Scattering Invariant Deep Networks for Classification

Stéphane Mallat IHES Ecole Polytechnique

Image Classification

CalTech 101:

- Considerable variability in each class.
- A Euclidean norm does not measure signal «similarities».
- Wednesday, July 18, 2012

Metric for Classification

- Classification requires finding a metric to compare signals, with:
 - small distances d(f,g) within a class
 - large distances d(f,g) across classes.

 If one finds a representation Φ(f) such that
 d(f,g) = ||Φ(f) − Φ(g)|| (kernel metric)
 then the classification may be linearized (SVM, PCA,...).

• Is there an appropriate kernel metric, which Φ ?

A View of Convolution Networks

Y. LeCun et. al.

• Deep convolution networks are very efficient image and audio classifiers: WHY ?

Representation for Classification

- What principles to construct such representations ?
- Deep convolution networks:
 - Why convolutions ?
 - Which filters ?
 - Why multistage and how deep ?
 - Why pooling ? How to pool ?
 - Why non-linear, which non-linearities ?
 - Why normalizing ?
 - What is the role of sparsity ?
- What are the underlying useful mathematics ?

- Textures define high-dimensional image classes.
- Realizations of stationary processes X but typically not Gaussian, not Markovian and not characterized by second order moments.

• Natural Sounds (1s) Original

Gaussian model

- -Hammer
- -Insect
- Water
- -Applause

The Best Image Classifier

Psychophysics of Vision

Hypercolumns in V1: directional wavelets

Simple cells Gabor linear models

Complex Cells

- Non-linear
- Large receptive fields
- Some forms of invariance

«What» Pathway towards V4:

- More specialized invariance
- «Grand mother cells»

Audio Psychophysics

• Wavelets appear at early stages of vision and audition. WHY ?

Wednesday, July 18, 2012

Low-Level Signal Representation

- Low-level signal processing:
 - compression/information theory for storage and transmission
 - inverse problems from partial and degraded measurements
- A key idea: find **sparse** accurate representations with few parameters.
- Mathematical tools: Fourier transform, **wavelet bases**, adaptive dictionary representations, variational formulations... A relatively well understood framework.
- Classification problems: discriminate not reconstruct.
- Different problems where sparsity yields *instabilities*.

Analysis versus Synthesis

- How to construct a sparse representation ?
- What about stability ?

Image Classification

CalTech 101:

- Considerable variability in each class.
- Reduce variability means constructing invariants.
- Wednesday, July 18, 2012

Signal Classification

- Very high dimensional space $N \ge 10^6$.
- Few training samples per class $P \ll N$.
- Signals do not belong to a low-dimensional manifold.

Classifier

Stable Translation Invariants

• **Invariance** to translations $x_c(t) = x(t-c)$

$$\forall c \in \mathbf{R}$$
, $\Phi(x_c) = \Phi(x)$.

• Metric stability with deformations $x_{\tau}(t) = x(t - \tau(t))$

small deformations of $x \implies$ small modifications of $\Phi(x)$

$$\forall \tau$$
, $\|\Phi(x_{\tau}) - \Phi(x)\| \le C \sup_{t} |\nabla \tau(t)| \|x\|$.
● Preserve information deformation size

- Part 1: Invariance and deformation stability
- Fourier failure
- Wavelet stability to deformations
- Scattering invariants and deep convolution networks
- Mathematical properties of deep scattering networks
- Classification of images
- Part 2: Inverse, Textures and Multiple Invariants
- Inverse scattering by phase retrieval and sparsity
- Scattering models of stationary processes
- Texture classification
- Invariants over multiple groups: transposition, rotation, scaling

Fourier & Correlation Invariance

- Fourier transform $\hat{x}(\omega) = \int x(t) e^{-i\omega t} dt$
- Translation Invariance: if $x_c(t) = x(t-c)$ then

 $|\widehat{x_c}(\omega)| = |\widehat{x}(\omega)|$

• For the auto-correlation $Cx(u) = \int x(t) x(t-u) dt$

$$Cx(u) = Cx_c(u) .$$

Fourier & Correlation Instabilities

• Instabilities to small deformations $x_{\tau}(t) = x(t - \tau(t))$:

 $||\hat{x}_{\tau}(\omega)| - |\hat{x}(\omega)||$ is big at high frequencies

 $\Rightarrow |||\hat{x}_{\tau}|^2 - |\hat{x}|^2|| = ||Cx_{\tau} - Cx||$ is big.

Wavelet Transform

• Dilated wavelets: $\psi_{\lambda}(t) = 2^{-jQ} \psi(2^{-jQ}t)$ with $\lambda = 2^{-jQ}$.

Q-constant band-pass filters $\hat{\psi}_{\lambda}$

• Wavelet transform:
$$Wx(t) = \left\{ x \star \phi(t) , x \star \psi_{\lambda}(t) \right\}_{\lambda}$$

• If
$$|\hat{\phi}(\omega)|^2 + \sum_{\lambda} |\hat{\psi}_{\lambda}(\omega)|^2 = 1$$
 then W is unitary :
 $\|Wx\|^2 \stackrel{\lambda}{=} \|x \star \phi\|^2 + \sum_{\lambda} \|x \star \psi_{\lambda}\|^2 = \|x\|^2$.

• Wavelet transform:
$$Wx(t) = \left\{ x \star \phi(t) , x \star \psi_{\lambda}(t) \right\}_{\lambda}$$

• If
$$|\hat{\phi}(\omega)|^2 + \sum_{\lambda} |\hat{\psi}_{\lambda}(\omega)|^2 = 1$$
 then W is unitary :

- Locally invariant to translations
 - and stable to deformations
 - MFSC (audio)
 - SIFT (images)

But loss of information.

Locally invariant to translations and stable to deformations MFSC (audio) SIFT (images)

But loss of information.

Wavelet Stabilization

 $\left\{ \left| x \star \psi_{\lambda}(t) \right| \right\}_{\lambda}$

Wavelet time-frequency

 $\left\{ \left| x \star \psi_{\lambda} \right| \star \phi(t) \right\}_{\lambda}$

Time/Space averaging <u>370ms window</u>

Locally invariant to translations and stable to deformations MFSC (audio) SIFT (images)

But loss of information.

Non-linearity is needed to have a non-zero invariant

A modulus is "optimal"

Stable Translation Invariance

 $x \star \psi_{\lambda}(t)$: translation covariant, not invariant, and

 $|x \star \psi_{\lambda_1}(t)|$

 $\int x \star \psi_{\lambda}(t) dt = 0$

- Translation invariant representation: $\int M(x \star \psi_{\lambda})(t) dt$
- \bullet Diffeomorphism stability: M commutes with diffeomorphisms.
- **L**² stability: ||Mh|| = ||h|| and $||Mg Mh|| \le ||g h||$

$$\Rightarrow M(h)(t) = |h(t)| = \sqrt{|h_r(t)|^2 + |h_i(t)|^2}$$

• A modulus computes a lower frequency envelop

• Stable invariant: $\int |x \star \psi_{\lambda}(t)| dt = ||x \star \psi_{\lambda}||_{1}.$

Wednesday, July 18, 2012

Recovering Lost Information

• A modulus computes a lower frequency envelop

• The averaging $|x \star \psi_{\lambda_1}| \star \phi$ removes high frequencies:

Must recover high frequencies: stable modulation spectrum

- Wavelet transform: $\{|x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}\}_{\lambda_2}$
- Translation invariance by time averaging the amplitude:

 $\forall \lambda_1, \lambda_2, \quad ||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi \quad : \text{ stable to deformations}$

Windowed Scattering

For any path
$$p = (\lambda_1, \lambda_2, ..., \lambda_m)$$
 of order m

 $S[p]x(t) = ||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \dots |\star \psi_{\lambda_m}| \star \phi(t)$

A window of size N yields $O(Q^m \log^m N)$ coefficients of order m

Deep Convolution Network

Y. LeCun et. al.

• Iteration on $Ux = \{x \star \phi, |x \star \psi_{\lambda}|\}_{\lambda}$, contracting.

• Output at all layers: $\{S[p]x\}_{p\in \mathcal{P}}$. MFSC and SIFT are 1st layer outputs: $S[\lambda_1]x$

Amplitude Modulations

• Amplitude modulations such as tremolos or attacks:

$$x(t) = h \star e(t) \cdot a(t)$$
 with $e(t) = \sum_{n} \delta(t - n/\xi_1)$
 $\hat{h}(\omega)$: formant, ξ_1 : pitch, $a(t)$: amplitude modulation

- Pitch harmonics: if $\lambda_1 = k \xi_1$ then $S[\lambda_1]x(t) = |x \star \psi_{\lambda_1}| \star \phi(t) = |\hat{h}(\lambda_1)| \ a \star \phi(t)$
- Amplitude modulation spectrum:

$$S[\lambda_1, \lambda_2] x(t) = ||f \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi(t) = |\hat{h}(\lambda_1)| |\hat{a}(\lambda_2)|$$

Amplitude Modulation

Frequency Modulated Sounds

• Frequence modulations such as vibratos:

$$x(t) = h \star \widetilde{e}(t)$$
 with $\widetilde{e}(t) = \sum_{n} \delta(t - \epsilon \cos \xi_2 t - n/\xi_1)$.

 $\hat{h}(\omega)$: formant, ξ_1 : pitch, ξ_2 : vibrato frequency.

- Pitch harmonics: if $\lambda_1 = k \xi_1$ then $S[\lambda_1]x(t) = |\hat{h}(\lambda_1)|$
 - Vibrato harmonics: if $\lambda_2 = l \xi_2$ then

$$S[\lambda_1, \lambda_2]x(t) = C_l \left| \hat{h}(\lambda_1) \right| \epsilon^{2l} \xi_2^{2l}$$

Frequency Modulation

Interferences :

$$|x \star \psi_{\lambda}(t)|^{2} = e_{\lambda}^{2} + \sum_{m' \neq m} c_{m,m'} \cos(\omega_{m} - \omega_{m'})t$$

Music chord :

Image Wavelet Scattering

window size = image size

Textures with Same Spectrum

X: stationary process

window size = image size
Deep Convolution Network

Y. LeCun et. al.

• Iteration on $Ux = \{x \star \phi, |x \star \psi_{\lambda}|\}_{\lambda}$, contracting.

• Output at all layers: $\{S[p]x\}_{p\in\mathcal{P}}$.

Scattering Properties

For any path
$$p = (\lambda_1, \lambda_2, ..., \lambda_m)$$
 of order m

$$S[p]x(t) = ||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| ... | \star \psi_{\lambda_m}| \star \phi(t)$$

$$||Sx||^2 = \sum_{p \in \mathcal{P}} ||S[p]x||^2$$

Theorem: For appropriate wavelets, a scattering is contracting $||Sx - Sy|| \le ||x - y||$ preserves energy $||Sx||^2 = ||x||^2$ stable to deformations $||Sx - Sx_{\tau}|| \le C \sup_{t} |\nabla \tau(t)| ||x||$ when ϕ goes to 1, Sx converges to $\overline{S}x(p) \in \mathbf{L}^2(\mathcal{P}_{\infty})$

which is translation invariant.

Wednesday, July 18, 2012

Energy Conservation

Proof: The modulus pushes the energy towards low frequencies

- Fast decay across layers of $||U[p]x|| \Rightarrow ||Sx|| = ||x||$
- Reduced number of paths with non-negligible output.
- Computational complexity: $O(N \log N)$.

Wednesday, July 18, 2012

Frequency to Paths Mapping

Affine Space Classification

- Joan Bruna
- Each class X_k is represented by a scattering centroid $E(SX_k)$
 - and a space \mathbf{V}_k of principal variance directions (PCA).
 - Affine space model $\mathbf{A}_k = E(SX_k) + \mathbf{V}_k$.

- Estimation of affine approximation spaces with PCA
 - Estimation of the mean $E(SX_k)$ and the covariance Σ_k from transformed labeled examples Sx_n in each class
 - The best approximation space V_k of dimension *d* is generated by the *d* eigenvectors of Σ_k of largest eigenvalues. It carries the principal deformation directions of each class.
 - The dimension *d* is optimized by cross-validation.

Digit Classification: MNIST

Digit Classification: MNIST

Wavelet Scattering

 ${\mathcal X}$

$$|x \star \psi_{\lambda_1}| \star \phi(2^J n) \qquad ||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi(2^J n)$$

 $2^J = 8$: window size cross-validated

Digit Classification: MNIST

3681796691 6757863485 2179712845 4819018894

Classification Errors

Training size	Conv. Net.	Scattering
300	7.2%	4.4 %
5000	1.5%	1.0 %
20000	0.8%	0.6 %
60000	0.5%	0.4 %

LeCun et. al.

- **Part 1:** Invariance and deformation stability
- Fourier failure
- Wavelet stability
- Scattering transform invariants and deep convolution networks
- Mathematical properties of deep networks
- Classification of images
- Part 2: Inverse, Textures and Multiple Invariants
- Inverse scattering by phase retrieval and sparsity
- Scattering models of stationary processes
- Texture classification
- Invariants over multiple groups: transposition, rotation, scaling

• Dilated wavelets: $\psi_{\lambda}(t) = 2^{-jQ} \psi(2^{-jQ}t)$ with $\lambda = 2^{-jQ}$.

• Wavelet transform: $Wx(t) = \left\{ x \star \phi(t) , x \star \psi_{\lambda}(t) \right\}_{\lambda}$

• If
$$|\phi|^2 + \sum_{\lambda} |\hat{\psi}_{\lambda}|^2 = 1$$
 then W is unitary.
 $\|Wx\|^2 = \|x \star \phi\|^2 + \sum_{\lambda} \|x \star \psi_{\lambda}\|^2 = \|x\|^2$.

• Wavelet transform:
$$Wx(t) = \left\{ x \star \phi(t) , x \star \psi_{\lambda}(t) \right\}_{\lambda}$$

• If
$$|\phi|^2 + \sum_{\lambda} |\hat{\psi}_{\lambda}|^2 = 1$$
 then W is unitary.

Deep Convolution Network

 $Y. \ LeCun \ et. \ al.$

• Iteration on $Ux = \{x \star \phi, |x \star \psi_{\lambda}|\}_{\lambda}$, contracting.

• Output at all layers: $\{S[p]x\}_{p \in \mathcal{P}}$. MFSC and SIFT are 1st layer outputs: $S[\lambda_1]x$

Reconstruction, Phase Retrieval

Irène Waldspurger

Theorem For appropriate wavelets

$$Ux = \left\{ x \star \phi(t), |x \star \psi_{\lambda}(t)| \right\}_{\lambda}$$

is invertible and the inverse is continuous.

Scattering Inversion: Sparsity

• Scattering invariants discriminate signals that are sparse

Audio Reconstruction

Joakim Anden

Original audio signal x

Reconstruction from Sx for a window of 3 s with N samples Q = 8

From order 1 $S[\lambda_1]x$: $Q \log N$ coefficients

From order 2 $S[\lambda_1, \lambda_2]x$: $(Q \log N)^2/2$ coefficients

• Need a sparse analysis representation: $\left\{ \langle x(t), \psi_{\lambda}(t-u) \rangle = x \star \psi_{\lambda}(u) \right\}_{\lambda,u}$

But we do not know how to learn them...

• We know how to learn sparse analysis representations:

$$\begin{aligned} x \approx \sum_{\gamma} \alpha_{\gamma} \psi_{\gamma} \quad (\text{unstable}) \\ \text{by finding } \mathcal{D} &= \{\psi_{\gamma}\}_{\gamma} \text{ which minimizes:} \\ \|x - \sum_{\gamma} \alpha_{\gamma} \psi_{\gamma}\| + \mu \sum_{\gamma} |\alpha_{\gamma}| \\ \Rightarrow \text{ learn by synthesis and classify with analysis operators:} \\ \{\langle x, \psi_{\gamma} \rangle\}_{\gamma} \text{ : stable (autoencoders)} \end{aligned}$$

- Textures define high-dimensional image classes.
- Realizations of stationary processes X but typically not Gaussian, not Markovian and not characterized by second order moments.

Scattering Stationary Processes

- If X(t) is stationary then $U[p]X = |\cdots|X \star \psi_{\lambda_1}| \star \cdots |\star \psi_{\lambda_m}|$ is stationary
- Expected scattering: $\overline{S}X(p) = E(U[p]X)$

depends on normalized moments of order 2^m of X.

• A windowed scattering

 $S[p]X(t) = U[p]X \star \phi(t)$ is an unbiased estimator of $\overline{S}X(p) = E(U[p]x)$.

Maximum Entropy Distribution

Joan Bruna

• Given $\overline{S}X(p) = E(U[p]X)$ for $p \in \mathcal{P}$

the maximum entropy distribution is (Boltzman theorem):

$$p(x) = \frac{1}{Z} \exp\left(\sum_{p \in \mathcal{P}} \alpha_p U[p]x\right)$$

where α_p are Lagrange multipliers and Z is defined by $\int p(x) \, dx = 1 \, .$

- Metropolis-Hasting algorithm samples the distribution, but computationaly very expansive.
- \bullet Faster iterative algorithm with sparsity condition on l^0 norm.

Wednesday, July 18, 2012

Synthesis from Second Order

J. McDermott textures

Joan Bruna Joakim Anden

Q = 1

- Estimation of X(x) from $\log^2 N$ second order coefficients:
 - Original jackhammer
 - Synthesized
 - Original water
 - Synthesized
 - Original applause
 - Synthesized

Image Reconstruction

Original

Reconstructed

Scattering White Noises

Constant Fourier power spectrum: $\hat{R}_X(\omega) = \sigma^2$.

Gain Control and Normalization

• Invariant information is in transfer functions:

$$\frac{S[\lambda_1, ..., \lambda_{m-1}, \lambda_m] x(t)}{S[\lambda_1, ..., \lambda_m] x(t)} : \text{tuned gain control}$$

computed by cascading a normalized propagator

$$\overline{U}x = \left\{ x \star \phi \ , \ \frac{|x \star \psi_{\lambda}|}{x \star \phi} \right\} \quad : \quad \text{surround suppression}$$

Multifractal Scattering

• Multifractal scaling:

$$\overline{S}X(\lambda_1) \sim \lambda_1^{-\gamma_1}$$

$$\frac{\overline{S}X(\lambda_1,\lambda_2)}{\overline{S}X(\lambda_1)} \sim (\lambda_2 \,\lambda_1^{-1})^{-\gamma_2}$$

Process	γ_1	γ_2
White Gaussian	-1/2	-1/2
Fractional Brownian Noise $B_H(t)$	H	-1/2
Mandelbrot cascade	γ_1	0
NASDAQ:AAPL	2/3	-0.15
Dirac measure	0	0
Poisson pp density α	0 if $\lambda < \alpha$	0 if $\lambda_1 + \lambda_2 < \alpha$
	$ -1/2 \text{ if } \lambda \geq \alpha$	$-1/2$ if $\lambda_1 + \lambda_2 \ge \alpha$

Affine Space Classification

- Joan Bruna
- Each class X_k is represented by a scattering centroid $E(SX_k)$
 - and a space \mathbf{V}_k of principal variance directions (PCA).
 - Affine space model $\mathbf{A}_k = E(SX_k) + \mathbf{V}_k$.

Classification of Textures

Rotations and illumination variations.

CUREt database

61 classes

Classification of Textures

X

 $||X \star \psi_{\lambda_1}|| \star \phi$

 $||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi$

window size = image size cross-validated

Classification of Textures

Rotations and illumination variations.

Classification Errors

Training	Fourier	Markov	Scattering
per class	Spectr.	Field	
46	2.15%	2.46%	0.2 %

Varma & Zisserman

CUREt database

61 classes

Audio Genre Classification

Joakim Anden

GTZAN: music genre classification (jazz, rock, classic,...)

10 classes and 30 seconds tracks.

Classification errors

Feature Set	Error (%)
MFCC	32
Delta-MFCC	23
Scattering, m=1	28
Scattering, m=2	16

Aren Jensen

encyclopaedias

Frequency Transposition Invariance

- Same words by different people
- Change of pich \Rightarrow frequency scaling: $\omega \rightarrow \alpha \omega$
- \Rightarrow log frequency translation: $\log\omega\rightarrow\log\alpha+\log\omega$
- \Rightarrow translation invariance in $(t,\log\omega)$ with deformation stability

Wavelet modulus: $|x \star \psi_{\lambda_1}(t)|$

Transposition Invariant Scattering

Separable wavelets in t and $\log \lambda_1$

$$\Psi_{\lambda_2,\tilde{\lambda}_2}(t,\log\lambda_1) = \psi_{\lambda_2}(t) \ \tilde{\psi}_{\tilde{\lambda}_2}(\log\lambda_1)$$

Separable 2D wavelet transform of: $y(t, \log \lambda_1) = |x \star \psi_{\lambda_1}(t)|$ $y \star \Psi_{\lambda_2, \tilde{\lambda}_2}(t, \log \lambda_1)$

Invariance by wavelet amplitude averaging in $(t, \log \lambda_1)$: $|y \star \Psi_{\lambda_2, \tilde{\lambda}_2}| \star \Phi(t, \log \lambda_1)$

Invariant scattering:

$$||y \star \Psi_{\lambda_2, \tilde{\lambda}_2}| \dots \star \Psi_{\lambda_m, \tilde{\lambda}_m}| \star \Phi(t, \log \lambda_1)$$

Wednesday, July 18, 2012

Classification with Transp. Invariants

Joakim Anden

GTZAN: music genre classification (jazz, rock, classic,...)

10 classes and 30 seconds tracks.

Classification errors

Feature Set	Error (%)
Scattering, m=2	16
Scat.+ Transp. Inv., m=2	13

Rotation and Affine Invariance

• Scatterings along translation, rotation and affine groups:

Rotation and Affine Invariance

• Scatterings along translation, rotation and affine groups:

Right Eye
Translation and Rotation Invariance

Laurent Sifre

Multiple Scattering Invariants

Rotation and Affine Invariance

• Scatterings along translation, rotation and affine groups:

Unsupervised Learning

- Need to learn informative, stable invariants.
- Over general manifolds as opposed to groups
- The final linear averaging providing adapted invariants can be learned by supervised classifiers (SVM).
- Problem: unsupervised learning of the dictionary and of the non-linear pooling.
- Sparsity is important to build informative invariants: auto-encoders with group sparsity.
- Why does it work ? still a mathematical mystery.

• An interpretation of convolution networks for groups:

Conclusion

- Filters must be wavelets
- Stable pooling: complex modulus + averaging
- Multilayers: recover lost information and refine invariants
- Sparsity is needed to preserve information in invariants
- Normalisation: to «decorrelate» outputs
- Learning: needed but not for first layers.
- Unsupervised deep learning: still not understood mathematically
- Papers and softwares: www.cmap.polytechnique.fr/scattering