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PART 3: 
Some applications of deep learning 

 •  Speech recognition 
–  Deep learning is now being deployed in the latest 

speech recognition systems. 
•  Object recognition 

–  Deep learning is breaking records on really tough 
object recognition tasks. 

•  Image retrieval 
–  Deep learning finds efficient codes for images. 

•   Predicting the next character in a string 
–  Deep learning reads Wikipedia and discovers the 

meaning of life. 



Using deep neural nets for  
speech recognition 

•  Each phoneme is modeled by one or more  
three-state Hidden Markov Model.  

•  The sound-wave is pre-processed to yield 
frames of acoustic coefficients every 10ms. 

•  A deep neural net looks at a window of frames 
and outputs the probabilities of the various 
possible HMM states for the central frame. 

•  A decoder then uses these probabilities to find 
the best string of words.  

 
 
 



Phone recognition on the TIMIT benchmark 
(Mohamed, Dahl, & Hinton, 2011)  

–   After standard post-
processing using a bi-phone 
model, a deep net with 8 
layers gets 20.7% error rate. 

–  The best previous speaker- 
independent result on TIMIT 
was 24.4% and this required 
averaging several models. 

–  A deep net that uses 3-way 
factors to model the 
covariance structure of the 
filterbank outputs gets 20.5% 
without using deltas (Dahl 
et.al. 2010) 

15 frames of 40 filterbank 
outputs + deltas & delta deltas 

2000 binary hidden units  

2000 binary hidden units  

2000 binary hidden units  

2000 binary hidden units  

183 HMM-state  labels 

not pre-trained 



What happened next 

•  This method of using deep nets for speech 
recognition was ported to MSR by George Dahl 
and Abdel-rahman Mohamed and to Google by 
Navdeep Jaitly. 

•  It forms the basis of a speech recognizer 
recently deployed by Microsoft. 

•  Google has also been developing this 
technology (see next slide).  



Word error rates from MSR, IBM, and 
the Google speech group 



Word error rates from MSR, IBM, and 
the Google speech group 



Experiment on ImageNet 1000 classes 
(1.3 million high-resolution training images) 

•  The 2010 competition winner got 47% error for 
its first choice and 25% error for top 5 choices. 

•  The current record is 45% error for first choice. 
– This uses methods developed by the winners 

of the 2011 competition. 
•  Our chief critic, Jitendra Malik, has said that this 

competition is a good test of whether deep 
neural networks really do work well for object 
recognition. 



A convolutional net for ImageNet 

•  Alex Krizhevsky developed a very deep 
convolutional neural net. 
– 7 hidden layers not counting max pooling. 
– Early layers are convolutional, last two layers 

are globally connected. 
– Alex trains on random 224x224 patches from 

256x256 images to get more data. 
– Uses rectified linear units in every layer. 
– Uses competitive normalization to suppress 

hidden activities. 



The performance of Alex’s net 

•  At test time, use the central patch and the 4 corner 
patches and their reflections. 
– By combining the 10 predicted distributions Alex 

gets an error rate which is about the same as 
the state-of-the-art.  

•  If he uses “dropout” to regularize the weights in the 
globally connected layers (which contain most of 
the parameters) he gets 39% error for first choice 
and 19% for top 5 choices. 
– This is a big improvement over the current state 

of the art (45% for top choice & 25% for top 5). 



Some examples from an earlier version of the net 



It can deal with a wide range of objects 



It makes some really cool errors 



Using a deep autoencoder as a hash-function 
for finding approximate matches 

hash 
function 

“supermarket search” 



Another view of semantic hashing 

•  Fast retrieval methods typically work by 
intersecting stored lists that are associated with 
cues extracted from the query. 

•  Computers have special hardware that can 
intersect  32 very long lists in one instruction. 
– Each bit in a 32-bit binary code specifies a list 

of half the addresses in the memory. 
•  Semantic hashing uses machine learning to map 

the retrieval problem onto the type of list 
intersection the computer is good at. 



Semantic hashing for image retrieval 

•  Currently,  image retrieval is typically done by 
using the captions. Why not use the images too? 
– Pixels are not like words: individual pixels do 

not tell us much about the content. 
– Extracting object classes from images is hard. 

•  Maybe we should extract a real-valued vector 
that has information about the content? 
– Matching real-valued vectors in a big 

database is slow and requires a lot of storage 
•  Short binary codes are easy to store and match 



A two-stage method 

•  First, use semantic hashing with 30-bit binary 
codes to get a long “shortlist” of  promising 
images. 

•  Then use 256-bit binary codes to do a serial 
search for good matches. 
– This only requires a few words of storage per 

image and the serial search can be done 
using fast bit-operations. 

•  But how good are the 256-bit binary codes? 
– Do they find images that we think are similar? 



Krizhevsky’s deep autoencoder 

1024 1024 1024 

8192 

4096 

2048 

1024 

512 

256-bit binary code The encoder 
has about 
67,000,000 
parameters.  
 
 It takes a few 
GTX 285 GPU 
days to train on 
two million 
images.  

There is no 
theory to justify 
this architecture 



Autoencoder 

Euclidean distance in 
pixel intensity space 



Autoencoder 

Euclidean distance in 
pixel intensity space 



Autoencoder 

Euclidean distance in 
pixel intensity space 



An obvious extension 

•  Use a multimedia auto-encoder that  represents 
captions and images in a single code. 
– The captions should help it extract more 

meaningful image features  such as   
“contains an animal” or “indoor image” 

•  RBM’s already work much better than standard 
LDA topic models for modeling bags of words. 
– So the multimedia  auto-encoder should be       

+ a win (for images)                                            
+ a win (for captions)                                       
+ a win (for the interaction during training)  



A less obvious extension 

•  Semantic hashing gives incredibly fast retrieval 
but its hard to go much beyond 32 bits. 

•  We can afford to use semantic hashing several 
times with variations of the query and merge the 
shortlists 
–  Its easy to enumerate the hamming ball 

around a query image address in ascending 
address order, so merging is linear time. 

•  Apply many transformations to the query image 
to get transformation independent  retrieval. 
–  Image translations are an obvious candidate. 



A better starting point for semantic 
hashing 

•  The last hidden layer of a deep net for object 
recognition has a lot of information about the 
prominent objects in the image. 
– So use the last hidden layer as the input to an 

autoencoder. 



Images that give similar activity vectors in the last hidden layer 



Another failure of back-propagation 

   The most exciting version is back-
propagation through time. This should be 
able to learn distributed sequential 
“programs” to predict the next input vector. 
– It doesn’t work properly. 
– The gradient either explodes or dies. 
 



The equivalence between layered, 
feedforward nets and recurrent nets 
w1          w2 

w3          w4 

w1                   w2 w3 w4 

w1                   w2 w3 w4 

w1                   w2 w3 w4 

time=0 

time=2 

time=1 

time=3 

Assume that there is a 
time delay of 1 in using 
each connection. 

The recurrent net is 
just a layered net that 
keeps reusing the 
same weights. 



Two ways to use curvature information 
to improve optimization 

•  Quasi-Newton: Exact minimization on a very 
crude quadratic approximation to the curvature. 

•  Hessian-Free: partial minimization on a much 
better quadratic approximation to the curvature 
– Put a huge amount of work into coming up 

with a good Gauss-Newton approximation to 
the curvature.  

–  (See ICML 2010 paper by James Martens) 



What is a word 

•  A word operates on a mental state to produce a 
new mental state. 

•  If we want to model the mental state as a big 
vector, a word needs to define a transition matrix. 
– How can each of 100,000 words define a really 

big transition matrix without requiring a huge 
number of parameters? 

•  Maybe we should think of a word as a sequence of 
characters and allow each character to define a 
transition matrix? 



Advantages of working with characters 

•  The web is composed of character strings. 
•  Any learning method powerful enough to 

understand the world by reading the web ought to 
find it trivial to learn which strings make words 
(this turns out to be true). 

•  Pre-processing text to get words is a big hassle 
– What about morphemes (prefixes, suffixes etc) 
– What about subtle effects like “sn” words? 
– What about New York?   
– What about Finnish 

•  ymmartamattomyydellansakaan ..                           ..                           ..                           ..                           ..                           ..                           ..                           ..                           



2000	  
hidden	  
units	  

character:	  
1-‐of-‐86	  

Using 3-way factors to allow a character to create a 
whole transition matrix 

predicted	  distribu8on	  	  
for	  next	  character.	  	  
	  
It	  is	  a	  lot	  easier	  to	  
predict	  86	  characters	  
than	  100,000	  words.	  

2000	  
hidden	  
units	  

fu fv
f

Each factor, f, 
defines a rank one 
matrix ,  T

ff vu
Each character, c, determines 
a gain        for each of these 
rank one matrices 
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Training the character model 

•  Ilya Sutskever used 5 million strings of 100 
characters taken from wikipedia. For each string 
he starts predicting at the 11th character. 

•  It takes a month on a GPU board to get a really 
good model. It needs very big mini-batches. 

•  Ilya’s best model is about equal to the state of 
the art for character prediction, but works in a 
very different way from the best other models. 
–  It can balance quotes and brackets over long 

distances. Markov models cannot do this. 



How to use the model to continue a 
character string 

•  Given an initial string, we could generate 
whatever character the net thinks is most 
probable. 
– This degenerates into “the United States of 

the United States of the United States of …” 
•  Its better to get the net to produce a probability 

distribution for the next character and then  
sample from this distribution. 
– We then tell the net that the character we 

sampled was the real next character and ask 
it to predict the one after that, and so on. 



In 1974 Northern Denver had been 
overshadowed by CNL, and several Irish 
intelligence agencies in the Mediterranean 
region. However, on the Victoria, Kings 
Hebrew stated that Charles decided to 
escape during an alliance. The mansion 
house was completed in 1882, the second in 
its bridge are omitted, while closing is the 
proton reticulum composed below it aims, 
such that it is the blurring of appearing on any 
well-paid type of box printer. 

Some text generated by the model 



 
He was elected President during the Revolutionary 
War and forgave Opus Paul at Rome. The regime 
of his crew of England, is now Arab women's icons 
in  and the demons that use something between 
the characters‘ sisters in lower coil trains were 
always operated on the line of the ephemerable 
street, respectively, the graphic or other facility for 
deformation of a given proportion of large 
segments at RTUS). The B every chord was a 
"strongly cold internal palette pour even the white 
blade." 
 
 



Some completions produced by the model 

•  Sheila thrunges                               (most frequent) 

•  Shiela, Thrungelini del Rey                       (first try) 

•  The meaning of life is literary recognition.  (6th try) 



What does it know? 

•  It knows a huge number of words and a lot 
about proper names, dates, and numbers. 

•  It is good at balancing quotes and brackets. 
–  It can count brackets: none, one, many 

•  It knows a lot about syntax but its very hard to 
pin down exactly what form this knowledge has. 
–  Its syntactic knowledge is not modular. 

•  It knows a lot of semantic associations 
– E.g. it knows Plato is associated with 

Wittgenstein and cabbage is associated with 
vegetable. 



Completing a sentence 
using the neural network 

 (after a lot more training) 

•  T                                 the tradition of 
the ancient human reproduction: it is 
less favorable to the good boy for 
when to remove her bigger.                       

 

The meaning of life is 



PART 4: 
 

A computational principle that explains 
sex, the brain, and sparse coding 



Theme of this lecture 

•  An interesting discovery in machine learning 
provides an explanation for two puzzling 
phenomena in biology. 

•  The two phenomena appear to have nothing to 
do with one another, but actually there is one 
principal that explains both of them. 

•  Also, we can make neural nets work much better 
and explain why sparse coding improves 
classification. 



A problem with sexual reproduction 

•  Fitness depends on genes working well together. 
But sexual reproduction breaks up sets of co-
adapted genes.  
– This is a puzzle in the theory of evolution. 

•  A recent paper by Livnat, Papadimitriou and 
Feldman (PNAS 2008) claims that breaking up 
complex co-adaptations is actually a good thing 
even though it may be bad in the short term. 
–  It may help optimization in the long run. 
–  It may make organisms more robust to changes 

in the environment. We show this is a big effect. 



A problem with neural communication 

•  Cortical neurons do signal processing by sending 
discrete spikes of activity with apparently random 
timing. 
– Why don’t they communicate precise analog 

values by using the precise times of spikes. 
– Surely analog values are more useful for signal 

processing? 



How spike timing could be used to compute 
scalar products 

•  We want to take the scalar product of a vector of 
activations (coded as spike times) with a vector 
of  parameters (coded as synaptic weights). 

•  The answer must then be converted back to a 
spike time.   



A picture of how an integrate-and-fire 
neuron could compute a scalar product 
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•  At the end of the time 
window, the total 
injected charge is the 
scalar product of the 
time advances and 
the weights. 

•  But how do we 
convert this back into 
a spike time?  



Converting accumulated charge into a spike 
time 

•  At the end of the time window, 
add an additional input that 
injects charge at the rate: 

•  The total rate of injection of 
charge is then 1 and so the 
additional time taken to reach a 
threshold of      is: 

•  So in the next window, the 
advance of the outgoing spike 
represents the scalar product 
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Does the brain really make use of spike 
times to communicate real numbers? 

•  In the hippocampus of a rat, the location of the rat is 
represented by place cells.  
–  The precise time at which a place cell fires probably 

indicates where the rat is within that place field. 
•  But there is not much evidence that spike times are used 

this way in sensory cortex. This leaves two main 
possibilities: 
–  Evolution failed to discover an obvious trick. 
–  Our ideas about signal processing are hopelessly 

wrong. 



How could 1 bit possibly be better? 

•  Maybe the kind of signal processing problem that  
the brain solves is very different from the kind of 
signal processing problem engineers solve. 
– Engineers want to fit one model to data that 

they understand (e.g. a linear dynamical 
system). 

– The brain is confronted by a buzzing, blooming 
confusion. It needs to fit many different models 
and use the wisdom of crowds. 



Why engineers need to understand the 
principles underlying neural 

communication 

•  If we spread a really big neural net over many 
cores, we have to communicate the states of the 
neurons.  

•  It would be really helpful if communicating 1 bit  
was actually better than sending a real number. 



An apparent change of topic: 
Is there anything we cannot do with 

very big, deep neural networks? 

•  It appears to be hard to do massive model 
averaging: 
– Each net takes a long time to learn. 
– At test time we don’t want to run lots of 

different large neural nets. 



Averaging many models 

•  To win a machine learning competition (e.g. Netflix) 
you need to use many different types of model and 
then combine them to make predictions at test time. 

•  Decision trees are not very powerful models, but 
they are easy to fit to data and very fast at test time.  
– Averaging many decision trees works really well. 

Its called random forests. Kinect uses this. 
– We make the individual trees different by giving 

them different training sets. That’s called bagging 



Two ways to average models 

•  Mixture: We can combine models by taking the 
arithmetic means of their output probabilities: 

•  Product: We can combine models by taking the 
geometric means of their output probabilities: 

Model A:    .3   .2   .5 
Model B:    .1   .8   .1 
Combined  .2   .5   .3 

Model A:    .3    .2    .5 
Model B:    .1    .8    .1 
Combined  .03  .16  .05   /sum 



Dropout: An efficient way to average 
many large neural nets. 

•  Consider a neural net with 
one hidden layer. 

•  Each time we present a 
training example, we 
randomly omit each hidden 
unit with probability 0.5. 

•  So we are randomly 
sampling from 2^H 
different architectures. 
– All architectures share 

weights. 



Dropout as a form of model averaging 

•  We sample from 2^H models. So only a few of 
the models ever get trained, and they only get 
one training example. 
– This is as extreme as bagging can get. 

•  The sharing of the weights means that every 
model is very strongly regularized. 
–  It’s a much better regularizer than L2 or L1 

penalties that pull the weights towards zero. 



But what do we do at test time? 

•  We could sample many different architectures 
and take the geometric mean of their output 
distributions. 

•  It better to use all of the hidden units, but to 
halve their outgoing weights. 
– This exactly computes the geometric mean of 

the predictions of all 2^H models. 



What if we have more hidden layers? 

•  Use dropout of 0.5 in every layer. 

•  At test time, use the “mean net” that has all the 
outgoing weights halved. 

•  This is not exactly the same as averaging all the 
separate dropped out models, but it’s a pretty 
good approximation, and its fast. 



What about the input layer? 

•  It helps to use dropout there too, but with a 
higher probability of keeping an input unit. 
– This trick is already used by the “denoising 

autoencoders” developed in Yoshua Bengio’s 
group. 



A familiar example of dropout 

•  Do logistic regression, but for each training case, 
dropout all but one of the inputs. 

•  At test time, use all of the inputs. 
–  Its better to divide the learned weights by the 

number of features, but if we just want the 
best class its unnecessary. 

•  This is called “Naïve Bayes”. 
–   Why keep just one input? 



How well does dropout work? 

•  If your deep neural net is significantly overfitting, 
it will reduce the number of errors by a lot. 
– Any net that uses “early stopping” can do 

better by using dropout (at the cost of taking 
quite a lot longer to train).  

•  If your deep neural net is not overfitting you 
should be using a bigger one. 



Initial experiments on permutation 
invariant MNIST (Nitish Srivastava) 

•  MNIST is a standard machine learning 
benchmark. 

•  It has 60,000 training images of hand-written 
digits and 10,000 test images. 

•  There are many ways of improving performance: 
– Put in prior knowledge of geometry 
– Add extra training data by transforming the 

images. 
•  Without using these tricks, the record for neural 

nets was 160 errors on the test set. 





Using weight constraints 

•  In neural nets, it is standard to use an L2 penalty 
on the weights (called weight-decay). 
– This improves generalization by keeping the 

weights small. 
•  It is generally better to constrain the length of the 

incoming weight vector of each hidden unit. 
–  If the weight vector becomes longer than 

allowed, the weights are renormalized by 
division. 

•  Weight constraints make it possible to use a very 
big initial learning rate that then decays. 



Experiments on TIMIT 
(Nitish Srivastava) 

•  First pre-train a deep neural network one layer at 
a time on unlabeled windows of acoustic 
coefficients. 

•  Then fine-tune to discriminate between the 
classes using a small learning rate. 

•  Standard fine-tuning:  22.7% error on test set 
•  Dropout fine-tuning:    19.7% error on test set 

– This is a record for speaker-independent 
methods. 



Experiment on TIMIT 
(Nitish Srivastava) 



Experiment on document classification 
(Nitish Srivastava & Ruslan Salakhutdinov) 

•  Represent a document by a vector of counts of 
the 2000 most frequent non-stop words. 

•  Use a subset of the documents from 50 non-
overlapping classes. 

•  Predict the class from the word count vector 
using a net with two hidden layers. 





Experiment on CIFAR-10 
 

•  Benchmark task for object recognition: 
– 10 classes, 32x32 color images downsampled 

from web and carefully hand-labeled. 
– 50,000 training cases, 10,000 test cases. 

– A big convolutional net gets 18% error. 
– With dropout in the last layer it gets 16% error 



Another way to think about dropout 

•  If a hidden unit knows which other hidden units 
are present, it can co-adapt to them on the 
training data.  
– But complex co-adaptations are likely to go 

wrong on new test data. 
– Big, complex conspiracies are not robust. 

•  If a hidden unit has to work well with 
combinatorially many sets of co-workers, it is 
more likely to do something that is individually 
useful, but also marginally useful given what its 
co-workers typically achieve.  



A simple example for a linear model 

•  Training data: 
1,     1,    0     0   à    6 
1,     1,    1     1   à    4 
 
-5   +11   +4   -6      co-adapted weights 
 
+3,  +3,   -1,   -1      less co-adapted weights 

  
 

   
 



Noise versus model averaging 

•  Here are two apparently different ways to 
improve generalization: 
– Method 1: Regularize by adding noise to the 

weights or neural activities (equivalent to 
weight penalties). 

– Method 2: Average the predictions of many 
different models. 

•  Dropout is an example of both. So these 
methods are not as different as they appear. 



•  If we use a large “dictionary” of hidden units and code an image by 
only activating a few hidden units, we get an efficient code. 
–  This is often done by using an L1 penalty on the hidden activities 

and then iterating to drive many of the activities to zero. 

•  One big advantage of sparse coding is that the sparse codes are 
usually good for predicting class labels. 
–  Why is this? Is it because each active hidden unit is more 

informative? 
–  We now know that randomly setting most of the activities to zero 

allows us to learn very good codes. 
–  So maybe sparse coding produces good codes for classification 

precisely because its unstable: A hidden unit does not know 
which other units will be present. 

Sparse coding 



Another advantage of using dropout 

•  Dropout forces neurons to be robust to the loss 
of co-workers. 

•  This should make “genetic algorithms” work 
better. 

•  Two nets produce an offspring by randomly 
picking each hidden unit to come from one or 
other parent (we need to know the 
correspondence of hidden units). 
– The offspring already works quite well and 

after some training it will work about as well 
as the parents. 



A simple way to run on a cluster 
(suggested by Inman Harvey) 

•  Every so often, a “mother” network advertises for 
a mate. After considering various possible 
mates, the mother network produces an 
offspring. 

•  The mother network is then suspended and that 
core is used to run the child network. 

•  After a while we compare the child with the 
mother and decide which one to kill. 

•  This algorithm requires very little interaction.  
–  It could happily use a million cores. 
– Nets need to change gender frequently. 



Now for 
something not  

completely 
different 



An alternative to dropout 

•  In dropout, each neuron computes an activity, p, 
using the logistic function. Then it sends p to the 
next layer with a probability of 0.5. 

•  This has exactly the same expected value as 
sending 0.5 with probability p.  
– That is exactly what a stochastic binary 

neuron does (if we call 0.5 one spike) 
– So what happens if we use stochastic binary 

neurons in the forward pass but do the 
backward pass as if we had done a “normal” 
forward pass? 



The effect of only sending one bit 

•  The deep neural network learns slower and gets 
more errors on the training data. 
–   But it generalizes much better. 
–  Its about the same win as dropout, but we have 

not properly compared them yet. 

•  Dropout variance          =     p  /4 
•  Stochastic bit variance =     p(1-p)/4 

– Stochastic bits have more variance for small p. 
– This is the Poisson limit and resembles neurons 

2 



An amusing piece of history 

•  In 2005 we discovered that deep nets can be pre-
trained effectively on unlabeled data by learning a 
stack of “Restricted Boltzmann Machines” (see my 
2007 Youtube Techtalk for details). 

•  The pre-training uses stochastic binary units. After 
pre-training we cheat and use backpropagation by 
pretending that they are deterministic units that 
send the real-valued outputs of logistics. 
– We would get less overfitting if we stayed with 

stochastic binary neurons in the forward pass.  



Some explanations for why cortical 
neurons don’t send analog values 

•  There is no efficient way for them to do it. 
– But some neurons use the precise times of 

spikes very effectively.  
•  Evolution just didn’t figure it out. 

– Evolution had hundreds of millions of years. If 
neurons wanted to send analog values, evolution 
would have found a way.  

•  Its better to send stochastic spikes because they 
act as a great regularizer.  
– This helps the brain to use a lot of neurons 

without overfitting (10^14 parameters,10^9 seconds)  



Another look at Restricted Boltzmann 
Machines 

•  When pre-training a deep net, we can use one-
step Contrastive Divergence as a shortcut to 
make maximum likelihood training faster. 
– But, for pre-training, CD actually works better 

than proper maximum likelihood training of the 
RBM. 

•  So maybe there are better ways to understand 
what CD training is achieving. 
– Maybe its fitting a type of auto-encoder! 



Autoencoders vs RBMs trained with ML 

•  An autoencoder tries to make the reconstruction match 
the data. 

•  An RBM trained with ML tries to make the distribution of 
the reconstructions match the distribution of the data. 
–  So the RBM is happy to sometimes reconstruct A as 

B provided it also sometimes reconstructs B as A.  
•  Consider a pixel that is pure noise. 

–  The autoencoder will use its hidden state to code the 
value of the noise so that it can reconstruct it. 

–  An RBM trained with ML will totally ignore that pixel 
because the bias of the pixel can get the distribution 
correct.    



A picture of CD training 
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How CD learning back-propagates 
through stochastic neurons  

v v+Δv

h h+Δh

Assume that         is small. 
 
To first order,         is the derivative of the reconstruction  
error w.r.t. the inputs to the hidden units. 

Δv
Δh

Δhj
out

Δhj
in



An improved version of Contrastive 
Divergence learning for density modeling 
•  The main worry with CD is that there will be deep 

minima of the energy function far away from the 
data.  
– To find these we need to run the Markov chain for 

a long time (maybe thousands of steps).  
– But we cannot afford to run the chain for too long 

for each update of the weights. 
•  Maybe we can run the same Markov chain over 

many weight updates? (Neal, 1992) 
–  If the learning rate is very small, this should be 

equivalent to running the chain for many steps 
and then doing a bigger weight update. 



Persistent CD 
(Tijmen Teileman, ICML 2008 & 2009) 

•  Use minibatches of 100 cases to estimate the 
first term in the gradient. Use a single batch of 
100 fantasies to estimate the second term in the 
gradient.  

  
•  After each weight update, generate the new 

fantasies from the previous fantasies by using 
one alternating Gibbs update. 
– So the fantasies can get far from the data. 



A puzzle 

•  Why does persistent CD work so well with only 
100 negative examples to characterize the 
whole partition function? 

– For all interesting problems the partition 
function is highly multi-modal. 

– How does it manage to find all the modes 
without starting at the data?  



The learning causes very fast mixing 

  
•  The learning interacts with the Markov chain. 
 
•  Persisitent Contrastive Divergence cannot be 

analysed by viewing the learning as an outer loop. 
– Wherever the fantasies outnumber the 

positive data, the free-energy surface is 
raised. This makes the fantasies rush around 
hyperactively. 



How persistent CD moves between the 
modes of the model’s distribution 

•  If a mode has more 
fantasy particles than data, 
the free-energy surface is 
raised until the fantasy 
particles escape. 
– This can overcome  

free-energy barriers that 
would be too high for the 
Markov Chain to jump. 

•  The free-energy surface is 
being changed to help 
mixing in addition to 
defining the model. 



Fast PCD (Tieleman & Hinton 2009) 

•  To settle on a good set of weights, it helps to 
turn down the learning rate towards the end of 
learning. 

•  But with a small learning rate, we dont get the 
fast mixing of the fantasy particles. 

•  In addition to the “real” weights that define the 
model, we could have temporary weights that 
learn fast and decay fast.  

•  The fast weights provide an additive overlay that 
achieves fast mixing even when the real weights 
are hardly changing. 



Training a multilayer Boltzmann machine 

•  For a full Boltzmann machine (i.e. with connections 
between hidden units), we cannot use variational 
learning because one of the terms has the wrong sign. 

•  Variational learning maximizes the sum over all training 
cases of: 

              log p(data) – KL(Q||P)   

approximate 
posterior 

true 
posterior 

∂ log p(data)
∂wij

= < sis j >data − < sis j >model



How to train a Boltzmann machine 

•  For the data-dependent expectations, assume 
the energy landscape is unimodal and use a 
mean-field approximation to the posterior. 

•  For the model’s expectations uses PCD. 

•  Ruslan Salakhutdinov showed that this worked, 
but it works much better if the weights of the 
hidden units are initialized sensibly. 



How to pre-train a deep Boltzmann machine 
(Salakhutdinov & Hinton, Neural Computation, 2012) 

•  In a DBN, each RBM replaces the prior over the 
previous hidden layer (that is implicitly defined by 
the lower RBM) by a better prior. 

•  Suppose we just replace half of the prior defined 
by the lower RBM by half of a better prior defined 
by the higher RBM. 
– The new prior is then the geometric mean of the 

priors defined by the two RBMs 
– The geometric mean is a better prior than the 

old one due to the convexity of KL divergence. 



Combining two RBMs to make a DBM 

1W1W

2W2W

'2h2h

1h

1h

v 'v

1W

2W

2h

1h

v

Each of these two RBMs is a 
product of two identical experts 



Readings on deep belief nets 

A reading list (that is still being updated) can be 
found at  

 
www.cs.toronto.edu/~hinton/deeprefs.html 


