RBM, exact inference is efficient

• Inference and reconstruction are performed through convolution operations
MORE COMPLEX EXAMPLE OF “ANALOGIES”
MORE COMPLEX EXAMPLE OF “ANALOGIES”

Feature maps

Input

Output
MORE COMPLEX EXAMPLE OF “ANALOGIES”
MORE COMPLEX EXAMPLE OF “ANALOGIES”

Feature maps

Input

Output

Input

Output
MORE COMPLEX EXAMPLE OF "ANALOGIES"
HUMAN ACTIVITY: KTH ACTIONS DATASET

- We learn 32 feature maps
- 6 are shown here
- KTH contains 25 subjects performing 6 actions under 4 conditions
- Only preprocessing is local contrast normalization
- Motion sensitive features (1,3)
- Edge features (4)
- Segmentation operator (6)

Hand clapping (above); Walking (below)
ACTIVITY RECOGNITION: KTH

<table>
<thead>
<tr>
<th>Prior Art</th>
<th>Acc (%)</th>
<th>Convolutional architectures</th>
<th>Acc. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOG3D+KM+SVM</td>
<td>85.3</td>
<td>convGRBM+3D-convnet+logistic reg.</td>
<td>88.9</td>
</tr>
<tr>
<td>HOG/HOF+KM+SVM</td>
<td>86.1</td>
<td>convGRBM+3D convnet+MLP</td>
<td>90.0</td>
</tr>
<tr>
<td>HOG+KM+SVM</td>
<td>79.0</td>
<td>3D convnet+3D convnet+logistic reg.</td>
<td>79.4</td>
</tr>
<tr>
<td>HOF+KM+SVM</td>
<td>88.0</td>
<td>3D convnet+3D convnet+MLP</td>
<td>79.5</td>
</tr>
</tbody>
</table>

- Compared to methods that do not use explicit interest point detection
- State of the art: 92.1% (Laptev et al. 2008) 93.9% (Le et al. 2011)
- Other reported result on 3D convnets uses a different evaluation scheme
ACTIVITY RECOGNITION: HOLLYWOOD 2

- 12 classes of human action extracted from 69 movies (20 hours)
- Much more realistic and challenging than KTH (changing scenes, zoom, etc.)
- Performance is evaluated by mean average precision over classes

<table>
<thead>
<tr>
<th>Method</th>
<th>Average Prec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior Art (Wang et al. survey 2009):</td>
<td></td>
</tr>
<tr>
<td>HOG3D+KM+SVM</td>
<td>45.3</td>
</tr>
<tr>
<td>HOG/HOF+KM+SVM</td>
<td>47.4</td>
</tr>
<tr>
<td>HOG+KM+SVM</td>
<td>39.4</td>
</tr>
<tr>
<td>HOF+KM+SVM</td>
<td>45.5</td>
</tr>
<tr>
<td>Our method:</td>
<td></td>
</tr>
<tr>
<td>GRBM+SC+SVM</td>
<td>46.8</td>
</tr>
</tbody>
</table>
SUMMARY

• Learning distributed representations of sequences
SUMMARY

• Learning distributed representations of sequences

• For high-dimensional, multi-modal data: CRBM, FCRBM
SUMMARY

- Learning distributed representations of sequences

- For high-dimensional, multi-modal data: CRBM, FCRBM

- Activity recognition: 2 methods
The University of Guelph is not in Belgium!