FEATURE LEARNING FOR COMPARING EXAMPLES IPAM GRADUATE SUMMER SCHOOL ON DEEP LEARNING

GRAHAM TAYLOR

SCHOOL OF ENGINEERING UNIVERSITY OF GUELPH

Papers and software available at: <u>http://www.uoguelph.ca/~gwtaylor</u>

OVERVIEW: THIS TALK

OVERVIEW: THIS TALK

- Learning to compare examples
- it's a big field!
- we will focus on methods inspired by deep learning and representation learning

OVERVIEW: THIS TALK

- Learning to compare examples
- it's a big field!
- we will focus on methods inspired by deep learning and representation learning

• Applications: finding similar documents, human pose estimation, posesensitive retrieval

... and a Dutch progressive-electro band called C-Mon & Kypski

OUTLINE

Unsupervised LSA, Semantic Hashing Address Space Address Space Semantically Similar Documents Hashing Function

Supervised NCA, Nonlinear NCA, DrLIM

Weakly supervised

Applications to pose-sensitive retrieval

LEARNING SIMILARITY

- Pixel distance ≠ semantic similarity
- Computing distances in pixel space is also computationally expensive
- Learning parametric embeddings that are *invariant* to certain input variability
- Today: focus on representations that capture human pose

THE UNSUPERVISED APPROACH

- Learn (possibly deep) representations completely unsupervised
- compute distances between top-level representations
- representations are usually low-dimensional
- Classical methods: Latent Semantic Analysis (based on SVD), pLSA, LDA
- But directed models don't seem like a natural fit
- fast inference is important for information retrieval
- Use undirected models in which exact inference is fast
- Single layer approach by generalizing RBMs: Welling et al. 2005
- Multi-layer approach: Salakhutdinov and Hinton 2007 "Semantic Hashing"

SEMANTIC HASHING

- Visible layer represents word-count vector of a document
- "Constrained Poisson Model"
- Learn Constrained Poisson → Binary first layer
- Learn one or more binary RBMs in a "greedy" fashion
- Unroll to a deep autoencoder and "fine-tune" w/ backprop
- During fine-tuning add Gaussian noise to code layer
- This forces the codes to be close to binary

EXTREMELY FAST RETRIEVAL

- Documents are mapped to 20-D binary codes
- Can retrieve similar documents stored at nearby addresses with no search
- Binary LSA significantly reduces performance
- Not surprising: it has not been optimized to make binary codes perform well
- One weakness: documents with similar addresses have similar content but the converse is not necessarily true
- Can we use external information (e.g. labels) to pull together codes of similar documents?

MOTIVATION: KNN CLASSIFICATION

- What is the right distance for KNN classification?
- the one that optimizes test error!
- Think about approximating this by training error, defined by leave-one-out cross-validation
- Two problems:
- LOO error is a highly discontinuous function of the distance metric
- We still need to choose K
- Look for a smoother (or at least continuous) cost function

13 Jul 2012 / 8 Learning Similarity / G Taylor

STOCHASTIC NEAREST NEIGHBOUR

- Instead picking from a fixed set of *K* nearest neighbours, select a single neighbour stochastically
- Let each point i select other points j as its neighbour with probability p_{ij} based on the softmax of the distance d_{ij} :

$$p_{ij} = \frac{\exp(-d_{ij}^2)}{\sum_{k \neq i} \exp(-d_{ik}^2)}$$

where:

$$d_{ij} = ||\mathbf{z}_i - \mathbf{z}_j||_2$$
$$\mathbf{z}_i = f(\mathbf{x}_i | \theta)$$

13 Jul 2012 / 9 Learning Similarity / G Taylor

(Figure from Sam Roweis)

NCA: LOSS

- Maximize the expected number of points correctly classified under this scheme
- This is much smoother than the actual leave-one-out cross-validation error!
- In fact, it is differentiable w.r.t. parameters of mapping
- can use SGD or other gradient-based optimizer
- And there is no explicit parameter K

$$L_{\text{NCA}} = -\sum_{i=1}^{N} \sum_{j:y_i = y_j} p_{ij}$$

$$Minimize \text{ loss w.r.t. } \theta$$

NCA: EMBEDDINGS

Concentric rings (D=3)

LDA

 $f(\mathbf{x}|\theta = A) = A\mathbf{x}$

Faces (D=560)

USPS Digits (D=256)

NCA

13 Jul 2012 / 11 Learning Similarity / G Taylor

(Figures from Goldberger et al.)

NCA: MNIST

NONLINEAR NCA

- The original NCA paper (Goldberger et al. 2004) points out that $f(\mathbf{x}_i|\theta)$ need not be a linear mapping
- Salakhutdinov and Hinton (2007) pre-train with an RBM, then fine-tune with the NCA objective
- Can combine the NCA objective with an Autoencoder objective to regularize:

$$C = \lambda L_{\rm NCA} + (1 - \lambda) L_{AE}$$

• Can take advantage of unlabeled data!

13 Jul 2012 / 13 Learning Similarity / G Taylor

LEARNING NONLINEAR NCA

Pre-training

13 Jul 2012 / 14 Learning Similarity / G Taylor Mixed-objective fine-tuning

(Figures from R. Salakhutdinov and G. Hinton)

LIMITATIONS OF NCA

- Despite very nice embeddings (see right) NCA has a quadratic normalization term (must consider all pairs)
- mini-batch training (approximate)
- objectives that don't require normalization
- What about continuous labels?
- (Goldberger et al. 2004) describe a "soft" form of NCA that can use continuous labels

Linear NCA (MNIST)

LEARNING EMBEDDINGS WITH A SIAMESE NETWORK

¹³ Jul 2012 / 16 Learning Similarity / G Taylor

LEARNING EMBEDDINGS WITH A SIAMESE NETWORK

LEARNING EMBEDDINGS WITH A SIAMESE NETWORK

13 Jul 2012 / 16 Learning Similarity / G Taylor

NOT A NEW IDEA

(Bromley, Guyon, LeCun, Sackinger, and Shah 1994)

- Architecture proposed for signature verification
- didn't really get the distance function right
- learning unstable
- small (by today's standards) training set
- 1D convolution (TDNN)
- Developed independently elsewhere:
- Baldi and Chauvin, 1992: fingerprint verification
- Becker and Hinton, 1992 discovering depth in random-dot stereograms

13 Jul 2012 / 17 Learning Similarity / G Taylor

THE EMBEDDING: CONVOLUTIONAL NETWORKS

- Stacking multiple stages of Filter Bank + Non-Linearity + Pooling
- Shared with other approaches (SIFT, GIST, HOG)
- Main difference: Learn the filter banks at every layer

EMBEDDING WITH A SIAMESE CONVOLUTIONAL NET

13 Jul 2012 / 19 Learning Similarity / G Taylor

What's the objective function?

-needs to pull together semantically similar pairs

-needs to push apart semantically dissimilar pairs

- The similarity loss "pushes together" similar points
- The dissimilarity loss "pulls apart" dissimilar points
- but only if their distance is within some margin, α

SPRING ANALOGY

- Solid dots are points that are similar to the point in the centre
- Hollow dots are points that are dissimilar to the point in the centre
- Forces acting on the points are shown in blue
- The length of the arrow represents the strength of the force
- ullet Radius represents the margin, lpha

13 Jul 2012 / 21 Learning Similarity / G Taylor

(Figures from Hadsell et al.)

(Figures from Hadsell et al.)

• NCA, DrLIM: binary notion of similarity typically defined by class membership or explicitly constructed neighbourhood graph

- NCA, DrLIM: binary notion of similarity typically defined by class membership or explicitly constructed neighbourhood graph
- Defining pairwise similarity is difficult and inconsistent across observers

- NCA, DrLIM: binary notion of similarity typically defined by class membership or explicitly constructed neighbourhood graph
- Defining pairwise similarity is difficult and inconsistent across observers
- Despite crowd-sourcing platforms (e.g. Amazon Mechanical Turk) gathering semantically similar pairs of images is expensive

HANDS BY HAND

- One solution is to turn to synthetic data (e.g. Shakhnarovich et al. 2003, Jain et al. 2008)
- Difficult to generalize to real (e.g. "YouTube" settings)
- Another solution: ask people to label heads and hands (Spiro et al. 2010) or superimpose articulated skeletons (Bourdev et al. 2009)

(Spiro, Taylor, Williams and Bregler ACVHL 2010)

HANDS BY HAND

- One solution is to turn to synthetic data (e.g. Shakhnarovich et al. 2003, Jain et al. 2008)
- Difficult to generalize to real (e.g. "YouTube" settings)
- Another solution: ask people to label heads and hands (Spiro et al. 2010) or superimpose articulated skeletons (Bourdev et al. 2009)

(Spiro, Taylor, Williams and Bregler ACVHL 2010)

13 Jul 2012 / 24 Learning Similarity / G Taylor

NONPARAMETRIC POSE ESTIMATION

13 Jul 2012 / 25 Learning Similarity / G Taylor

NONPARAMETRIC POSE ESTIMATION

13 Jul 2012 / 25 Learning Similarity / G Taylor

NONPARAMETRIC POSE ESTIMATION

Database

13 Jul 2012 / 25 Learning Similarity / G Taylor

NONPARAMETRIC POSE ESTIMATION

 If we have a database of images labeled with 2D or 3D pose information - we can do non-parametric pose estimation

13 Jul 2012 / 25 Learning Similarity / G Taylor
(Taylor, Spiro, Williams, Fergus and Bregler NIPS 2010)

NONPARAMETRIC POSE ESTIMATION

 If we have a database of images labeled with 2D or 3D pose information - we can do non-parametric pose estimation

Database

Copy pose

NONPARAMETRIC POSE ESTIMATION

- If we have a database of images labeled with 2D or 3D pose information - we can do non-parametric pose estimation
- Nearest neighbor lookup must be quick (e.g. performed in a low-dimensional space)

Database

13 Jul 2012 / 25 Learning Similarity / G Taylor

Thursday, July 12, 2012

NONPARAMETRIC POSE ESTIMATION

- If we have a database of images labeled with 2D or 3D pose information - we can do non-parametric pose estimation
- Nearest neighbor lookup must be quick (e.g. performed in a low-dimensional space)
- It also must be informative of pose and invariant to clothing, lighting, scale, and other appearance changes

Database

NCA REGRESSION

$$L_{\text{NCAR}} = \sum_{i=1}^{N} \sum_{j} p_{ij} ||\mathbf{y}_i - \mathbf{y}_j||_2^2$$

 \mathbf{X}_{i}

 $\mathbf{y}_i = [48.2, 46.3, \dots, 63.3]^T$

Minimize loss w.r.t. θ

Pay a high cost for "neighbours" in feature space that are far away in pose space

 \mathbf{X}_{j}

 $\mathbf{y}_i = [54.4, 45.8, \dots, 64.1]^T$

SNOWBIRD DATASET

- We digitally recorded all contributing and invited speakers at the 2010 Snowbird workshop
- After each session of talks, blocks of 150 frames were distributed as Human Intelligence Tasks (HITs) on Amazon Mechanical Turk
- Split speakers into 39k training examples, 37k test examples (no overlap in identity)

13 Jul 2012 / 27 Learning Similarity / G Taylor

COMPARISON OF APPROACHES

Pixel distance	Not practical	
GIST	 Global representation of image Still not practical 	
Linear NCA regression (NCAR)	Applied to pre-computed GISTFit by conjugate gradient	
Convolutional NCAR (C-NCAR)	Convolutions applied to pixelsTanh(),Abs(),Average	
DrLIM Regression (DrLIMR)	 Similar to NCAR but adds an explicit contrastive loss 	
Convolutional DrLIMR (C-DrLIMR)	•Similar to C-NCAR but adds an explicit contrastive loss	

COMPARISON OF APPROACHES

Pixel distance			
GIST			
Linear NCA regression (NCAR)			
Convolutional NCAR (C-NCAR)	 Convolutions applied to pixels 		
	Tanh(),Abs(),Average		
Drl IM Regression (Drl IMR)	•Similar to NCAR but adds an		
	explicit contrastive loss		
Convolutional Dr. INAD (C. Dr. INAD)	•Similar to C-NCAR but adds an		
	explicit contrastive loss		

COMPARISON OF APPROACHES

Pixel distance	Not practical	
GIST	 Global representation of image Still not practical 	
Linear NCA regression (NCAR)	Applied to pre-computed GISTFit by conjugate gradient	
Convolutional NCAR (C-NCAR)	Convolutions applied to pixelsTanh(),Abs(),Average	
DrLIM Regression (DrLIMR)	 Similar to NCAR but adds an explicit contrastive loss 	
Convolutional DrLIMR (C-DrLIMR)	•Similar to C-NCAR but adds an explicit contrastive loss	

LABELING POSE

- Both Pixel-based matching and GIST focus on scene content, lighting
- Our method learns invariance to background, focuses on pose
- Though trained on hands relative to head, seems to capture something more substantial about body pose

13 Jul 2012 / 29 Learning Similarity / G Taylor

RESULTS

Embedding	Input	Code size	Err-SY	Err-RE
None	Pixels	16384	32.86	25.12
None	GIST	512	47.41	25.30
PCA	GIST	128	47.17	24.85
PCA	GIST	32	48.99	25.74
NCAR	GIST	32	34.21	24.93
NCAR	LCN	32	32.90	23.15
S-DrLIM	GIST	32	37.80	25.19
Boost-SSC	LCN	32	34.80	22.65
PSE(b)	LCN	32	28.95	16.41
PSE(o)	LCN	32	25.40	19.61

16.4 pixel error

Can we get away with not asking people to provide explicit labels of body parts?

13 Jul 2012 / 31 Learning Similarity / G Taylor

Thursday, July 12, 2012

LEARNING INVARIANCE THROUGH IMITATION

- A new paradigm for learning invariant mappings: *imitation*
- People have a remarkable ability to mimic image content
- Exploit the abundance of webcams to quickly crowdsource a massive dataset of people in similar pose
- Active crowd-sourcing

13 Jul 2012 / 33 Learning Similarity / G Taylor

Thursday, July 12, 2012

• How do we select the images people are asked to imitate?

- How do we select the images people are asked to imitate?
- Temporal coherence in video can increase the number of pairwise similarities and add graded similarity

- How do we select the images people are asked to imitate?
- Temporal coherence in video can increase the number of pairwise similarities and add graded similarity

- How do we select the images people are asked to imitate?
- Temporal coherence in video can increase the number of pairwise similarities and add graded similarity

- How do we select the images people are asked to imitate?
- Temporal coherence in video can increase the number of pairwise similarities and add graded similarity

- How do we select the images people are asked to imitate?
- Temporal coherence in video can increase the number of pairwise similarities and add graded similarity

13 Jul 2012 / 33 Learning Similarity / G Taylor

- How do we select the images people are asked to imitate?
- Temporal coherence in video can increase the number of pairwise similarities and add graded similarity
- Video is used only as a source of seed images
- Our model learns only from user-contributed imitations

FORMALIZING THE PROBLEM

- ullet Each image, \mathbf{X}_i , has an associated seed label, y_i
- We seek to learn a mapping:

 $\mathbf{z}_i = f(\mathbf{x}_i | \theta)$ Can be linear or nonlinear

such that if \mathbf{X}_i and \mathbf{X}_j come from nearby seed images, then

$$d_{ij} = ||\mathbf{z}_i - \mathbf{z}_j||_2$$
 will be small.

$$y_1 = y_2 = y_3 = y_4$$

DIMENSIONALITY REDUCTION BY LEARNING AN INVARIANT MAPPING (DRLIM)

$$L = s_{ij}L_S(\mathbf{x}_i, \mathbf{x}_j) + (1 - s_{ij})L_D(\mathbf{x}_i, \mathbf{x}_j)$$

DIMENSIONALITY REDUCTION BY LEARNING AN INVARIANT MAPPING (DRLIM)

$$L = s_{ij} L_S(\mathbf{x}_i, \mathbf{x}_j) + \delta(s_{ij}, 0) L_D(\mathbf{x}_i, \mathbf{x}_j)$$

Similarity loss

$$L_S(\mathbf{x}_i, \mathbf{x}_j) = \frac{1}{2} (d_{ij})^2$$

$$L_D(\mathbf{x}_i, \mathbf{x}_j) = \frac{1}{2} [\max(0, \alpha - d_{ij})]^2$$

 S_{ij} no longer binary

- In addition to the learned mapping, f, we require a mapping from discrete seed identity to a real-valued similarity score
- Simplest example: $s_{ij} = (1 + |y_i y_j|)^{-1}$

13 Jul 2012 / 36 Learning Similarity / G Taylor

Skip convnet intro

- In addition to the learned mapping, f, we require a mapping from discrete seed identity to a real-valued similarity score
- Simplest example: $s_{ij} = (1 + |y_i y_j|)^{-1}$

13 Jul 2012 / 36 Learning Similarity / G Taylor

Skip convnet intro

- In addition to the learned mapping, f, we require a mapping from discrete seed identity to a real-valued similarity score
- Simplest example: $s_{ij} = (1 + |y_i y_j|)^{-1}$

y = 2

- In addition to the learned mapping, f, we require a mapping from discrete seed identity to a real-valued similarity score
- Simplest example: $s_{ij} = (1 + |y_i y_j|)^{-1}$

EMBEDDING WITH A SIAMESE CONVOLUTIONAL NET

EMBEDDING WITH A SIAMESE CONVOLUTIONAL NET

13 Jul 2012 / 37 Learning Similarity / G Taylor

Skip toy experiments

ONE FRAME OF FAME

- No need to collect data ourselves: we leverage an existing project in an unintended way
- One Frame of Fame is a music video by the Dutch band C-Mon & Kypski
- The band aims to replace selected frames with audience imitations
- To date, the band has >35k contributions
- Only manual intervention is in determining scene cuts

ONE FRAME OF FAME

- No need to collect data ourselves: we leverage an existing project in an unintended way
- One Frame of Fame is a music video by the Dutch band C-Mon & Kypski
- The band aims to replace selected frames with audience imitations
- To date, the band has >35k contributions
- Only manual intervention is in determining scene cuts

ONE FRAME OF FAME DATASET

IMAGE RETRIEVAL

- The most common evaluation metric used by the IR community is Discounted Cumulative Gain (DCG)
- Typically used to measure search engine performance
- User submits query, presented with a ranked list of results

DCG@
$$K = \sum_{j=1}^{K} \frac{2^{g_j} - 1}{\log(j+1)}$$

- We only consider the first K results
- In our experiments, we let $g_j = (1 + |y_i y_j|)^{-1}$

METHODS FOR SIMILARITY SCORE

• Simple:
$$s_{ij}^m = (1 + |y_i - y_j|)^{-1}$$

•Block:
$$s_{ij}^m = 1$$
 if $|y_i - y_j| \le w$

RETRIEVAL PERFORMANCE: QUANTITATIVE

- Both pixel-based matching, and PCA perform horribly: Pixels: 0.021, PCA-32: 0.026
- Standard DrLIM does not consider graded similarity
- Performance of using a fixedsize window of constant affinity falls between DrLIM and soft methods
- Similar performance observed for K=1, K=5, K=20 NN

13 Jul 2012 / 42 Learning Similarity / G Taylor

RETRIEVAL PERFORMANCE: QUALITATIVE

Query (test set)

Nearest neighbours -

Thursday, July 12, 2012
MORE QUALITATIVE RESULTS

Thursday, July 12, 2012

EVEN MORE QUALITATIVE RESULTS

Query (test set)

Nearest neighbours

FACE DETECTION USING OUR LEARNED EMBEDDING

- Users on Amazon Mechanical Turk were asked to provide facial bounding boxes for the training set
- We reduced our training (and test) set to the subset of "valid" annotations - for example, some images do not contain faces and therefore were not assigned bounding boxes

13 Jul 2012 / 46 Learning Similarity / G Taylor

Thursday, July 12, 2012

NEAREST NEIGHBOR FACE DETECTION

Query image (from test set)

Proposed bounding box 13 Jul 2012 / 47 Learning Similarity / G Taylor Find nearest neighbors via learned pose-sensitive embedding

Apply median bounding box of neighbors

SCORING BOUNDING BOXES

- Use Intersection over Union score (PASCAL VOC): IOU > 0.5?
- Red our guess; Green ground truth

Intersection

Union

13 Jul 2012 / 48 Learning Similarity / G Taylor

OUTPERFORMING PITTPATT

• PittPatt is a commercial face 0.7 detector 0.65 0.6 **Detection** rate • OpenCV - VJ is a commonly used 0.55 implementation of boosting (Viola-Jones) - known to not work that well 0.5 0.45 Our method Pittpatt (best) • Detection is IOU > 0.50.4 Pittpatt (most confident) OpenCV-VJ

0.35^L

20

40

Nearest neighbours (K)

60

80

100

13 Jul 2012 / 49 Learning Similarity / G Taylor

PITTPATT FAILURES (PSE SUCCEEDS)

13 Jul 2012 / 50 Learning Similarity / G Taylor

PITTPATT FAILURES (2)

13 Jul 2012 / 51 Learning Similarity / G Taylor

PITTPATT PRODUCES INCORRECT DETECTION

PittPatt

PSE

PittPatt

13 Jul 2012 / 52 Learning Similarity / G Taylor

SUMMARY

Unsupervised

Learn similarity structure completely from unlabeled data. Difficult to ensure that similar examples map to similar codes.

Supervised

Use labels or neighbourhood graph to inform map. Often, this information is not available!

Weakly supervised

Use of temporal coherence to guide learning.

 $d_{ij} \stackrel{\bullet}{=} ||\mathbf{z}_i - \mathbf{z}_j||_2$

Semantic Hashing Function

13 Jul 2012 / 53 Learning Similarity / G Taylor

The University of Guelph is not in Belgium!

Thursday, July 12, 2012