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e Considerable variability in each class.

e A Euclidean norm does not measure signal «similaritiesy.
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Metric for Classification

e Classification requires finding a metric to compare signals, with:

- small distances d(f, g) within a class

- large distances d(f, g) across classes.

o If one finds a representation &( f) such that
A(f,9) = |®(f) — B(g)| (kernel metric)

then the classification may be linearized (SVM, PCA,...).

e Is there an appropriate kernel metric, which & ?
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e Deep convolution networks are very efficient image and audio
classifiers: WHY ?
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Representation for Classification

e What principles to construct such representations ?

e Deep convolution networks:
- Why convolutions ?
- Which filters ?
- Why multistage and how deep ?
- Why pooling ? How to pool ?
- Why non-linear, which non-linearities ?
- Why normalizing ?

- What 1s the role of sparsity ?

e What are the underlying useful mathematics ?
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e Textures define high-dimensional 1mage classes.

- Realizations of stationary processes X but typically not Gaussian,
not Markovian and not characterized by second order moments.

same power spectrum
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Audio Textures

J. McDermott textures .
* Natural Sounds (1s) Original Gaussian model

—Hammer

—Insect
— Water
— Applause
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Hypercolumns in V1:
directional wavelets
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Right Eye

Simple cells Gabor linear models
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Complex Cells

e Non-linear
e Large receptive fields
e Some forms of invariance

Complex
cell

«What» Pathway towards V4:
e More specialized invariance
e «Grand mother cells»



thalamus

Reduction of 1
processing rate

cochlear nerve
(branch of Vil
cranial nerve)

Cochlea:
dilated wavelet filters

o Wavelets appear at early stages of vision and audition.
WHY 7
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. Low-Level Signal Representation_

e Low-level signal processing:
- compression/information theory for storage and transmission
- inverse problems from partial and degraded measurements

e A key 1dea: find sparse accurate representations with few
parameters.

e Mathematical tools: Fourier transform, wavelet bases, adaptive
dictionary representations, variational formulations...
A relatively well understood framework.

e Classification problems: discriminate not reconstruct.

e Different problems where sparsity yields instabilities.
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-._Analysis versus Synthesis

e« How to construct a sparse representation ?

e What about stability ?
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e Considerable variability in each class.

e Reduce variability means constructing invariants.
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Signal Classification

e Very high dimensional space N > 10°.

e Few training samples per class P < V.

e Signals do not belong to a low-dimensional manifold.

Classifier

, , Unsupervised learning  Supervised learning
Space dimension

10° — oo Lower dimensional manifold
¢ () N (1)2 , E (I)B linear R
: - SIFT - GMM H  + ranking
/ o - MFCC - Bag of Features O - SVM
|z =27l ol / () - Eigenmaps - PCA
v [®(x) — @(2)|] o |
o - Dictionary learning

Reduce variability due to
translations, transposition (audio)
rotations, scaling (images)

action of groups
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- Clustering

Reduce structural
variability



e Invariance to translations x.(t) = x(t — ¢)

Vce R |, ®(x.) =P(x) .

e Metric stability with deformations z.-(t) = x(t — 7(¢))

79 b 6 4
§ & 3 4 %

small deformations of x = small modifications of ®(x)

v @) = @) < Csup [Vr@)] fl]]

~—

l

e Preserve information deformation size
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Overview

e Part 1: Invariance and deformation stability

- Fourier failure

- Wavelet stability to deformations

- Scattering invariants and deep convolution networks
- Mathematical properties of deep scattering networks
- Classification of 1images

e Part 2: Inverse, Textures and Multiple Invariants
- Inverse scattering by phase retrieval and sparsity
- Scattering models of stationary processes

- Texture classification

- Invariants over multiple groups: transposition, rotation, scaling
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e Fourier transform Z(w) = [ z(t) e~ dt

e Translation Invariance: if z.(t) = z(t — ¢) then

Te(w)| = [2(w)]

e For the auto-correlation Cx(u) = [ x(t) z(t — u) dt

Cx(u) = Cx.(u) .
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e Instabilites to small deformations z,(t) = x(t — 7(t)) :

|2, (w)| —| Z(w)|| is big at high frequencies

= |l|2-* — [2[*| = [C2; — Cz|| is big .

1 unstable

¢ stable

Wednesday, July 18, 2012



o Dilated wavelets: ¥y (t) =279 (2779) with A\ =2779
Y (1) -1

Ua(t) ” 0% [ LA\ ol P (B &
VY

Y
quadrature pairs

(Q-constant band-pass filters &A

e Wavelet transform: Wax(t) = {x *x¢ (t) , T * ¢>\(t)}>\

o If |d(w)|?+ Z 4y (w)|? =1 then W is unitary :

A
Wl = lax¢ |+ Y e xp ] = ||z -
A
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m: - - Wavelet Transform !n'i

e For images, dilated and rotated wavelets: wo

' : . [Px (w)]?
Ua(t) = 27 9p(27rt) with \ =277

5NN

e Wavelet transform: Wax(t) = {:13 *x@ (t) , T xYP)y (t)}

A

o If |d(w)|?+ Z 1y (w)|? =1 then W is unitary :
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m;- : Wavelet Stabilization !n":

Hexea@®l}  {lexualxo()},

Window Fourier Wavelet time-frequency  Time/Space averaging
w W w

| i

== ——— = I R R — .’ SN\ S
ot — u) t t ot — u) t

Locally invariant to translations

and stable to deformations

MFSC (audio)
SIFT (images)

But loss of information.
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Wavelet Stabilization

Hexea@®l}  {lexualxo()},

Window Fourier Wavelet time-frequency  Time/Space averaging

w
i ' 5
=

VW WL &

Locally invariant to translations
and stable to deformations
MFSC (audio)
SIFT (images)

But loss of information.
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' K. : Wavelet Stabilization .

Hexea@®l}  {lexualxo()},

Wavelet time-frequency  Time/Space averaging
370ms window

Non-linearity is needed to

have a non-zero invariant §

A modulus is ”optimal”

| |
1, g

i -‘ ‘. " " L “I
" LV of M §

' : diin
ili;l"l‘;l:l(:‘lt i “7"“7""!“;:” lllllllllll!:'" ‘|||'| 4

Locally invariant to translations
and stable to deformations
MFSC (audio)
SIFT (images)

But loss of information.
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translation covariant, not invariant, and

/x*wA(t)dt:O

A:I?*??D)\(t) :

e Translation invariant representation: / M (x x »)(t) dt

e Diffeomorphism stability: M commutes with diffeomorphisms.
o L? stability: ||Mh|| = ||h|| and ||Mg — Mh| < ||g — k|
= M(h)(t) = [h(t)] = V/|h, \2+|h()\2‘

e A modulus computes a

lower frequency envelop

e Stable invariant:/\az * A ()| dt = ||z * || -
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e A modulus computes a

lower frequency envelop

-,
“/ A - - - 74 ‘¥
— —_ — —l Y v
1 ! 1 .
~ ‘l 1 | ’
1 | '
1
1 1 ’
LI |

e The averaging |z xi ), | * ¢ removes high fréduencies:

A

s |w) Must recover high frequencies:
d(w)4 U, (W)

A QS : : stable modulation spectrum
: = W

o Wavelet transform: {|z %t », | * ¥y, ta,

e Translation invariance by time averaging the amplitude:

VA1, Ao, ||z * | %Y, | *¢@ : stable to deformations
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. _ Windowed Scattering

For any path p = (A1, A2, ..., A\;,) of order m
Slple(t) = [ |z x|+ hrg | [ % x| * (1)
A window of size N yields O(Q™ log™ N) coefficients of order m

FirSt tWO OrderS: basiltar - membrane filtering ]. Channel
Torsten Dau model — [1iiiiiif[iiiiilii  T*xyYy,
halfwav ‘;ctiﬁ t
lowpass filtering
— |£l§‘ *?ﬂ A1 |
eoaptaton () log N channels

TTTTTTTTT
muﬁmuu |2 %9 5, | % W,

optimal detector (Q log N)2 Channels

Wednesday, July 18, 2012



Y. LeClun et. al.
e [teration on Ux = {x % ¢, |z x) x|} ,contracting.

T * ()

‘$*¢)\1‘
. 7.
SIA|z = |z x5, | *
Hx*w>q *¢A2 ¢\
() () (J () () (J () () () U @

ST

[ %1 A, | P, | % P,

e Output at all layers: {S[p|z},cp -

MFSC and SIFT are 1st layer outputs: S|\;|x
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Amplitude Modulations

e Amplitude modulations such as tremolos or attacks:

() = h*e (t).a(t) with e(t) =) d6(t—n/&)

A

h(w): formant, &; : pitch, a(t): amplitude modulation

e Pitch harmonics: if Ay = k&; then
ShJa(t) =[x x Y, | * 6(t) = [h(A)| axo (1)

e Amplitude modulation spectrum:

S, A2]x(t) = | |f % x| % ¥a, | % () = [h(A1)] |a(A2))
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log()q) ‘CE *P A, ’(t)

ng

h(wr)
log(A1)  512ms window S[)\lt]x(t) = |z * 9y, | x d(t)

«1977 Hz
log(A2) S, Ao]z(t) = ||z %1 o, | % n, | % d(t) for Ay = 1977

<« 18 Hz
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mﬁ- . Frequency Modulated Sounds :h'i

e Frequence modulations such as vibratos:

() = h*e(t) with €(t) =) 6(t —ecos&ot —n/&) .

A

h(w): formant, &;: pitch, &;: vibrato frequency.

e Pitch harmonics: if Ay = k&; then
S[A]z(t) = [h(Ay)|

e Vibrato harmonics: if Ay =1[&y then

SIA1, Aoz (t) = C) |h(\q)] €2 €2
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log(A1)  512ms window SIAz(t) = |z x Yy, | % o(t)

<1977 Hz

10g(>\2) S[)\l, )\2]:17(75) = HCE *w Alt’ *¢>\2’ *¢(t) for )\1 = 1977

<« 18 Hz
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x(t) = Z Ay, €OS(Wint) I N
0 W
Interferences :

%) A (t)|]* = e5 + Z Crn.m/ COS(Win, — Wi )1

m’#+m
Music chord : -
[z x5, [(w)
C Major A '
P, (W)
Minor 3rd
Perfect 5th
w3 T W2 AA ]
w3 — W1 A——4A i >
wo — W1 0 W
Mayjor 3rd
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log()q) ‘CE *P A, ’(t)

<« 2000 Hz

log(A2) S, Aolz(t) = ||z x5, | * U, | * 6(t) for Ay = 1977

<«— 131 Hz
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Fourier
Spectrum

log (A1) J. McDermott X x 1y, () e

log(A1)  2swindow SIM|X () = | X xy | % o(t)

log(A2) S, Ao] X (¢) = HX*twl |, | * d(t) for A = log(1122)
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Wavelet Scattering
Frnlxo  |If xha, | x| * &

SIFT

window size = image size
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=

Textures with Same Spectrum -

X: stationary process

Fourier Wavelet Scattering

T
extures Power Spectrum X xhn, | xd | X % x| % x| *x &

window size = image size
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Y. LeClun et. al.
e [teration on Ux = {x % ¢, |z x) x|} ,contracting.

T
T * ()

‘$*¢)\1‘
. 7.
SIA|z = |z x5, | *
Hx*w>q *¢A2 ¢\
() () (J () (J () () () U @

- ,.I.L.......A.......1.1.../.1...14..14\..

e Output at all layers: {S|p|z},ecp -
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For any path p = (A1, A2, ..., A\;,) of order m
Splz(t) = ||x*) x| * Yag| oo | % Pa,, | * 0(F)

Theorem: For appropriate wavelets, a scattering s
contracting ||Sx — Sy|| < ||z — y|

preserves energy ||Sz||* = ||z||°

stable to deformations ||Sx — Sz.|| < C sup |V7(t)| ||z
t

when ¢ goes to 1, Sx converges to Sxz(p) € L?(Ps)

which 1s translation invariant.
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i& - . _Energy Conservation E-E

\Uz|| = [Wz|| = [|=|
Proof: The modulus pushes the energy towards low frequencies

T *xQ

I}

KT

H\fﬁ*w/\ * P, | % Y]
e Fast decay across layers of ||U|p|x| = |[|Sz|| = |z|

e Reduced number of paths with non-negligible output.
e Computational complexity: O(N log N).
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Frequency to Paths Mapping

(A eos Am)
0.04 - - 1 ~ 1 —
z(t) B(w) Sz(p(w))]
0.02; : 0.5¢ % - 0.5}
0 | ' 0 >w 0 [N e =15
0 20 40 60 0 2 4 0 2 4

2, (t) = z(t — 7(t)) with 7(t) = et .

0.02 - - 1 — 1

z(t) B(w) '
Ow W 1 0.5 /\ 1 0.5] %\ _
-0.02 - - 0 - 0L—F=1— —
0 20 40 60 0 > 4 0 2 4
0.02 - - 1 - 1 |
x7 (1) o (w)
0 | 05} A | 05} I\L -
-0.02 - - 0 ' 0 ' ——
0 20 40 60 0 2 4 0 2 4
1 =l @l _ g 152 = Serllp, _ |,
[ [|7']] o 2] 177]]
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Affine Space Classification

Joan Bruna
e Each class X}, is represented by a scattering centroid E (S X})

and a space Vy of principal variance directions (PCA).

Affine space model Ay = E(SX;) + V.
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Affine Space Learning

e Estimation of affine approximation spaces with PCA

- Estimation of the mean F/(SX})and the covariance ¥j from
transformed labeled examples Sx,, 1n each class

- The best approximation space V,  of dimension d 1s
generated by the d eigenvectors of Y, of largest eigenvalues. It
carries the principal deformation directions of each class.

- The dimension d 1s optimized by cross-validation.
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. Digit Classification: MNIST




Wavelet Scattering

z %), [ % D(270) [z, | x| * B(27n)

>
24 — 8 - window size
cross-validated
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Classification Errors

Training size | Conv. Net. Scattering
300 7.2% 4.4%
5000 1.5% 1.0%
20000 0.8% 0.6%
60000 0.5% 0.4%

LeCun et. al.




Overview

e Part 1: Invariance and deformation stability

- Fourier failure

- Wavelet stability

- Scattering transform 1nvariants and deep convolution networks
- Mathematical properties of deep networks

- Classification of 1images

e Part 2: Inverse, Textures and Multiple Invariants
- Inverse scattering by phase retrieval and sparsity
- Scattering models of stationary processes

- Texture classification

- Invariants over multiple groups: transposition, rotation, scaling
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w0 dwfr @I W)
vy I 0 A N g

(Q-constant band-pass filters &A

e Wavelet transform: Wax(t) = {x *x¢ (t) , T * ¢>\(t)}>\

o If [¢]*+ > |ia]> =1 then W is unitary.
A

[W||* = [lzx¢ |2+ ) [l al* = [l«]* .
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m: - - Wavelet Transform !n'i

e For images, dilated and rotated wavelets: wo

' : . [Px (w)]?
Ua(t) = 27 9p(27rt) with \ =277

5NN

e Wavelet transform: Wax(t) = {:13 *x@ (t) , T xYP)y (t)}

A

o If [|*+ ) [thx|*> =1 then W is unitary.
A
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Deep Convolution Network

Y. LeClun et. al.
e [teration on Ux = {x % ¢, |z x) x|} ,contracting.

X

T * o
\a?*w)\l\ /

2N N N,
~

[ %1 A, | P, | % P,

!

e Output at all layers: {S[p|z},cp -
MFSC and SIFT are 1st layer outputs: S|\;|x
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. Reconstruction, Phase Retrieval _
[rene Waldspurger

Theorem For appropriate wavelets
Uz = {a+6 (1), [z ()]}

1s invertible and the inverse i1s continuous.

200 \/\/‘//’\W\/ X *¢ (t)

0 100 200 300 400 500

20 M
0 1 1 1

0 100 200 300 400 500

“ \/\M/“\\*,,r\\/Nﬁkaj“u\vv//\\\//\\\/p\\v//i
0 1 1

0 100 200 300 400 500
0 A

0 100 200 300 400 500
0 1

0 100 200 300 400 500

0 100 200 300 400 500
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Inverse scattering: Progressive inversions of U

:I; [ [
T *¢ o M precise if sparse
P [l t]j }\ are sparse

S[)\l]flj

I

Smaller information loss if sparse: sparse deconvolution.

e Scattering invariants discriminate signals that are sparse
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Audio Reconstruction
Joakim Anden

Original audio signal x

Reconstruction from Sx for a window of 3 s with /N samples
Q=38
From order 1 S|A\{]x : Qlog N coefficients

From order 2 S[A1, 2]z : (Qlog N)?/2 coefficients
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Sparsity for Learning

e Need a sparse analysis representation:
(), vt —w) = 25 a(u) |

But we do not know how to learn them...

AU

e We know how to learn sparse analysis representations:

T A Z o~ 1~ (unstable)

Y
by finding D = {4}, which minimizes:

lz =) ayill+p ) oy
Y 2

= learn by synthesis and classity with analysis operators:

{(z,1)}~ : stable (autoencoders)
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e Textures define high-dimensional 1mage classes.

- Realizations of stationary processes X but typically not Gaussian,
not Markovian and not characterized by second order moments.

same power spectrum
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LScattering Stationary Processes

o If X (¢) is stationary then

UplX = |-+ | X x| %+ |x1y_| is stationary

e Expected scattering: SX(p) = E(U[p]X)

depends on normalized moments of order 2™ of X.
e A windowed scattering

Slp| X (t) = Ulp| X * ¢(t)
is an unbiased estimator of SX (p) = E(U|p|x).
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Maximum Entropy Distribution

B Joan Bruna
e Given SX(p) = E(U|[p|X) forpe P

the maximum entropy distribution is (Boltzman theorem):

p(x) = % exp(z o U[p]a?)

peP

where «,, are Lagrange multipliers and Z is defined by

/p(x)daz':l.

e Metropolis-Hasting algorithm samples the distribution,

but computationaly very expansive.

o Faster iterative algorithm with sparsity condition on 1° norm
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= L
L,

. Synthesis from Second Order -

J. McDermott textures Joan Bruna
Joakim Anden

e Estimation of X (z) from log® N second order coefficients:

Q=1

- Original jackhammer
- Synthesized

- Original water
- Synthesized

- Original applause
- Synthesized
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w- : Image Reconstruction g'i

Original Reconstructed
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Bernoulli X (z) a SX (p(w))? : Radon measure

2

10}
1.5¢

1t

| | |
>l WL ﬂ| “ H SX (A1, \o)
0 . . . | 0 Al | il

%
0 200 400 600 800 1000 O 0.5 1 1.5 2 2.5 3 W

4 | | | | 2 | | | | | §X(>\1, Ao, )\3)

15

1} SX()\la)\Qa)\Sa)Vl)

| 0.5¢ ‘
0 200 400 600 800 1000 Ooll‘ 05 i s 2 a5 aw
Gauss1an White 0it1

A . 5 _
[ Rl @) = [ 5X(p(w) do
2J
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L,

- Gain Control and Normalization -

e Invariant information is in transfer functions:

ST oo Ao 15 A ]2 (1)
S, Az (t)

. tuned gain control

computed by cascading a normalized propagator

_ ( *
Ur=<xx09, x|

\ T *¢

} . surround suppression

Wednesday, July 18, 2012



Multifractal Scattering

e Multifractal scaling:

SX(A) ~ AT SX s A2) oy A1)
SX(\)
Process Y1 Yo
White Gaussian —1/2 —1/2
Fractional Brownian Noise By (1) H —1/2
Mandelbrot cascade Y1 0
NASDAQ:AAPL 2/3 —0.15
Dirac measure 0 0
Poisson pp density « 0if )\ <« 0if A\ + Ay < @
—1/2ifA>a —1/2if A1+ X >«
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Affine Space Classification

Joan Bruna
e Each class X}, is represented by a scattering centroid E (S X})

and a space Vy of principal variance directions (PCA).

Affine space model Ay = E(SX;) + V.
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of Textures

CUREt database Rotations and

1llumination

61 classes o
variations.
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Classification of Textures

X X %1y, || * & 1X % o, | % P, | % 6

window size = image size
cross-validated
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CUREt database

Rotations and

61 classes illumip ation
variations.
Classification Errors
Training | Fourier Markov Scattering
per class | Spectr. Field
46 2.15% 2.46% 0.2 %

Wednesday, July 18, 2012

Varma & Zisserman



Audio Genre Classification
Joakim Anden

GTZAN: music genre classification (jazz, rock, classic,...)

10 classes and 30 seconds tracks.

Classification errors

Feature Set Error (%)
MFCC 32
Delta-MFCC 23
Scattering, m=1 28
Scattering, m=2 16
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Same or Different ?
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JFrequency Transposition Invariance

Same words by different people
Change of pich = frequency scaling: w — aw

= log frequency translation: logw — log a + logw

= translation invariance in (¢,logw) with deformation stability

Wayvelet modulus: |x x y, (1)
lOg )\1
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Separable wavelets in ¢ and log A\;
Uy, 5, (& log A) = 1y, (%) 155\2 (log A1)
Separable 2D wavelet transform of: y(¢,log A1) = |z * », ()
y* W, 5, (t1logAr)

Invariance by wavelet amplitude averaging in (z,log A1 ):
yx U, 5, *xP(t,log Ap)

Invariant scattering:
[y *x Uy, 5l x Py 5 [ *®(¢ log Ay)
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FClassification with Transp. Invariants
Joakim Anden

GTZAN: music genre classification (jazz, rock, classic,...)

10 classes and 30 seconds tracks.

Classification errors

Feature Set Error (%)

Scattering, m=2 16

Scat.+ Transp. Inv., m=2 13
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Laurent Sifre
e Scatterings along translation, rotation and affine groups:

T g Translat. Rotation
Invar.

UIUC database:

Wednesday, July 18, 2012



Laurent Sifre

e Scatterings along translation, rotation and afline groups:

T [|Translat.

Invar.

Wavelet transform along

Rotation

Affine

Invar.

Invar.

>SCIZ’

Spatial Frequency

Columns

A

O
<

N

positions, rotations and scales

in ” V1 hypercolumns”
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Translation and Rotation Invarianc

Laurent Sifre

zxPal ¢

EAAI A A

— — f—
— = , = = o P T

@@@@@@




. Multiple Scattering Invariants

X

l

Wavelet convolutions
along space

|

Modulus Pooling

l

Wavelet convolutions
along space, rotations, scales

l

Modulus Pooling

l

Linear averaging
along space, rotations, scales

Slp|z
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Laurent Sifre
e Scatterings along translation, rotation and affine groups:

T ) Translat. Rotation
Invar.

UIUC database:

/ ' ;, ’,’fé “‘-‘“; " }&;3,
Classification

Training | Translation Transl + Rotation Affine
20 15 % 3% 1%
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Unsupervised Learning

e Need to learn informative, stable invariants.
e Over general manifolds as opposed to groups

e The final linear averaging providing adapted invariants can be
learned by supervised classifiers (SVM).

e Problem: unsupervised learning of the dictionary and of the
non-linear pooling.

e Sparsity 1s important to build informative invariants:
auto-encoders with group sparsity.

e Why does 1t work ? still a mathematical mystery.
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Conclusion

e An 1nterpretation of convolution networks for groups:

- Filters must be wavelets

- Stable pooling: complex modulus + averaging

- Multilayers: recover lost information and refine invariants
- Sparsity 1s needed to preserve information in invariants

- Normalisation: to «decorrelate» outputs

- Learning: needed but not for first layers.

e Unsupervised deep learning: still not understood mathematically

e Papers and softwares: www.cmap.polytechnique.fr/scattering
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