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• Considerable variability in each class. 
• A Euclidean norm does not measure signal «similarities».

Anchor Joshua Tree Beaver Lotus Water Lily

      Image Classification
CalTech 101:
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     Metric for Classification

• Classification requires finding a metric to compare signals, with:

• If one finds a representation            such that

then the classification may be linearized (SVM, PCA,...). 

• Is there an appropriate kernel metric, which     ?Φ

- large distances d(f, g) across classes.
- small distances d(f, g) within a class

Φ(f)
d(f, g) = ‖Φ(f)− Φ(g)‖ (kernel metric)
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    A View of Convolution Networks

• Deep convolution networks are very efficient image and audio 
classifiers: WHY ?  

Y. LeCun et. al.

Convolutional Networks and Applications in Vision
Yann LeCun, Koray Kavukcuoglu and Clément Farabet

Computer Science Department, Courant Institute of Mathematical Sciences, New York University
{yann,koray,cfarabet}@cs.nyu.edu

Abstract— Intelligent tasks, such as visual perception, auditory
perception, and language understanding require the construction
of good internal representations of the world (or ”features”),
which must be invariant to irrelevant variations of the input
while, preserving relevant information. A major question for
Machine Learning is how to learn such good features auto-
matically. Convolutional Networks (ConvNets) are a biologically-
inspired trainable architecture that can learn invariant features.
Each stage in a ConvNets is composed of a filter bank, some
non-linearities, and feature pooling layers. With multiple stages,
a ConvNet can learn multi-level hierarchies of features. While
ConvNets have been successfully deployed in many commercial
applications from OCR to video surveillance, they require large
amounts of labeled training samples. We describe new unsu-
pervised learning algorithms, and new non-linear stages that
allow ConvNets to be trained with very few labeled samples.
Applications to visual object recognition and vision navigation
for off-road mobile robots are described.

I. LEARNING INTERNAL REPRESENTATIONS

One of the key questions of Vision Science (natural and
artificial) is how to produce good internal representations of
the visual world. What sort of internal representation would
allow an artificial vision system to detect and classify objects
into categories, independently of pose, scale, illumination,
conformation, and clutter? More interestingly, how could an
artificial vision system learn appropriate internal representa-
tions automatically, the way animals and human seem to learn
by simply looking at the world? In the time-honored approach
to computer vision (and to pattern recognition in general),
the question is avoided: internal representations are produced
by a hand-crafted feature extractor, whose output is fed to a
trainable classifier. While the issue of learning features has
been a topic of interest for many years, considerable progress
has been achieved in the last few years with the development
of so-called deep learning methods.

Good internal representations are hierarchical. In vision,
pixels are assembled into edglets, edglets into motifs, motifs
into parts, parts into objects, and objects into scenes. This
suggests that recognition architectures for vision (and for
other modalities such as audio and natural language) should
have multiple trainable stages stacked on top of each other,
one for each level in the feature hierarchy. This raises two
new questions: what to put in each stage? and how to train
such deep, multi-stage architectures? Convolutional Networks
(ConvNets) are an answer to the first question. Until recently,
the answer to the second question was to use gradient-based
supervised learning, but recent research in deep learning has
produced a number of unsupervised methods which greatly
reduce the need for labeled samples.

Convolutional Networks
Convolutional Networks [1], [2] are trainable multistage

architectures composed of multiple stages. The input and
output of each stage are sets of arrays called feature maps. For
example, if the input is a color image, each feature map would
be a 2D array containing a color channel of the input image
(for an audio input each feature map would be a 1D array,
and for a video or volumetric image, it would be a 3D array).
At the output, each feature map represents a particular feature

Fig. 1. A typical ConvNet architecture with two feature stages

extracted at all locations on the input. Each stage is composed
of three layers: a filter bank layer, a non-linearity layer, and a
feature pooling layer. A typical ConvNet is composed of one,
two or three such 3-layer stages, followed by a classification
module. Each layer type is now described for the case of image
recognition.
Filter Bank Layer - F : the input is a 3D array with n1 2D
feature maps of size n2×n3. Each component is denoted xijk,
and each feature map is denoted xi. The output is also a 3D
array, y composed of m1 feature maps of size m2 × m3. A
trainable filter (kernel) kij in the filter bank has size l1 × l2
and connects input feature map xi to output feature map yj .
The module computes yj = bj +

∑
i kij ∗ xi where ∗ is

the 2D discrete convolution operator and bj is a trainable
bias parameter. Each filter detects a particular feature at every
location on the input. Hence spatially translating the input of
a feature detection layer will translate the output but leave it
otherwise unchanged.
Non-Linearity Layer: In traditional ConvNets this simply
consists in a pointwise tanh() sigmoid function applied to
each site (ijk). However, recent implementations have used
more sophisticated non-linearities. A useful one for natural im-
age recognition is the rectified sigmoid Rabs: abs(gi.tanh())
where gi is a trainable gain parameter. The rectified sigmoid is
sometimes followed by a subtractive and divisive local normal-
ization N , which enforces local competition between adjacent
features in a feature map, and between features at the same
spatial location. The subtractive normalization operation for a
given site xijk computes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q,

where wpq is a normalized truncated Gaussian weighting
window (typically of size 9x9). The divisive normalization
computes yijk = vijk/max(mean(σjk),σjk) where σjk =
(
∑

ipq wpq.v2i,j+p,k+q)
1/2. The local contrast normalization

layer is inspired by visual neuroscience models [3], [4].
Feature Pooling Layer: This layer treats each feature map
separately. In its simplest instance, called PA, it computes
the average values over a neighborhood in each feature map.
The neighborhoods are stepped by a stride larger than 1
(but smaller than or equal the pooling neighborhood). This
results in a reduced-resolution output feature map which is
robust to small variations in the location of features in the
previous layer. The average operation is sometimes replaced
by a max PM . Traditional ConvNets use a pointwise tanh()
after the pooling layer, but more recent models do not. Some
ConvNets dispense with the separate pooling layer entirely, but
use strides larger than one in the filter bank layer to reduce

Fig. 2. An example of feature extraction stage of the type F−Rabs−N−PA.
An input image (or a feature map) is passed through a filter bank, followed
by abs(gi. tanh()), local subtractive and divisive contrast normalization, and
spatial pooling/sub-sampling.

the resolution [5], [6]. In some recent versions of ConvNets,
the pooling also pools similar feature at the same location, in
addition to the same feature at nearby locations [7].

Supervised training is performed using a form of stochastic
gradient descent to minimize the discrepancy between the
desired output and the actual output of the network. All
the coefficient of all the filters in all the layers are updated
simultaneously by the learning procedure. The gradients are
computed with the back-propagation method. Details of the
procedure are given in [2], and methods for efficient training
are detailed in [8].

History and Applications
ConvNets can be seen as a representatives of a wide

class of models that we will call Multi-Stage Hubel-Wiesel
Architectures. The idea is rooted in Hubel and Wiesel’s classic
1962 work on the cat’s primary visual cortex. It identified
orientation-selective simple cells with local receptive fields,
whose role is similar to the ConvNets filter bank layers, and
complex cells, whose role is similar to the pooling layers.
The first such model to be simulated on a computer was
Fukushima’s Neocognitron [9], which used a layer-wise, un-
supervised competitive learning algorithm for the filter banks,
and a separately-trained supervised linear classifier for the
output layer. The innovation in [5], [1] was to simplify the
architecture and to use the back-propagation algorithm to
train the entire system in a supervised fashion. The approach
was very successful for such tasks as OCR and handwrit-
ing recognition. An operational bank check reading system
built around ConvNets was developed at AT&T in the early
1990’s [2]. It was first deployed commercially in 1993, running
on a DSP board in check-reading ATM machines in Europe
and the US, and was deployed in large bank check reading
machines in 1996. By the late 90’s it was reading over
10% of all the checks in the US. This motivated Microsoft
to deploy ConvNets in a number of OCR and handwriting
recognition systems [6], [10], [11] including for Arabic [12]
and Chinese characters [13]. Supervised ConvNets have also
been used for object detection in images, including faces
with record accuracy and real-time performance [14], [15],
[16], [17], Google recently deployed a ConvNet to detect
faces and license plate in StreetView images so as to protect
privacy [18]. NEC has deployed ConvNet-based system in
Japan for tracking customers in supermarket and recognizing
their gender and age. Vidient Technologies has developed a
ConvNet-based video surveillance system deployed in several
airports in the US. France Télécom has deployed ConvNet-
based face detection systems for video-conference and other
systems [15]. Other experimental detection applications in-
clude hands/gesture [19], logos and text [20]. A big advantage
of ConvNets for detection is their computational efficiency:
even though the system is trained on small windows, it suffices
to extend the convolutions to the size of the input image
and replicate the output layer to compute detections at every
location. Supervised ConvNets have also been used for vision-
based obstacle avoidance for off-road mobile robots [21]. Two

participants in the recent DARPA-sponsored LAGR program
on vision-based navigation for off-road robots used ConvNets
for long-range obstacle detection [22], [23]. In [22], the system
is pre-trained off-line using a combination of unsupervised
learning (as described in section II) and supervised learning.
It is then adapted on-line, as the robot runs, using labels
provided by a short-range stereovision system (see videos at
http://www.cs.nyu.edu/ yann/research/lagr). Inter-
esting new applications include image restoration [24] and
image segmentation, particularly for biological images [25].
The big advantage over MRFs is the ability to take a large
context window into account. Stunning results were obtained
at MIT for reconstructing neuronal circuits from an stack of
brain slice images a few nanometer thick. [26].

Over the years, other instances of the Multi-Stage Hubel-
Wiesel Architecture have appeared that are in the tradition
of the Neocognitron: unlike supervised ConvNets, they use
a combination of hand-crafting, and simple unsupervised
methods to design the filter banks. Notable examples include
Mozer’s visual models [27], and the so-called HMAX family
of models from T. Poggio’s lab at MIT [28], [29], which
uses hard-wired Gabor filters in the first stage, and a simple
unsupervised random template selection algorithm for the
second stage. All stages use point-wise non-linearities and
max pooling. From the same institute, Pinto et al. [4] have
identified the most appropriate non-linearities and normaliza-
tions by running systematic experiments with a a single-stage
architecture using GPU-based parallel hardware.

II. UNSUPERVISED LEARNING OF CONVNETS

Training deep, multi-stage architectures using supervised
gradient back propagation requires many labeled samples.
However in many problems labeled data is scarce whereas un-
labeled data is abundant. Recent research in deep learning [30],
[31], [32] has shown that unsupervised learning can be used
to train each stage one after the other using only unlabeled
data, reducing the requirement for labeled samples signifi-
cantly. In [33], using abs and normalization non-linearities,
unsupervised pre-training, and supervised global refinement
has been shown to yield excellent performance on the Caltech-
101 dataset with only 30 training samples per category (more
on this below). In [34], good accuracy was obtained on the
same set using a very different unsupervised method based on
sparse Restricted Boltzmann Machines. Several works at NEC
have also shown that using auxiliary tasks [35], [36] helps
regularizing the system and produces excellent performance.

Unsupervised Training with Predictive Sparse Decomposition
The unsupervised method we propose, to learn the filter

coefficients in the filter bank layers, is called Predictive Sparse
Decomposition (PSD) [37]. Similar to the well-known sparse
coding algorithms [38], inputs are approximated as a sparse
linear combination of dictionary elements. In conventional
sparse coding for any given input X , one needs to run
an expensive optimization algorithm to find Z∗ (the “basis
pursuit” problem). PSD trains a feed-forward regressor (or
encoder) C(X,K) to quickly approximate the sparse solution
Z∗. During training, the feature vector Z∗ is obtained by
minimizing:

E(Z,W,K) = ‖X −WZ‖22 + λ‖Z‖1 + ‖Z − C(X,K)‖22
where W is the matrix whose columns are the dictionnary
elements and K are the filters. For each training sample X ,
one first finds Z∗ that minimizes E, then W and K are

Φ(x)
x

SVM
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   Representation for Classification

• What principles to construct such representations ?

• Deep convolution networks:
– Why convolutions ? 
– Which filters ? 
– Why multistage and how deep ?
– Why pooling ? How to pool ?
– Why non-linear, which non-linearities ?
– Why normalizing ?
– What is the role of sparsity ?

• What are the underlying useful mathematics ?
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        Texture Discrimination

• Textures define high-dimensional image classes.
– Realizations of stationary processes      but typically not Gaussian, 

not Markovian and not characterized by second order moments.
X

same power spectrum

same power spectrum
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• Natural Sounds (1s)   Original            Gaussian model
– Hammer
– Insect
– Water
– Applause

       Audio Textures
J. McDermott textures
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     The Best Image Classifier
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ψ(x) = θ(x)eiξx

 Psychophysics of Vision

[Wolf et Al.] 

Hypercolumns in V1:
  directional wavelets

Simple cells Gabor linear modelsFigure 2: Adapted from (Hubel and Wiesel, 1962).

Following Hubel and Wiesel, we say that the simple cells are tuned to a particular preferred
feature. This tuning is accomplished by weighting the LGN inputs in such a way that a simple
cell fires when the inputs arranged to build the preferred feature are co-activated. In contrast,
the complex cells’ inputs are weighted such that the activation of any of their inputs can drive
the cell by itself. So the complex cells are said to pool the response of several simple cells. As a
visual signal passes from LGN to V1 its representation increases in selectivity, patterns without
edges (such as sufficiently small circular dots of light) are no longer represented. Then as the
signal passes from simple cells to complex cells the representation gains in invariance. Complex
cells downstream from simple cells that respond only when their preferred feature appears in a
small window of space now represent stimuli presented over a larger region.

4.2 Model implementation

At the end of the hierarchy of visual processing, the cells in IT respond selectively to highly com-
plex stimuli and also invariantly over several degrees of visual angle. A popular class of models of
visual processing proceed through subjecting an input signal to a series of selectivity-increasing
and invariance-increasing operations (Fukushima, 1980; Perrett and Oram, 1993; Riesenhuber
and Poggio, 1999). Higher level representations become tuned to more and more complex
preferred features through selectivity-increasing operations and come to tolerate more severe
identity-preserving transformations through invariance-increasing operations.

We implemented a biologically-plausible model of the visual system modified from (Serre et al.,
2007a). This 4-layer model converts images into a feature representation via a series of processing
stages referred to as layers. In order, the layers of the model were: S1 → C1 → S2 → C2. In our
model, an object presented at a position A will evoke a particular pattern of activity in layer S2.
When the object is moved to a new position B, the pattern of activity in layer S2 will change
accordingly. However, this translation will leave the pattern in the C2 layer unaffected.

8

Complex Cells

• Non-linear
• Large receptive fields
• Some forms of invariance

 «What» Pathway towards V4:
• More specialized invariance
• «Grand mother cells»
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• Wavelets appear at early stages of vision and audition.
WHY ?

    Audio Psychophysics

 Cochlea:
dilated wavelet filters

0 ω

Reduction of
processing rate
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 Low-Level Signal Representation

• Low-level signal processing: 
– compression/information theory for storage and transmission
– inverse problems from partial and degraded measurements

• A key idea: find sparse accurate representations with few 
parameters. 

• Mathematical tools: Fourier transform, wavelet bases, adaptive 
dictionary representations, variational formulations...                   
A relatively well understood framework.

• Classification problems: discriminate not reconstruct.
• Different problems where sparsity yields instabilities.
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  Analysis versus Synthesis

•How to construct a sparse representation ?

•What about stability ?
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• Considerable variability in each class. 
• Reduce variability means constructing invariants.

Anchor Joshua Tree Beaver Lotus Water Lily

      Image Classification
CalTech 101:
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x x′‖x− x′‖ Φ(x′) Φ(x)
‖Φ(x)− Φ(x′)‖

- Clustering

     Signal Classification

• Very high dimensional space N ≥ 106.

• Signals do not belong to a low-dimensional manifold.

Space dimension
106 →∞

• Few training samples per class P ! N .

- PCA

Reduce variability due to
translations, transposition (audio)
rotations, scaling (images)
action of groups

Reduce structural
variability

Lower dimensional manifold

- SIFT
- MFCC

Φ

- SVM

Unsupervised learning

Φ2

- Dictionary learning

- GMM
- Bag of Features
- Eigenmaps

Φ3 linear
+ ranking

Supervised learning
Classifier
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∀c ∈ R , Φ(xc) = Φ(x) .

• Invariance to translations xc(t) = x(t− c)

• Preserve information

     Stable Translation Invariants

∀τ , ‖Φ(xτ )− Φ(x)‖ ≤ C sup
t

|∇τ(t)| ‖x‖ .

• Metric stability with deformations xτ (t) = x(t− τ(t))

deformation size

small deformations of x =⇒ small modifications of Φ(x)
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        Overview

• Part 1: Invariance and deformation stability 
– Fourier failure
– Wavelet stability to deformations
– Scattering invariants and deep convolution networks
– Mathematical properties of deep scattering networks
– Classification of images 

• Part 2: Inverse, Textures and Multiple Invariants
– Inverse scattering by phase retrieval and sparsity
– Scattering models of stationary processes
– Texture classification
– Invariants over multiple groups: transposition, rotation, scaling
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• Fourier transform x̂(ω) =
∫

x(t) e−iωt dt

• Translation Invariance: if xc(t) = x(t− c) then

|x̂c(ω)| = |x̂(ω)|

Cx(u) = Cxc(u) .

• For the auto-correlation Cx(u) =
∫

x(t)x(t− u) dt

Fourier & Correlation Invariance
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⇒ ‖|x̂τ |2 − |x̂|2‖ = ‖Cxτ − Cx‖ is big .

t

   Fourier & Correlation Instabilities

• Instabilites to small deformations xτ (t) = x(t− τ(t)) :

| |x̂τ (ω)|−| x̂(ω)| | is big at high frequencies

τ(t) = ε t

stable

x̂(ω) x̂τ (ω)ω

unstable
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• Dilated wavelets: ψλ(t) = 2−jQ ψ(2−jQt) with λ = 2−jQ .

Q-constant band-pass filters ψ̂λ

‖Wx‖2 = ‖x !φ ‖2 +
∑

λ

‖x !ψ λ‖2 = ‖x‖2 .

quadrature pairs

• If |φ̂(ω)|2 +
∑

λ

|ψ̂λ(ω)|2 = 1 then W is unitary :

         Wavelet Transform

|ψ̂λ(ω)|2

λ

|ψ̂λ′(ω)|2

λ′ ω0

|φ̂(ω)|2ψλ(t)
ψλ′(t)

• Wavelet transform: Wx(t) =
{

x !φ (t) , x ! ψλ(t)
}

λ
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• For images, dilated and rotated wavelets:

ψλ(t) = 2j ψ(2jrt) with λ = 2jr

[Wolf et Al.] 

|ψ̂λ(ω)|2

ω1

ω2

         Wavelet Transform

• Wavelet transform: Wx(t) =
{

x !φ (t) , x ! ψλ(t)
}

λ

• If |φ̂(ω)|2 +
∑

λ

|ψ̂λ(ω)|2 = 1 then W is unitary :
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Window Fourier

{
|x ! ψλ(t)|

}

λ

t

Wavelet time-frequency

         Wavelet Stabilization

ω
ψ̂λ

ω

tφ(t− u)

MFSC (audio)
SIFT (images)

tφ(t− u)

{
|x ! ψλ| ! φ(t)

}

λ

Locally invariant to translations

Time/Space averaging
ω

and stable to deformations

But loss of information.
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Window Fourier

{
|x ! ψλ(t)|

}

λ

{
|x ! ψλ| ! φ(t)

}

λ
Wavelet time-frequency

Locally invariant to translations
and stable to deformations

Time/Space averaging

MFSC (audio)
SIFT (images)

ω ω ω

         Wavelet Stabilization

But loss of information.
Wednesday, July 18, 2012



{
|x ! ψλ(t)|

}

λ

{
|x ! ψλ| ! φ(t)

}

λ

Non-linearity is needed to

have a non-zero invariant

A modulus is ”optimal”

Wavelet time-frequency

Locally invariant to translations
and stable to deformations

Time/Space averaging

MFSC (audio)
SIFT (images)

But loss of information.

         Wavelet Stabilization

370ms window
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∫
x !ψ λ(t) dt = 0

• Translation invariant representation:
∫

M(x !ψ λ)(t) dt

• Stable invariant:
∫

|x !ψ λ(t)| dt = ‖x !ψ λ‖1 .

      Stable Translation Invariance

• Diffeomorphism stability: M commutes with diffeomorphisms.

⇒ M(h)(t) = |h(t)| =
√

|hr(t)|2 + |hi(t)|2
• L2 stability: ‖Mh‖ = ‖h‖ and ‖Mg −Mh‖ ≤ ‖g − h‖

x !ψ λ(t)

t

• A modulus computes a
lower frequency envelop

|x !ψ λ1(t)|

: translation covariant, not invariant, and
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{|x !ψ λ1 | ! ψλ2}λ2

∀λ1 , λ2 , | | x "ψ λ1 | " ψλ2 | " φ

Must recover high frequencies:
stable modulation spectrum

    Recovering Lost Information

: stable to deformations

• Translation invariance by time averaging the amplitude:

• Wavelet transform:

ψ̂λ2(ω)

ω

φ̂(ω)

• The averaging |x !ψ λ1 | ! φ removes high frequencies:

̂|x !ψ λ1 |(ω)

• A modulus computes a
lower frequency envelop

|x !ψ λ1(t)|x !ψ λ1(t)
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S[p]x(t) = | |x !ψ λ1 | ! ψλ2 | ... | ! ψλm | ! φ(t)

For any path p = (λ1, λ2, ...,λm) of order m

     Windowed Scattering

x !ψ λ1

|x !ψ λ1 |

||x !ψ λ1 | ! ψλ2 |

1 channel

Q log N channels

(Q log N)2 channels

First two orders:
Törsten Dau model

the onset response was limited to a value of maximally 10

times the value of the steady state response of the stage !for
details see Münkner, 1993".1 With regard to the transforma-
tion of envelope variations of the signal, the adaptation stage

transforms rapid input variations !as compared with the time
constants of the low-pass filters" linearly. If these changes
are slow enough then, because of the time constants of the

model, the gain is also changed. Each element within the

adaptation model combines a static compressive nonlinearity

with a higher sensitivity for fast temporal variations !for de-
tails, see Dau et al., 1996a".

The following stage in the model, as shown in Fig. 1,

contains the most substantial changes compared to the model

described in Dau et al. !1996a". Instead of the low-pass filter
with a cutoff frequency of 8 Hz, a linear filterbank is as-

sumed to further analyze the amplitude changes of the enve-

lope. This stage will be called the modulation filterbank

throughout this paper. A first implementation of such a

modulation filterbank was presented in Fassel and Püschel

!1993" and Münker and Püschel !1993". The implementation
of this stage is in contrast to the signal processing within

other models in the literature !e.g., Viemeister, 1979; Forrest
and Green, 1987".

It is postulated within the present model that the modu-

lation filterbank exhibits two domains with different scaling.

Figure 2 shows the transfer functions of the modulation fil-

ters. In the range 0–10 Hz a constant bandwidth of 5 Hz is

assumed. The lowest modulation filter represents a low-pass

filter with a cutoff frequency of 2.5 Hz. From 10 Hz up to

1000 Hz a logarithmic scaling with a constant Q value of 2 is

assumed.2 The spacing in the modulation-frequency domain

resembles the spacing of critical bands in the audio-

frequency domain. Within the model only the !Hilbert"
envelope of the modulation filter outputs for center frequen-

cies above 10 Hz is further examined, introducing a nonlin-

earity in the processing of amplitude modulation.3 For filters

with a lower center frequency it is not reasonable to extract

the Hilbert envelope from the signal, because the distinction

between carrier and envelope becomes ambiguous due to the

large relative bandwidth of these filters. Furthermore, the

successful description of masking data by the original model

version in Dau et al. !1996b" suggests that use is made of
information about modulation phase at low modulation rates.

In this model the signal envelope was analyzed by the simple

8-Hz low-pass filter and this filtering preserves all informa-

tion about the modulation phase for low modulation frequen-

cies. The present model thus tries to find a ‘‘link’’ between

the description of phenomena of modulation detection and

those of the more common signal detection.

The output of the ‘‘preprocessing’’ stages can now be

interpreted as a three-dimensional, time-varying activity pat-

tern. Limitations of resolution are again simulated by adding

internal noise with a constant variance to each modulation

filter output.4 The internal noises at the outputs of the differ-

ent modulation channels are assumed to be independent of

each other. For stochastic input signals, the outputs of the

modulation channels are not !fully" uncorrelated because of
the overlap of the modulation filters. The transformed signal

after the addition of noise is called the internal representation

of the signal. The decision device is realized as an optimal

detector in the same way as described in Dau et al. !1996a,
b". There, the decision device of the model was first de-
scribed for masking conditions using sinusoidal test signals

presented in a frozen-noise masker. In each interval of a

simulated 3-interval forced-choice !3IFC" adaptive para-
digm, the difference between the current representation and

the ‘‘stored’’ internal representation of the deterministic

FIG. 1. Block diagram of the psycho-acoustical model for describing

modulation-detection data with an optimal detector as decision device. The

signals are preprocessed, subjected to adaptation, filtered by a modulation

filterbank and finally added to internal noise; this processing transforms the

signals into their internal representations.

FIG. 2. Transfer functions of the modulation filters. In the range 0–10 Hz

the functions have a constant bandwidth of 5 Hz. Between 10 and 1000 Hz

a logarithmic scaling with a constant Q value of 2 is applied. Only the range

from 0 to 200 Hz is plotted.

2894 2894J. Acoust. Soc. Am., Vol. 102, No. 5, Pt. 1, November 1997 Dau et al.: Detection and masking with narrow-band carriers

A window of size N yields O(Qm logm N) coefficients of order m.
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     Deep Convolution Network

x

• Iteration on Ux = {x ! φ , |x !ψ λ|}λ , contracting.

MFSC and SIFT are 1st layer outputs: S[λ1]x
{S[p]x}p∈P .• Output at all layers:

S[λ1]x

S[λ1, λ2]x

x !φ

|x !ψ λ1 |

||x !ψ λ1 | ! ψλ2 |

|||x !ψ λ1 | ! ψλ2 | ! ψλ3 |

= |x !ψ λ1 | ! φ

Y. LeCun et. al.

x ! φ ,
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x(t) = h !e (t) . a(t) with e(t) =
∑

n

δ(t− n/ξ1)

ĥ(ω): formant, ξ1 : pitch, a(t): amplitude modulation

• Pitch harmonics: if λ1 = k ξ1 then

S[λ1]x(t) = |x " ψλ1 | " φ(t) = |ĥ(λ1)| a "φ (t)

• Amplitude modulation spectrum:

S[λ1, λ2]x(t) = | |f " ψλ1 | " ψλ2 | " φ(t) = |ĥ(λ1)| |â(λ2)|

      Amplitude Modulations

• Amplitude modulations such as tremolos or attacks:
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First−order windowed scattering (large scale)
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Second−order windowed scattering (large scale) Band #75

nξ

ĥ(ω1)

18 Hz

        Amplitude Modulation

1977 Hz

|x !ψ λ1 |(t)

S[λ1]x(t) = |x " ψλ1 | " φ(t)

S[λ1, λ2]x(t) = ||x "ψ λ1 | " ψλ2 | " φ(t) for λ1 = 1977

log(λ1)

log(λ1)

t

log(λ2)

512ms window

Wednesday, July 18, 2012



• Frequence modulations such as vibratos:

x(t) = h ! ẽ(t) with ẽ(t) =
∑

n

δ(t− ε cos ξ2t− n/ξ1) .

ĥ(ω): formant, ξ1: pitch, ξ2: vibrato frequency.

• Pitch harmonics: if λ1 = k ξ1 then

S[λ1]x(t) = |ĥ(λ1)|

S[λ1, λ2]x(t) = Cl |ĥ(λ1)| ε2l ξ2l
2

• Vibrato harmonics: if λ2 = l ξ2 then

      Frequency Modulated  Sounds
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        Frequency Modulation

1977 Hz

|x !ψ λ1 |(t)

S[λ1]x(t) = |x " ψλ1 | " φ(t)

S[λ1, λ2]x(t) = ||x "ψ λ1 | " ψλ2 | " φ(t) for λ1 = 1977
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log(λ1)
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512ms window
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x(t) =
∑

m

am cos(ωmt)

           Interferences

|x !ψ λ(t)|2 = e2
λ +

∑

m′ !=m

cm,m′ cos(ωm − ωm′)t

Interferences :

•  

ω2 − ω1

ω3 − ω2
ω3 − ω1

Minor 3rd

Major 3rd

Perfect 5th

C Major

Music chord :
̂|x !ψ λ1 |(ω)

ω0

ψ̂λ(ω)

0 ω

x̂(ω)

ψ̂λ2(ω)
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        Arpeggio

|x !ψ λ1 |(t)

S[λ1]x(t) = |x " ψλ1 | " φ(t)

S[λ1, λ2]x(t) = ||x "ψ λ1 | " ψλ2 | " φ(t) for λ1 = 1977

log(λ1)
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First−order windowed scattering (small scale)

lo
g(
!

1)

t

First−order windowed scattering (large scale)
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Second−order windowed scattering (large scale) Band #51

SpectrumX: stationary process

    Sounds with Same Spectrum 

ω

2s window

Fourier

S[λ1]X(t) = |X " ψλ1 | " φ(t)

S[λ1, λ2]X(t) = ||X " ψλ1 | " ψλ2 | " φ(t) for λ1 = log(1122)

|X ! ψλ1 |(x)J. McDermottlog(λ1)

t
log(λ1)

t

t

log(λ2)

Wednesday, July 18, 2012



Wavelet Scattering

SIFT

window size = image size

f̂ |f ! ψλ1 | ! φ

    Image Wavelet Scattering

Images Fourier

ω1

ω2

ω1

ω2

f ||f ! ψλ1 | ! ψλ2 | ! φ
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|X ! ψλ1 | ! φ

             Textures with Same Spectrum

Textures
X ||X ! ψλ1 | ! ψλ2 | ! φ

window size = image size

Wavelet Scattering
Power Spectrum

Fourier

ω1

ω2

ω1

ω2

X: stationary process
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     Deep Convolution Network

x

• Iteration on Ux = {x ! φ , |x !ψ λ|}λ , contracting.

{S[p]x}p∈P .• Output at all layers:

S[λ1]x

S[λ1, λ2]x

x !φ

|x !ψ λ1 |

||x !ψ λ1 | ! ψλ2 |

|||x !ψ λ1 | ! ψλ2 | ! ψλ3 |

= |x !ψ λ1 | ! φ

Y. LeCun et. al.

x ! φ ,

Wednesday, July 18, 2012



S[p]x(t) = | |x !ψ λ1 | ! ψλ2 | ... | ! ψλm | ! φ(t)

For any path p = (λ1, λ2, ...,λm) of order m

‖Sx‖2 =
∑

p∈P
‖S[p]x‖2

      Scattering  Properties

contracting ‖Sx− Sy‖ ≤ ‖x− y‖

Theorem: For appropriate wavelets, a scattering is

stable to deformations ‖Sx− Sxτ‖ ≤ C sup
t

|∇τ(t)| ‖x‖

which is translation invariant.

when φ goes to 1, Sx converges to Sx(p) ∈ L2(P∞)

preserves energy ‖Sx‖2 = ‖x‖2
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‖Ux‖ = ‖Wx‖ = ‖x‖

|||x !ψ λ1 | ! ψλ2 | ! ψλ3 |

Proof: The modulus pushes the energy towards low frequencies

     Energy Conservation

‖U [p]x‖ ⇒ ‖Sx‖ = ‖x‖• Fast decay across layers of
• Reduced number of paths with non-negligible output.
• Computational complexity: O(N log N).

x !φ

|x !ψ λ1 |

x
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xτ (t) = x(t− τ(t)) with τ(t) = ε t .

   Frequency to Paths Mapping
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→ ω → ω

ψ̂λ

p = (λ1, ...,λm)

x(t) x̂(ω) Sx(p(ω))|

x(t) x̂(ω)

x̂τ (ω)xτ (t)

‖ |x̂|−| x̂τ | ‖
‖x‖ ‖τ ′‖∞

= 13 ‖Sx− Sxτ‖P∞
‖x‖ ‖τ ′‖∞

= 1.4

Wednesday, July 18, 2012



• Each class Xk is represented by a scattering centroid E(SXk)

and a space Vk of principal variance directions (PCA).

Affine space model Ak = E(SXk) + Vk.

X1
X2

S

       Affine Space Classification

A1

A2

E(SX1)

E(SX2)

x

Sx
x

x

Joan Bruna
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    Affine Space Learning

• Estimation of affine approximation spaces with PCA 
– Estimation of the mean                and the covariance        from 

transformed labeled examples            in each class 

– The best approximation space             of dimension d is 
generated by the d eigenvectors of        of largest eigenvalues. It 
carries the principal deformation directions of each class.

– The dimension d is optimized by cross-validation.

Σk

Σk

E(SXk)
Sxn

Vk
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 Digit Classification: MNIST
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x |x !ψ λ1 | ! φ(2Jn) ||x !ψ λ1 | ! ψλ2 | ! φ(2Jn)

Wavelet Scattering

2J = 8 : window size
cross-validated

 Digit Classification: MNIST
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Training size Conv. Net. Scattering
300 7.2% 4.4%
5000 1.5% 1.0%
20000 0.8% 0.6%
60000 0.5% 0.4%

LeCun et. al.

Classification Errors

 Digit Classification: MNIST
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        Overview

• Part 1: Invariance and deformation stability 
– Fourier failure
– Wavelet stability
– Scattering transform invariants and deep convolution networks
– Mathematical properties of deep networks
– Classification of images 

• Part 2: Inverse, Textures and Multiple Invariants
– Inverse scattering by phase retrieval and sparsity
– Scattering models of stationary processes
– Texture classification
– Invariants over multiple groups: transposition, rotation, scaling
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• Dilated wavelets: ψλ(t) = 2−jQ ψ(2−jQt) with λ = 2−jQ .

Q-constant band-pass filters ψ̂λ

‖Wx‖2 = ‖x !φ ‖2 +
∑

λ

‖x !ψ λ‖2 = ‖x‖2 .

         Wavelet Transform

|ψ̂λ(ω)|2

λ

|ψ̂λ′(ω)|2

λ′ ω0

|φ̂(ω)|2ψλ(t)
ψλ′(t)

• If |φ|2 +
∑

λ

|ψ̂λ|2 = 1 then W is unitary.

• Wavelet transform: Wx(t) =
{

x !φ (t) , x ! ψλ(t)
}

λ
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• For images, dilated and rotated wavelets:

ψλ(t) = 2j ψ(2jrt) with λ = 2jr

[Wolf et Al.] 

|ψ̂λ(ω)|2

ω1

ω2

         Wavelet Transform

• If |φ|2 +
∑

λ

|ψ̂λ|2 = 1 then W is unitary.

• Wavelet transform: Wx(t) =
{

x !φ (t) , x ! ψλ(t)
}

λ
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     Deep Convolution Network

x

• Iteration on Ux = {x ! φ , |x !ψ λ|}λ , contracting.

MFSC and SIFT are 1st layer outputs: S[λ1]x
{S[p]x}p∈P .• Output at all layers:

S[λ1]x

S[λ1, λ2]x

x !φ

|x !ψ λ1 |

||x !ψ λ1 | ! ψλ2 |

|||x !ψ λ1 | ! ψλ2 | ! ψλ3 |

= |x !ψ λ1 | ! φ

Y. LeCun et. al.

x ! φ ,
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 Reconstruction, Phase Retrieval

U−1

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

Irène Waldspurger
Theorem For appropriate wavelets

is invertible and the inverse is continuous.

Ux =
{

x !φ (t) , |x !ψ λ(t)|
}

λ

x !φ (t)

|x !ψ λ(t)|

U
0 50 100 150 200 250 300 350 400 450 500
0
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100
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x(t)
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Inverse scattering:
More precise if sparse

Smaller information loss if sparse: sparse deconvolution.

• Scattering invariants discriminate signals that are sparse

Progressive inversions of U

      Scattering Inversion: Sparsity

xx !φ

Not invertible because the last layer is missing.Not invertible because the last layer is missing.

S[λ1]x

S[λ1, λ2]x

Not exactly invertible because the last layer is missing.
= | |x !ψ λ1 | ! ψλ2 | ! φ

because fewer phase to compute

|x !ψ λ(t)|

t

More stable phase recovery if {|x !ψ λ(t)|}λ are sparse
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Original audio signal x

Reconstruction from Sx for a window of 3 s with N samples

From order 2 S[λ1, λ2]x : (Q log N)2/2 coefficients

From order 1 S[λ1]x : Q log N coefficients
Q = 8

      Audio Reconstruction
Joakim Anden
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• Need a sparse analysis representation:{
〈x(t), ψλ(t − u)〉 = x " ψλ(u)

}

λ,u

But we do not know how to learn them...

• We know how to learn sparse analysis representations:

x ≈
∑

γ

αγ ψγ

by finding D = {ψγ}γ which minimizes:

‖x−
∑

γ

αγ ψγ‖+ µ
∑

γ

|αγ |

(unstable)

⇒ learn by synthesis and classify with analysis operators:

{〈x, ψγ〉}γ (autoencoders): stable

         Sparsity for Learning
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        Texture Discrimination

• Textures define high-dimensional image classes.
– Realizations of stationary processes      but typically not Gaussian, 

not Markovian and not characterized by second order moments.
X

same power spectrum

same power spectrum
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depends on normalized moments of order 2m of X.

U [p]X = | · · · |X ! ψλ1 | ! · · · | ! ψλm | is stationary

• Expected scattering: SX(p) = E(U [p]X)

• If X(t) is stationary then

S[p]X(t) = U [p]X ! φ(t)

• A windowed scattering

is an unbiased estimator of SX(p) = E(U [p]x).

 Scattering Stationary Processes
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the maximum entropy distribution is (Boltzman theorem):

p(x) =
1
Z

exp
(∑

p∈P
αp U [p]x

)

where αp are Lagrange multipliers and Z is defined by
∫

p(x) dx = 1 .

• Given SX(p) = E(U [p]X) for p ∈ P

• Metropolis-Hasting algorithm samples the distribution,
but computationaly very expansive.

• Faster iterative algorithm with sparsity condition on l0 norm.

     Maximum Entropy Distribution
Joan Bruna
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- Original applause
- Synthesized

- Original water

- Synthesized

- Synthesized

- Original jackhammer

• Estimation of X(x) from log2 N second order coefficients:

     Synthesis from Second Order
Joan BrunaJ. McDermott textures

Joakim Anden

Q = 1
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Original Reconstructed

      Image Reconstruction
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Bernoulli

SX(λ1, λ2)

SX(λ1)

SX(λ1, λ2, λ3)

SX(λ1, λ2, λ3, λ4)

ω
Gaussian White

SX(p(ω))2 : Radon measure

Constant Fourier power spectrum: R̂X(ω) = σ2.

∫
R̂X(ω) |ψ̂2j (ω)|2 dω =

∫ 2j+1

2j

SX(p(ω))2 dω .

     Scattering White Noises

ω→

→

X(x)
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surround suppression

S[λ1, ...,λm−1, λm]x(t)
S[λ1, ...,λm]x(t)

: tuned gain control

Ux =
{

x ! φ ,
|x ! ψλ|
x !φ

}
:

computed by cascading a normalized propagator

• Invariant information is in transfer functions:

 Gain Control and Normalization
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SX(λ1, λ2)
SX(λ1)

∼ (λ2 λ−1
1 )−γ2

• Multifractal scaling:

Process γ1 γ2

White Gaussian −1/2 −1/2
Fractional Brownian Noise BH(t) H −1/2

Mandelbrot cascade γ1 0
NASDAQ:AAPL 2/3 −0.15
Dirac measure 0 0

Poisson pp density α 0 if λ <α 0 if λ1 + λ2 < α
−1/2 if λ ≥ α −1/2 if λ1 + λ2 ≥ α

SX(λ1) ∼ λ−γ1
1

    Multifractal Scattering
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• Each class Xk is represented by a scattering centroid E(SXk)

and a space Vk of principal variance directions (PCA).

Affine space model Ak = E(SXk) + Vk.

X1
X2

S

       Affine Space Classification

A1

A2

E(SX1)

E(SX2)

x

Sx
x

x

Joan Bruna
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     Classification of Textures

CUREt database

61 classes

Rotations and 
illumination 
variations.
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window size = image size
cross-validated

X

     Classification of Textures

||X ! ψλ1 || ! φ ||X ! ψλ1 | ! ψλ2 | ! φ
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Varma & Zisserman

Training Fourier Markov Scattering
per class Spectr. Field

46 2.15% 2.46% 0.2 %

Classification Errors

     Classification of Textures

CUREt database

61 classes

Rotations and 
illumination 
variations.

Texte
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GTZAN: music genre classification (jazz, rock, classic,...)

10 classes and 30 seconds tracks.

Classification errors

      Audio Genre Classification

Feature Set Error (%)

MFCC

Delta-MFCC

Scattering, m=1

Scattering, m=2

32

23

28

16

Joakim Anden
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Aren Jensen

        Same or Different ?

encyclopaedias
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Frequency Transposition Invariance

Change of pich ⇒ frequency scaling: ω → α ω

⇒ log frequency translation: log ω → log α + log ω

⇒ translation invariance in (t, log ω) with deformation stability

Wavelet modulus: |x !ψ λ1(t)|
log λ1

t

Same words by different people
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log λ1

t

Ψλ2,λ̃2
(t, log λ1) = ψλ2(t) ψ̃λ̃2

(log λ1)

Separable 2D wavelet transform of: y(t, log λ1) = |x "ψ λ1(t)|
y ! Ψλ2,λ̃2

(t, log λ1)

Invariance by wavelet amplitude averaging in (t, log λ1):
|y ! Ψλ2,λ̃2

| ! Φ(t, log λ1)

Invariant scattering:
| |y ! Ψλ2,λ̃2

|... ! Ψλm,λ̃m
| ! Φ(t, log λ1)

Separable wavelets in t and log λ1

 Transposition Invariant Scattering

Wednesday, July 18, 2012



GTZAN: music genre classification (jazz, rock, classic,...)

10 classes and 30 seconds tracks.

Classification errors

Classification with Transp. Invariants

Feature Set Error (%)

Scattering, m=2

Scat.+ Transp. Inv., m=2

16

13

Joakim Anden
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  Rotation and Affine Invariance

• Scatterings along translation, rotation and affine groups:

x Translat. Rotation Affine SxInvar. Invar. Invar.

UIUC database:

Laurent Sifre
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Wavelet transform along
positions, rotations and scales

in ”V1 hypercolumns”

  Rotation and Affine Invariance

• Scatterings along translation, rotation and affine groups:

x Translat. Rotation Affine SxInvar. Invar. Invar.

Laurent Sifre
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Translation and Rotation Invariance

x

|x !ψ λ1 |

Laurent Sifre
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x

Linear averaging
along space, rotations, scales

  Multiple Scattering Invariants

Wavelet convolutions
along space

Modulus Pooling

Wavelet convolutions
along space, rotations, scales

Modulus Pooling

S[p]x
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  Rotation and Affine Invariance

• Scatterings along translation, rotation and affine groups:

x Translat. Rotation Affine SxInvar. Invar. Invar.

UIUC database:

Training Translation Transl + Rotation Affine
20 15 % 3% 1%

Classification Errors

Laurent Sifre
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       Unsupervised Learning

• Need to learn informative, stable invariants.
• Over general manifolds as opposed to groups
• The final linear averaging providing adapted invariants can be 

learned by supervised classifiers (SVM).

• Problem: unsupervised learning of the dictionary and of the   
non-linear pooling. 

• Sparsity is important to build informative invariants:              
auto-encoders with group sparsity.

• Why does it work ? still a mathematical mystery.
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         Conclusion

• An interpretation of convolution networks for groups:
– Filters must be wavelets
– Stable pooling: complex modulus + averaging 
– Multilayers: recover lost information and refine invariants
– Sparsity is needed to preserve information in invariants
– Normalisation: to «decorrelate» outputs 
– Learning: needed but not for first layers.                                                 

• Unsupervised deep learning: still not understood mathematically

• Papers and softwares:     www.cmap.polytechnique.fr/scattering 
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