
IPAM Summer School 2012

Tutorial on:
Deep Learning

Geoffrey Hinton
Canadian Institute for Advanced Research

&
Department of Computer Science

University of Toronto

PART 3:
Some applications of deep learning

 •  Speech recognition
–  Deep learning is now being deployed in the latest

speech recognition systems.
•  Object recognition

–  Deep learning is breaking records on really tough
object recognition tasks.

•  Image retrieval
–  Deep learning finds efficient codes for images.

•  Predicting the next character in a string
–  Deep learning reads Wikipedia and discovers the

meaning of life.

Using deep neural nets for
speech recognition

•  Each phoneme is modeled by one or more
three-state Hidden Markov Model.

•  The sound-wave is pre-processed to yield
frames of acoustic coefficients every 10ms.

•  A deep neural net looks at a window of frames
and outputs the probabilities of the various
possible HMM states for the central frame.

•  A decoder then uses these probabilities to find
the best string of words.

Phone recognition on the TIMIT benchmark
(Mohamed, Dahl, & Hinton, 2011)

–  After standard post-
processing using a bi-phone
model, a deep net with 8
layers gets 20.7% error rate.

–  The best previous speaker-
independent result on TIMIT
was 24.4% and this required
averaging several models.

–  A deep net that uses 3-way
factors to model the
covariance structure of the
filterbank outputs gets 20.5%
without using deltas (Dahl
et.al. 2010)

15 frames of 40 filterbank
outputs + deltas & delta deltas

2000 binary hidden units

2000 binary hidden units

2000 binary hidden units

2000 binary hidden units

183 HMM-state labels

not pre-trained

What happened next

•  This method of using deep nets for speech
recognition was ported to MSR by George Dahl
and Abdel-rahman Mohamed and to Google by
Navdeep Jaitly.

•  It forms the basis of a speech recognizer
recently deployed by Microsoft.

•  Google has also been developing this
technology (see next slide).

Word error rates from MSR, IBM, and
the Google speech group

Word error rates from MSR, IBM, and
the Google speech group

Experiment on ImageNet 1000 classes
(1.3 million high-resolution training images)

•  The 2010 competition winner got 47% error for
its first choice and 25% error for top 5 choices.

•  The current record is 45% error for first choice.
– This uses methods developed by the winners

of the 2011 competition.
•  Our chief critic, Jitendra Malik, has said that this

competition is a good test of whether deep
neural networks really do work well for object
recognition.

A convolutional net for ImageNet

•  Alex Krizhevsky developed a very deep
convolutional neural net.
– 7 hidden layers not counting max pooling.
– Early layers are convolutional, last two layers

are globally connected.
– Alex trains on random 224x224 patches from

256x256 images to get more data.
– Uses rectified linear units in every layer.
– Uses competitive normalization to suppress

hidden activities.

The performance of Alex’s net

•  At test time, use the central patch and the 4 corner
patches and their reflections.
– By combining the 10 predicted distributions Alex

gets an error rate which is about the same as
the state-of-the-art.

•  If he uses “dropout” to regularize the weights in the
globally connected layers (which contain most of
the parameters) he gets 39% error for first choice
and 19% for top 5 choices.
– This is a big improvement over the current state

of the art (45% for top choice & 25% for top 5).

Some examples from an earlier version of the net

It can deal with a wide range of objects

It makes some really cool errors

Using a deep autoencoder as a hash-function
for finding approximate matches

hash
function

“supermarket search”

Another view of semantic hashing

•  Fast retrieval methods typically work by
intersecting stored lists that are associated with
cues extracted from the query.

•  Computers have special hardware that can
intersect 32 very long lists in one instruction.
– Each bit in a 32-bit binary code specifies a list

of half the addresses in the memory.
•  Semantic hashing uses machine learning to map

the retrieval problem onto the type of list
intersection the computer is good at.

Semantic hashing for image retrieval

•  Currently, image retrieval is typically done by
using the captions. Why not use the images too?
– Pixels are not like words: individual pixels do

not tell us much about the content.
– Extracting object classes from images is hard.

•  Maybe we should extract a real-valued vector
that has information about the content?
– Matching real-valued vectors in a big

database is slow and requires a lot of storage
•  Short binary codes are easy to store and match

A two-stage method

•  First, use semantic hashing with 30-bit binary
codes to get a long “shortlist” of promising
images.

•  Then use 256-bit binary codes to do a serial
search for good matches.
– This only requires a few words of storage per

image and the serial search can be done
using fast bit-operations.

•  But how good are the 256-bit binary codes?
– Do they find images that we think are similar?

Krizhevsky’s deep autoencoder

1024 1024 1024

8192

4096

2048

1024

512

256-bit binary code The encoder
has about
67,000,000
parameters.

 It takes a few
GTX 285 GPU
days to train on
two million
images.

There is no
theory to justify
this architecture

Autoencoder

Euclidean distance in
pixel intensity space

Autoencoder

Euclidean distance in
pixel intensity space

Autoencoder

Euclidean distance in
pixel intensity space

An obvious extension

•  Use a multimedia auto-encoder that represents
captions and images in a single code.
– The captions should help it extract more

meaningful image features such as
“contains an animal” or “indoor image”

•  RBM’s already work much better than standard
LDA topic models for modeling bags of words.
– So the multimedia auto-encoder should be

+ a win (for images)
+ a win (for captions)
+ a win (for the interaction during training)

A less obvious extension

•  Semantic hashing gives incredibly fast retrieval
but its hard to go much beyond 32 bits.

•  We can afford to use semantic hashing several
times with variations of the query and merge the
shortlists
–  Its easy to enumerate the hamming ball

around a query image address in ascending
address order, so merging is linear time.

•  Apply many transformations to the query image
to get transformation independent retrieval.
–  Image translations are an obvious candidate.

A better starting point for semantic
hashing

•  The last hidden layer of a deep net for object
recognition has a lot of information about the
prominent objects in the image.
– So use the last hidden layer as the input to an

autoencoder.

Images that give similar activity vectors in the last hidden layer

Another failure of back-propagation

 The most exciting version is back-
propagation through time. This should be
able to learn distributed sequential
“programs” to predict the next input vector.
– It doesn’t work properly.
– The gradient either explodes or dies.

The equivalence between layered,
feedforward nets and recurrent nets
w1 w2

w3 w4

w1 w2 w3 w4

w1 w2 w3 w4

w1 w2 w3 w4

time=0

time=2

time=1

time=3

Assume that there is a
time delay of 1 in using
each connection.

The recurrent net is
just a layered net that
keeps reusing the
same weights.

Two ways to use curvature information
to improve optimization

•  Quasi-Newton: Exact minimization on a very
crude quadratic approximation to the curvature.

•  Hessian-Free: partial minimization on a much
better quadratic approximation to the curvature
– Put a huge amount of work into coming up

with a good Gauss-Newton approximation to
the curvature.

–  (See ICML 2010 paper by James Martens)

What is a word

•  A word operates on a mental state to produce a
new mental state.

•  If we want to model the mental state as a big
vector, a word needs to define a transition matrix.
– How can each of 100,000 words define a really

big transition matrix without requiring a huge
number of parameters?

•  Maybe we should think of a word as a sequence of
characters and allow each character to define a
transition matrix?

Advantages of working with characters

•  The web is composed of character strings.
•  Any learning method powerful enough to

understand the world by reading the web ought to
find it trivial to learn which strings make words
(this turns out to be true).

•  Pre-processing text to get words is a big hassle
– What about morphemes (prefixes, suffixes etc)
– What about subtle effects like “sn” words?
– What about New York?
– What about Finnish

•  ymmartamattomyydellansakaan

2000	
hidden	
units	

character:	
1-‐of-‐86	

Using 3-way factors to allow a character to create a
whole transition matrix

predicted	 distribu8on	 	
for	 next	 character.	 	
	
It	 is	 a	 lot	 easier	 to	
predict	 86	 characters	
than	 100,000	 words.	

2000	
hidden	
units	

fu fv
f

Each factor, f,
defines a rank one
matrix , T

ff vu
Each character, c, determines
a gain for each of these
rank one matrices

cfw

cfw

c

Training the character model

•  Ilya Sutskever used 5 million strings of 100
characters taken from wikipedia. For each string
he starts predicting at the 11th character.

•  It takes a month on a GPU board to get a really
good model. It needs very big mini-batches.

•  Ilya’s best model is about equal to the state of
the art for character prediction, but works in a
very different way from the best other models.
–  It can balance quotes and brackets over long

distances. Markov models cannot do this.

How to use the model to continue a
character string

•  Given an initial string, we could generate
whatever character the net thinks is most
probable.
– This degenerates into “the United States of

the United States of the United States of …”
•  Its better to get the net to produce a probability

distribution for the next character and then
sample from this distribution.
– We then tell the net that the character we

sampled was the real next character and ask
it to predict the one after that, and so on.

In 1974 Northern Denver had been
overshadowed by CNL, and several Irish
intelligence agencies in the Mediterranean
region. However, on the Victoria, Kings
Hebrew stated that Charles decided to
escape during an alliance. The mansion
house was completed in 1882, the second in
its bridge are omitted, while closing is the
proton reticulum composed below it aims,
such that it is the blurring of appearing on any
well-paid type of box printer.

Some text generated by the model

He was elected President during the Revolutionary
War and forgave Opus Paul at Rome. The regime
of his crew of England, is now Arab women's icons
in and the demons that use something between
the characters‘ sisters in lower coil trains were
always operated on the line of the ephemerable
street, respectively, the graphic or other facility for
deformation of a given proportion of large
segments at RTUS). The B every chord was a
"strongly cold internal palette pour even the white
blade."

Some completions produced by the model

•  Sheila thrunges (most frequent)

•  Shiela, Thrungelini del Rey (first try)

•  The meaning of life is literary recognition. (6th try)

What does it know?

•  It knows a huge number of words and a lot
about proper names, dates, and numbers.

•  It is good at balancing quotes and brackets.
–  It can count brackets: none, one, many

•  It knows a lot about syntax but its very hard to
pin down exactly what form this knowledge has.
–  Its syntactic knowledge is not modular.

•  It knows a lot of semantic associations
– E.g. it knows Plato is associated with

Wittgenstein and cabbage is associated with
vegetable.

Completing a sentence
using the neural network

 (after a lot more training)

•  T the tradition of
the ancient human reproduction: it is
less favorable to the good boy for
when to remove her bigger.

The meaning of life is

PART 4:

A computational principle that explains
sex, the brain, and sparse coding

Theme of this lecture

•  An interesting discovery in machine learning
provides an explanation for two puzzling
phenomena in biology.

•  The two phenomena appear to have nothing to
do with one another, but actually there is one
principal that explains both of them.

•  Also, we can make neural nets work much better
and explain why sparse coding improves
classification.

A problem with sexual reproduction

•  Fitness depends on genes working well together.
But sexual reproduction breaks up sets of co-
adapted genes.
– This is a puzzle in the theory of evolution.

•  A recent paper by Livnat, Papadimitriou and
Feldman (PNAS 2008) claims that breaking up
complex co-adaptations is actually a good thing
even though it may be bad in the short term.
–  It may help optimization in the long run.
–  It may make organisms more robust to changes

in the environment. We show this is a big effect.

A problem with neural communication

•  Cortical neurons do signal processing by sending
discrete spikes of activity with apparently random
timing.
– Why don’t they communicate precise analog

values by using the precise times of spikes.
– Surely analog values are more useful for signal

processing?

How spike timing could be used to compute
scalar products

•  We want to take the scalar product of a vector of
activations (coded as spike times) with a vector
of parameters (coded as synaptic weights).

•  The answer must then be converted back to a
spike time.

A picture of how an integrate-and-fire
neuron could compute a scalar product

ra
te

 o
f i

nj
ec

tio
n

of
 c

ha
rg

e
 à

real time à

w1

w2

w3

t1

t2

t3

end of time
window

•  At the end of the time
window, the total
injected charge is the
scalar product of the
time advances and
the weights.

•  But how do we
convert this back into
a spike time?

Converting accumulated charge into a spike
time

•  At the end of the time window,
add an additional input that
injects charge at the rate:

•  The total rate of injection of
charge is then 1 and so the
additional time taken to reach a
threshold of is:

•  So in the next window, the
advance of the outgoing spike
represents the scalar product

∑−
i

iw1

wt'−TT

wt'

time à

ch
ar

ge
 à

wt'

wt'

T

T

end of first
time window

Does the brain really make use of spike
times to communicate real numbers?

•  In the hippocampus of a rat, the location of the rat is
represented by place cells.
–  The precise time at which a place cell fires probably

indicates where the rat is within that place field.
•  But there is not much evidence that spike times are used

this way in sensory cortex. This leaves two main
possibilities:
–  Evolution failed to discover an obvious trick.
–  Our ideas about signal processing are hopelessly

wrong.

How could 1 bit possibly be better?

•  Maybe the kind of signal processing problem that
the brain solves is very different from the kind of
signal processing problem engineers solve.
– Engineers want to fit one model to data that

they understand (e.g. a linear dynamical
system).

– The brain is confronted by a buzzing, blooming
confusion. It needs to fit many different models
and use the wisdom of crowds.

Why engineers need to understand the
principles underlying neural

communication

•  If we spread a really big neural net over many
cores, we have to communicate the states of the
neurons.

•  It would be really helpful if communicating 1 bit
was actually better than sending a real number.

An apparent change of topic:
Is there anything we cannot do with

very big, deep neural networks?

•  It appears to be hard to do massive model
averaging:
– Each net takes a long time to learn.
– At test time we don’t want to run lots of

different large neural nets.

Averaging many models

•  To win a machine learning competition (e.g. Netflix)
you need to use many different types of model and
then combine them to make predictions at test time.

•  Decision trees are not very powerful models, but
they are easy to fit to data and very fast at test time.
– Averaging many decision trees works really well.

Its called random forests. Kinect uses this.
– We make the individual trees different by giving

them different training sets. That’s called bagging

Two ways to average models

•  Mixture: We can combine models by taking the
arithmetic means of their output probabilities:

•  Product: We can combine models by taking the
geometric means of their output probabilities:

Model A: .3 .2 .5
Model B: .1 .8 .1
Combined .2 .5 .3

Model A: .3 .2 .5
Model B: .1 .8 .1
Combined .03 .16 .05 /sum

Dropout: An efficient way to average
many large neural nets.

•  Consider a neural net with
one hidden layer.

•  Each time we present a
training example, we
randomly omit each hidden
unit with probability 0.5.

•  So we are randomly
sampling from 2^H
different architectures.
– All architectures share

weights.

Dropout as a form of model averaging

•  We sample from 2^H models. So only a few of
the models ever get trained, and they only get
one training example.
– This is as extreme as bagging can get.

•  The sharing of the weights means that every
model is very strongly regularized.
–  It’s a much better regularizer than L2 or L1

penalties that pull the weights towards zero.

But what do we do at test time?

•  We could sample many different architectures
and take the geometric mean of their output
distributions.

•  It better to use all of the hidden units, but to
halve their outgoing weights.
– This exactly computes the geometric mean of

the predictions of all 2^H models.

What if we have more hidden layers?

•  Use dropout of 0.5 in every layer.

•  At test time, use the “mean net” that has all the
outgoing weights halved.

•  This is not exactly the same as averaging all the
separate dropped out models, but it’s a pretty
good approximation, and its fast.

What about the input layer?

•  It helps to use dropout there too, but with a
higher probability of keeping an input unit.
– This trick is already used by the “denoising

autoencoders” developed in Yoshua Bengio’s
group.

A familiar example of dropout

•  Do logistic regression, but for each training case,
dropout all but one of the inputs.

•  At test time, use all of the inputs.
–  Its better to divide the learned weights by the

number of features, but if we just want the
best class its unnecessary.

•  This is called “Naïve Bayes”.
–  Why keep just one input?

How well does dropout work?

•  If your deep neural net is significantly overfitting,
it will reduce the number of errors by a lot.
– Any net that uses “early stopping” can do

better by using dropout (at the cost of taking
quite a lot longer to train).

•  If your deep neural net is not overfitting you
should be using a bigger one.

Initial experiments on permutation
invariant MNIST (Nitish Srivastava)

•  MNIST is a standard machine learning
benchmark.

•  It has 60,000 training images of hand-written
digits and 10,000 test images.

•  There are many ways of improving performance:
– Put in prior knowledge of geometry
– Add extra training data by transforming the

images.
•  Without using these tricks, the record for neural

nets was 160 errors on the test set.

Using weight constraints

•  In neural nets, it is standard to use an L2 penalty
on the weights (called weight-decay).
– This improves generalization by keeping the

weights small.
•  It is generally better to constrain the length of the

incoming weight vector of each hidden unit.
–  If the weight vector becomes longer than

allowed, the weights are renormalized by
division.

•  Weight constraints make it possible to use a very
big initial learning rate that then decays.

Experiments on TIMIT
(Nitish Srivastava)

•  First pre-train a deep neural network one layer at
a time on unlabeled windows of acoustic
coefficients.

•  Then fine-tune to discriminate between the
classes using a small learning rate.

•  Standard fine-tuning: 22.7% error on test set
•  Dropout fine-tuning: 19.7% error on test set

– This is a record for speaker-independent
methods.

Experiment on TIMIT
(Nitish Srivastava)

Experiment on document classification
(Nitish Srivastava & Ruslan Salakhutdinov)

•  Represent a document by a vector of counts of
the 2000 most frequent non-stop words.

•  Use a subset of the documents from 50 non-
overlapping classes.

•  Predict the class from the word count vector
using a net with two hidden layers.

Experiment on CIFAR-10

•  Benchmark task for object recognition:
– 10 classes, 32x32 color images downsampled

from web and carefully hand-labeled.
– 50,000 training cases, 10,000 test cases.

– A big convolutional net gets 18% error.
– With dropout in the last layer it gets 16% error

Another way to think about dropout

•  If a hidden unit knows which other hidden units
are present, it can co-adapt to them on the
training data.
– But complex co-adaptations are likely to go

wrong on new test data.
– Big, complex conspiracies are not robust.

•  If a hidden unit has to work well with
combinatorially many sets of co-workers, it is
more likely to do something that is individually
useful, but also marginally useful given what its
co-workers typically achieve.

A simple example for a linear model

•  Training data:
1, 1, 0 0 à 6
1, 1, 1 1 à 4

-5 +11 +4 -6 co-adapted weights

+3, +3, -1, -1 less co-adapted weights

Noise versus model averaging

•  Here are two apparently different ways to
improve generalization:
– Method 1: Regularize by adding noise to the

weights or neural activities (equivalent to
weight penalties).

– Method 2: Average the predictions of many
different models.

•  Dropout is an example of both. So these
methods are not as different as they appear.

•  If we use a large “dictionary” of hidden units and code an image by
only activating a few hidden units, we get an efficient code.
–  This is often done by using an L1 penalty on the hidden activities

and then iterating to drive many of the activities to zero.

•  One big advantage of sparse coding is that the sparse codes are
usually good for predicting class labels.
–  Why is this? Is it because each active hidden unit is more

informative?
–  We now know that randomly setting most of the activities to zero

allows us to learn very good codes.
–  So maybe sparse coding produces good codes for classification

precisely because its unstable: A hidden unit does not know
which other units will be present.

Sparse coding

Another advantage of using dropout

•  Dropout forces neurons to be robust to the loss
of co-workers.

•  This should make “genetic algorithms” work
better.

•  Two nets produce an offspring by randomly
picking each hidden unit to come from one or
other parent (we need to know the
correspondence of hidden units).
– The offspring already works quite well and

after some training it will work about as well
as the parents.

A simple way to run on a cluster
(suggested by Inman Harvey)

•  Every so often, a “mother” network advertises for
a mate. After considering various possible
mates, the mother network produces an
offspring.

•  The mother network is then suspended and that
core is used to run the child network.

•  After a while we compare the child with the
mother and decide which one to kill.

•  This algorithm requires very little interaction.
–  It could happily use a million cores.
– Nets need to change gender frequently.

Now for
something not

completely
different

An alternative to dropout

•  In dropout, each neuron computes an activity, p,
using the logistic function. Then it sends p to the
next layer with a probability of 0.5.

•  This has exactly the same expected value as
sending 0.5 with probability p.
– That is exactly what a stochastic binary

neuron does (if we call 0.5 one spike)
– So what happens if we use stochastic binary

neurons in the forward pass but do the
backward pass as if we had done a “normal”
forward pass?

The effect of only sending one bit

•  The deep neural network learns slower and gets
more errors on the training data.
–  But it generalizes much better.
–  Its about the same win as dropout, but we have

not properly compared them yet.

•  Dropout variance = p /4
•  Stochastic bit variance = p(1-p)/4

– Stochastic bits have more variance for small p.
– This is the Poisson limit and resembles neurons

2

An amusing piece of history

•  In 2005 we discovered that deep nets can be pre-
trained effectively on unlabeled data by learning a
stack of “Restricted Boltzmann Machines” (see my
2007 Youtube Techtalk for details).

•  The pre-training uses stochastic binary units. After
pre-training we cheat and use backpropagation by
pretending that they are deterministic units that
send the real-valued outputs of logistics.
– We would get less overfitting if we stayed with

stochastic binary neurons in the forward pass.

Some explanations for why cortical
neurons don’t send analog values

•  There is no efficient way for them to do it.
– But some neurons use the precise times of

spikes very effectively.
•  Evolution just didn’t figure it out.

– Evolution had hundreds of millions of years. If
neurons wanted to send analog values, evolution
would have found a way.

•  Its better to send stochastic spikes because they
act as a great regularizer.
– This helps the brain to use a lot of neurons

without overfitting (10^14 parameters,10^9 seconds)

Another look at Restricted Boltzmann
Machines

•  When pre-training a deep net, we can use one-
step Contrastive Divergence as a shortcut to
make maximum likelihood training faster.
– But, for pre-training, CD actually works better

than proper maximum likelihood training of the
RBM.

•  So maybe there are better ways to understand
what CD training is achieving.
– Maybe its fitting a type of auto-encoder!

Autoencoders vs RBMs trained with ML

•  An autoencoder tries to make the reconstruction match
the data.

•  An RBM trained with ML tries to make the distribution of
the reconstructions match the distribution of the data.
–  So the RBM is happy to sometimes reconstruct A as

B provided it also sometimes reconstructs B as A.
•  Consider a pixel that is pure noise.

–  The autoencoder will use its hidden state to code the
value of the noise so that it can reconstruct it.

–  An RBM trained with ML will totally ignore that pixel
because the bias of the pixel can get the distribution
correct.

A picture of CD training

0>< jihv 1>< jihv

i

j

i

j

t = 0 t = 1
reconstruction data

∞∞

+−

+−

+−

ij

iij

jji

iij

ss

sss

sss

sss

...)(

)(

)(

211

101

100

One term changes the
generative weight. The
other term changes the
recognition weight.

How CD learning back-propagates
through stochastic neurons

v v+Δv

h h+Δh

Assume that is small.

To first order, is the derivative of the reconstruction
error w.r.t. the inputs to the hidden units.

Δv
Δh

Δhj
out

Δhj
in

An improved version of Contrastive
Divergence learning for density modeling
•  The main worry with CD is that there will be deep

minima of the energy function far away from the
data.
– To find these we need to run the Markov chain for

a long time (maybe thousands of steps).
– But we cannot afford to run the chain for too long

for each update of the weights.
•  Maybe we can run the same Markov chain over

many weight updates? (Neal, 1992)
–  If the learning rate is very small, this should be

equivalent to running the chain for many steps
and then doing a bigger weight update.

Persistent CD
(Tijmen Teileman, ICML 2008 & 2009)

•  Use minibatches of 100 cases to estimate the
first term in the gradient. Use a single batch of
100 fantasies to estimate the second term in the
gradient.

•  After each weight update, generate the new

fantasies from the previous fantasies by using
one alternating Gibbs update.
– So the fantasies can get far from the data.

A puzzle

•  Why does persistent CD work so well with only
100 negative examples to characterize the
whole partition function?

– For all interesting problems the partition
function is highly multi-modal.

– How does it manage to find all the modes
without starting at the data?

The learning causes very fast mixing

•  The learning interacts with the Markov chain.

•  Persisitent Contrastive Divergence cannot be

analysed by viewing the learning as an outer loop.
– Wherever the fantasies outnumber the

positive data, the free-energy surface is
raised. This makes the fantasies rush around
hyperactively.

How persistent CD moves between the
modes of the model’s distribution

•  If a mode has more
fantasy particles than data,
the free-energy surface is
raised until the fantasy
particles escape.
– This can overcome

free-energy barriers that
would be too high for the
Markov Chain to jump.

•  The free-energy surface is
being changed to help
mixing in addition to
defining the model.

Fast PCD (Tieleman & Hinton 2009)

•  To settle on a good set of weights, it helps to
turn down the learning rate towards the end of
learning.

•  But with a small learning rate, we dont get the
fast mixing of the fantasy particles.

•  In addition to the “real” weights that define the
model, we could have temporary weights that
learn fast and decay fast.

•  The fast weights provide an additive overlay that
achieves fast mixing even when the real weights
are hardly changing.

Training a multilayer Boltzmann machine

•  For a full Boltzmann machine (i.e. with connections
between hidden units), we cannot use variational
learning because one of the terms has the wrong sign.

•  Variational learning maximizes the sum over all training
cases of:

 log p(data) – KL(Q||P)

approximate
posterior

true
posterior

∂ log p(data)
∂wij

= < sis j >data − < sis j >model

How to train a Boltzmann machine

•  For the data-dependent expectations, assume
the energy landscape is unimodal and use a
mean-field approximation to the posterior.

•  For the model’s expectations uses PCD.

•  Ruslan Salakhutdinov showed that this worked,
but it works much better if the weights of the
hidden units are initialized sensibly.

How to pre-train a deep Boltzmann machine
(Salakhutdinov & Hinton, Neural Computation, 2012)

•  In a DBN, each RBM replaces the prior over the
previous hidden layer (that is implicitly defined by
the lower RBM) by a better prior.

•  Suppose we just replace half of the prior defined
by the lower RBM by half of a better prior defined
by the higher RBM.
– The new prior is then the geometric mean of the

priors defined by the two RBMs
– The geometric mean is a better prior than the

old one due to the convexity of KL divergence.

Combining two RBMs to make a DBM

1W1W

2W2W

'2h2h

1h

1h

v 'v

1W

2W

2h

1h

v

Each of these two RBMs is a
product of two identical experts

Readings on deep belief nets

A reading list (that is still being updated) can be
found at

www.cs.toronto.edu/~hinton/deeprefs.html

