
Sparse and Regularized Optimization

In many applications, we seek not an exact minimizer of the underlying
objective, but rather an approximate minimizer that satisfies certain
desirable properties:

sparsity (few nonzeros);

specific nonzero patterns (e.g. tree structure);

low-rank (if a matrix);

low “total-variation”;

generalizability. (Vapnik: “...tradeoff between the quality of the
approximation of the given data and the complexity of the
approximating function.”)

A common way to obtain structured solutions is to modify the objective f
by adding a regularizer τψ(x), for some parameter τ > 0.

min
x

f (x) + τψ(x),

where ψ induces the desired structure in x .
Stephen Wright (UW-Madison) Optimization IPAM, July 2012 72 / 110



Applications I

LASSO for variable selection. Originally stated as

min
x

1

2
‖Ax − b‖2

2 such that ‖x‖1 ≤ T ,

for parameter T > 0. Equivalent to an “`2-`1” formulation:

min
x

1

2
‖Ax − b‖2

2 + τ‖x‖1, for some τ > 0.

Group LASSO to select disjoint groups of variables:

min
x

1

2
‖Ax − b‖2

2 +
∑
g∈G
‖x[g ]‖2,

with each [g ] a subset of indices {1, 2, . . . , n}.
Easy to shrink with disjoint groups.

Still easy when ‖ · ‖2 is replaced by ‖ · ‖∞.
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Applications II

Overlapping Groups. There are sometimes complex relationships
between the variables, and we want the set of variables selected (the
nonzeros) to respect these relationships. Can sometimes design groups
regularizers that induce this structure. Examples:

Each group is the set of descendants of a node in a directed graph;

When coefficients form a tree (e.g. wavelet representations), each
group could be (a) the set of ancestors of a node; (b) parent-child
pairs; (c) all subtrees.

There’s much recent work on shrink-based algorithms by F. Bach and the
WILLOW and SIERRA project teams.

For hierarchical groups ([g ] ∩ [h] 6= ∅ implies either [g ] ⊂ [h] or
[h] ⊂ [g ]), shrink operator can be computed efficiently by ordering
groups appropriately.

For non-hierarchical groups with ‖ · ‖∞, use a network flow technique
to shrink (Mairal et al, NIPS, 2010).
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Applications III

Nonconvex Regularizers. Nonconvex element-wise penalties have
become popular for variable selection in statistics.

SCAD (smoothed clipped absolute deviation) (Fan and Li, 2001)

MCP (Zhang, 2010).

Properties: unbiased estimates, sparse estimates, solution path continuous
in regulariation parameter τ .

Code: SparseNet (Mazumder, Friedman, Hastie, 2011): coordinate desc.
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Applications IV

Compressed Sensing. Sparse signal recovery from noisy measurements.
Given matrix A (with more columns than rows) and observation vector y ,
seek a sparse x (i.e. few nonzeros) such that Ax ≈ y . Solve

min
x

1

2
‖Ax − b‖2

2 + τ‖x‖1.

Under “restricted isometry” properties on A (“tall” column
submatrices are nearly orthonormal), ‖x‖1 is a good surrogate for
card(x).

Assume that A is not stored explicitly, but matrix-vector
multiplications are available. Hence can compute f and ∇f .
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Applications V: Classification and Regression

Support Vector Machines. See above. Can use ‖w‖1 in the linear SVM,
to get a sparse weight vector.

`1-Regularized Logistic Regression. See above.
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Applications VI: Matrix Completion

Seek a matrix X ∈ Rm×n with low rank that matches certain observations,
possibly noisy.

min
X

1

2
‖A(X )− b‖2

2 + τψ(X ),

where A(X ) is a linear mapping of the components of X (e.g.
element-wise observations).

Can have ψ as the nuclear norm — see discussion above for solution of
subproblems via SVD.

Alternatively: X is the sum of sparse matrix and a low-rank matrix. The
element-wise 1-norm ‖X‖1 is useful in inducing sparsity.
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Basics of Shrinking

Regularizer ψ is often nonsmooth but “simple.” Often the problem is easy
to solve when f is replaced by a quadratic with diagonal Hessian:

min
z

gT (z − x) +
1

2α
‖z − x‖2

2 + τψ(z).

Equivalently,

min
z

1

2α
‖z − (x − αg)‖2

2 + τψ(z).

Define the shrink operator as the arg min:

Sτ (y , α) := arg min
z

1

2α
‖z − y‖2

2 + τψ(z).

Typical algorithm:
xk+1 = Sτ (xk − αkgk , αk),

with for example gk = ∇f (xk).
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Interesting Regularizers and their Shrinks: I

Cases for which the subproblem is simple:

ψ(z) = ‖z‖1. Thus Sτ (y , α) = sign(y) max(|y | − ατ, 0). When y
complex, have

Sτ (y , α) =
max(|y | − τα, 0)

max(|y | − τα, 0) + τα
y .

ψ(z) =
∑

g∈G ‖z[g ]‖2 or ψ(z) =
∑

g∈G ‖z[g ]‖∞, where z[g ], g ∈ G
are non-overlapping subvectors of z . Here

Sτ (y , α)[g ] =
max(|y[g ]| − τα, 0)

max(|y[g ]| − τα, 0) + τα
y[g ].

ψ(x) = IΩ(x): Indicator function for a closed convex set Ω. Then
Sτ (y , α) is the projection of y onto Ω.
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Interesting Regularizers and their Shrinks: II

Z is a matrix and ψ(Z ) = ‖Z‖∗ is the nuclear norm of Z : the sum of
singular values. Threshold operator is

Sτ (Y , α) := arg min
Z

1

2α
‖Z − Y ‖2

F + τ‖Z‖∗

with solution obtained from the SVD Y = UΣV T with U, V
orthonormal and Σ = diag(σi )i=1,2,...,m. Setting
Σ̃ = diag(max(σi − τα, 0)i=1,2,...,m), the solution is

Sτ (Y , α) = UΣ̃V T .
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Basic Prox-Linear Algorithm

(Fukushima and Mine, 1981) for solving minx f (x) + τψ(x).

0: Choose x0

k : Choose αk > 0 and set

xk+1 = Sτ (xk − αk∇f (xk);αk)

= arg min
z
∇f (xk)T (z − xk) +

1

2αk
‖z − xk‖2

2 + τψ(z).

This approach goes by many names, including “forward-backward
splitting,” “shrinking / thresholding.”

Straightforward, but can be fast when the regularization is strong (i.e.
solution is “highly constrained”) and the reduced problem is well
conditioned.

Can show convergence for steps αk ∈ (0, 2/L), where L is the bound on
∇2f . (Like a short-step gradient method.)
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Enhancements

Alternatively, since αk plays the role of a steplength, can adjust it to get
better performance and guaranteed convergence.

“Backtracking:” decrease αk until sufficient decrease condition holds.

Use Barzilai-Borwein strategies to get nonmonotonic methods. By
enforcing sufficient decrease every 10 iterations (say), still get global
convergence.

The approach can be accelerated using optimal gradient techniques. See
earlier discussion of FISTA, where we solve the shrinking problem with
αk = 1/L in place of a step along −∇f with this steplength.

Note that these methods reduce ultimately to gradient methods on a
reduced space: the optimal manifold defined by the regularizer ψ.
Acceleration or higher-order information can help improve performance.
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Continuation in τ

Performance of basic shrinking methods is quite sensitive to τ .

Typically higher τ ⇒ stronger regularization ⇒ optimal manifold has lower
dimension. Hence, it’s easier to identify the optimal manifold, and basic
shrinking methods can sometimes do so quickly.

For smaller τ , a simple “continuation” strategy can help:

0: Given target value τf , choose initial τ0 > τf , starting point x̄ and
factor σ ∈ (0, 1).

k: Find approx solution x(τk) of minx f (x) + τψ(x), starting from x̄ ;
if τk = τf then STOP;
Set τk+1 ← max(τf , στk) and x̄ ← x(τk);

Recent report by Xiao and Zhang (2012) analyzes this strategy.

(Solution x(τ) is often desired on a range of τ values anyway.)
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Stochastic Gradient + Regularization: Dual Averaging

Solve the regularized problem, but have only estimates of ∇f (xk).

We can combine dual averaging, stochastic gradient, and shrinking: see
Xiao (2010) who extends Nesterov (2009).

min
x

φτ (x) := Eξf (x ; ξ) + τψ(x)

At iteration k choose ξk randomly and i.i.d from the ξ distribution, and
choose gk ∈ ∂f (xk ; ξk). Use these to define the averaged subgradient
ḡk =

∑k
i=1 gi/(k + 1), and solve the subproblem

xk+1 = arg min
x

ḡT
k x + τψ(x) +

γ√
k
‖x − x0‖2.

Same as earlier, but with regularizer ψ included explicitly.

Can prove convergence results for averaged iterates x̄k : roughly

Eφτ (x̄k)− φ∗τ ≤
C√

k
,

where expectation is over the random number stream ξ0, ξ1, . . . , ξk−1.
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Stochastic Gradient + Regularization: FOBOS

An obvious extension of the prox-linear approach to the stochastic
gradient setting: replace ∇f by an approximation e.g. gk ∈ ∂f (xk ; ξk):

xk+1 = Sτ (xk − αkgk ;αk).

(Duchi and Singer, 2009, p.9-10).

COMID: Generalization to mirror descent.

Also SSG (Lin et al, 2011), and Truncated Gradient (Langford et al, 2009).
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Identifying Optimal Manifolds

Identification of the manifold of the regularizer ψ on which x∗ lies can
improve algorithm performance, by focusing attention on a reduced space.
We can thus evaluate partial gradients and Hessians, restricted to just this
space.

For nonsmooth regularizer ψ, the optimal manifold is a smooth surface
passing through x∗ along which the restriction of ψ is smooth.

Example: for ψ(x) = ‖x‖1, have manifold consisting of z with

zi


≥ 0 if x∗i > 0

≤ 0 if x∗i < 0

= 0 if x∗i = 0.

If we know the optimal nonzero components, we know the manifold. We
could restrict the search to just this set of nonzeros.
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Identification in Stochastic Gradient / Dual Averaging

In the stochastic setting, dual averaging has identification properties most
like shrink algorithms with full gradient.

In the strongly convex setting, as the non-averaged iterates xk (mostly)
converge to x∗, the gradient estimate ḡk (mostly) converges to ∇f (x∗).
Eventually, the subsequence of iterates that lie on the optimal manifold
becomes dense. (Lee and Wright, 2012)

This property is not shared by algorithms that

average the primal iterates;

use only the latest gradient estimate gk in the step computation (that
is, they don’t average the dual iterates.

In particular, under `1 regularization, algorithms with these features don’t
usually produce sparse solutions.

Algorithmic implication: Once the manifold settles down, can switch to a
different algorithm, better suited to a small space.
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Further Reading

1 Optimization for Machine Learning, edited volume with 18 Chapters, MIT Press,
NIPS Workshop Series, 2011.

2 F. Bach, R. Jenatton, J. Mairal, G. Obozinski, “Convex optimization with
sparsity-inducing norms,” in [1], 2011.

3 M. Fukushima and H. Mine. “A generalized proximal point algorithm for certain
non-convex minimization problems.” International Journal of Systems Science, 12,
pp. 989–1000, 1981.

4 P. L. Combettes and V. R. Wajs. “Signal recovery by proximal forward-backward
splitting.” Multiscale Modeling and Simulation, 4, pp. 1168–1200, 2005.

5 S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. “Sparse reconstruction by
separable approximation.” IEEE Transactions on Signal Processing, 57, pp.
2479–2493, 2009.

6 L. Xiao. “Dual averaging methods for regularized stochastic learning and online
optimization.” Journal of Machine Learning Research, 11, pp 2543–2596, 2010.

7 L. Xiao and T. Zhang, “A Proximal-Gradient Homotopy methods for the Sparse
Least-Squares Problem,” Technical Report, March 2012. arXiv:1203:2003v1.

8 A. Lewis and S. Wright, “A Proximal Method for Composite Minimization,” 2008.

9 S. Lee and S. J. Wright, “Manifold identification for dual averaging in regularized
stochastic online learning,” JMLR, 2012.
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V. Decomposition / Coordinate Relaxation

For min f (x), at iteration k, choose a subset Gk ⊂ {1, 2, . . . , n} and take
a step dk only in these components. i.e. fix dk(i) = 0 for i /∈ Gk .

Gives more manageable subproblem sizes, in practice.

Can

take a reduced gradient step in the Gk components;

take multiple “inner iterations”

actually solve the reduced subproblem in the space defined by Gk .
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Constraints and Regularizers Complicate Things

For minx∈Ω f (x), need to put enough components into Gk to stay feasible,
as well as make progress.

Example: min f (x1, x2) with x1 + x2 = 1. Relaxation with Gk = {1} or
Gk = {2} won’t work.

For separable regularizer (e.g. Group LASSO) with

ψ(x) =
∑
i∈G

ψi (x[i ]),

need to ensure that Gk is a union of the some index subsets [g ]. i.e. the
relaxation components must be consonant with the partitioning.
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Decomposition and Dual SVM

Decomposition has long been popular for solving the dual (QP)
formulation of SVM, since the number of variables (= number of training
examples) is sometimes very large.

SMO: Each Gk has two components.

LIBSVM: SMO approach (still |Gk | = 2), with different heuristic for
choosing Gk .

LASVM: Again |Gk | = 2, with focus on online setting.

SVM-light: Small |Gk | (default 10).

GPDT: Larger |Gk | (default 400) with gradient projection solver as
inner loop.
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Choice of Gk and Convergence Results

Some methods (e.g. Tseng and Yun, 2010) require Gk to be chosen so
that the improvement in subproblem objective obtained over the subset Gk
is at least a fixed fraction of the improvement available over the whole
space. Undesirable, since to check it, usually need to evaluate the full
gradient ∇f (xk).

Alternative is a generalized Gauss-Seidel requirement, where each
coordinate is “touched” at least once every T iterations:

Gk ∪ Gk+1 ∪ . . . ∪ Gk+T−1 = {1, 2, . . . , n}.

Can show global convergence (e.g. Tseng and Yun, 2009; Wright, 2010).

There are also results on

global linear convergence rates

optimal manifold identification

fast local convergence for an algorithm that takes reduced steps on
the estimated optimal manifold.

All are deterministic analyses.
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Naive Stochastic Coordinate Descent

Analysis tools of stochastic gradient may be useful.

for minx f (x), take steps of the form xk+1 = xk − αkgk , where

gk(i) =

{
[∇f (xk)]i if i ∈ Gk
0 otherwise,

With suitable random selection of Gk can ensure that gk (appropriately
scaled) is an unbiased estimate of ∇f (xk). Hence can apply SGD
techniqes discussed earlier, to choose αk and obtain convergence.
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Stochastic Coordinate Descent

(Richtarik and Takac, 2012; see also Nesterov, 2012)

min
x

φ(x) := f (x) + ψ(x).

Describe an approach that

Partitions the components of x into subvectors, consonant with the
regularizer ψ;

Makes a random selection of one partition to update at each iteration;

Exploits knowledge of the partial Lipschitz constant for each partition
in choosing the step.

Allows parallel implementation.

Essentially, picks one partition and does the basic short-step, prox-linear
method for that component, shrunk with the regularizer for that
component.

Richtarik and Takac call it RCDC: Randomized Coordinate Descent for
Composite Functions.
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RCDC Details

Partition components {1, 2, . . . , n} into m blocks with block [i ] with
corresponding columns from the n × n identity matrix denoted by Ui .

Denote by Li the partial Lipschitz constant on partition [i ]:

‖∇[i ]f (x + Ui t)−∇[i ]f (x)‖ ≤ Li‖t‖.

Separate the regularizer ψ as above:

ψ(x) =
m∑
i=1

ψi (x[i ]).

For overall structure, define a weighted norm, for weights w1,w2, . . . ,wm:

‖x‖W :=

(
m∑
i=1

wi‖x[i ]‖2

)1/2

Weighted measure of level set size:

RW (x) := max
y

max
x∗∈X∗

{‖y − x∗‖W : φ(y) ≤ φ(x)}.
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RCDC Algorithm

The key subproblem, for a given partition i :

P(x , i) : min
d

dT∇[i ]f (x) +
Li

2
‖d‖2 + ψi (x[i ] + d).

Fix probabilities of choosing each partition: pi , i = 1, 2, . . . ,m.

Iteration k:

Choose partition ik ∈ {1, 2, . . . ,m} with probability pi ;

Solve P(xk , ik) to obtain step dk,i ;

Set xk+1 = xk + Uik dk,i .

For convex f and ψ, and uniform weights pi = 1/m, can prove high
probability convergence of f to within a specified threshold of f (x∗) in 1/k
iterations.
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RCDC Analysis

The basic analysis requires three steps.

I. Given random varaible sequence ξ0, ξ1, ξ2, · · · with

E [ξk+1 | ξk ] ≤
(

1− 1

c2

)
ξk , whenever ξk ≥ ε,

where ε > 0 is a specified threshold and c2 ∈ (0, 1) is some constant, we
have for k ≥ K with

K := c2 log
ξ0

ερ
,

that P(ξk ≤ ε) ≥ 1− ρ.

II. Expected improvement in φ at step k is the average of the m possible
partition-wise improvements. For each partition, because of the short-step
strategy, the actual improvement is at least equal to the improvement
predicted by the subproblem P(xk , i).
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RCDC Analysis, continued

E [φ(xk+1) | xk ] ≤ φ(xk) +
1

m

m∑
i=1

[
dT
k,i∇[i ]f (xk) +

Li

2
‖dk,i‖2

+ ψ[i ]((xk)[i ] + dk,i )− ψi ((xk)[i ])
]

= φ(xk) + J(xk).

(Each term in the sum J(xk) is the improvement predicted if partition i is
selected at iteration k.)

III. The predicted optimality gap after step k is a substantial improvement
over the gap φ(xk)− φ∗ at iteration k .

φ(x) + J(x)− φ∗ ≤ max

(
1

2
, 1− φ(x)− φ∗

2‖x − x∗‖2
L

)
(φ(x)− φ∗).
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RCDC Analysis, continued

Put these pieces together, defining

ξk := φ(xk)− φ∗,

and assuming that the defined threshold ε has

ε < min(R2
L(x0), φ(x0)− φ∗)

and defining

K :=
2nR2

L(x0)

ε
log

φ(x0)− φ∗

ερ
,

we have for k ≥ K that

P(φ(xk)− φ∗ ≤ ε) ≥ 1− ρ.
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RCDC, Strongly Convex Case

If φ is strongly convex with respect to the weighted norm ‖ · ‖L, we have
expected convergence at a linear rate. Require

φ(x) ≥ φ(y) + (x − y)T∇φ(y) +
µ

2
‖x − y‖2

L,

where ∇φ denotes any subgradient of φ. Defining

γµ :=

{
1− µ/4 if µ ≤ 2

1/µ otherwise
,

we have

E [φ(xk)− φ∗] ≤
(

1− 1− γµ
n

)k

(φ(x0)− φ∗).
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Further Reading

1 P. Tseng and S. Yun, “A coordinate gradient descent method for linearly
constrained smooth optimization and support vector machines training.”
Computational Optimization and Applications, 47, pp. 179–206, 2010.

2 P. Tseng and S. Yun, “A coordinate gradient descent method for nonsmooth
separable minimization.” Mathematical Programming, Series B, 117. pp.
387–423, 2009.

3 P. Richtarik and M. Takac, “Iteration complexity of randomized block-coordinate
gradient descent methods for minimizing a composite function,” Technical Report,
Revised, July 2012.

4 S. J. Wright, “Accelerated block-coordinate relaxation for regularized
optimization.” SIAM J. Optimization 22 (2012), pp. 159–186.

5 Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale optimization
problems.” SIAM J. Optimization 22 (2012), pp. 341–362.
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Augmented Lagrangian Methods and Splitting

Consider linearly constrained problem:

min f (x) s.t. Ax = b.

Augmented Lagrangian is

L(x , λ; ρ) := f (x) + λT (Ax − b) +
ρ

2
‖Ax − b‖2

2,

where ρ > 0. Basic augmented Lagrangian / method of multipliers is

xk = arg min
x
L(x , λk−1; ρk);

λk = λk−1 + ρk(Axk − b);

(choose ρk+1).

Extends in a fairly straightforward way to inequality constraints, nonlinear
constraints.
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Quick History of Augmented Lagrangian

Dates from 1969: Hestenes, Powell.

Developments in 1970s, early 1980s by Rockafellar, Bertsekas, and
others.

Lancelot code for nonlinear programming: Conn, Gould, Toint,
around 1990.

Largely lost favor as an approach for general nonlinear programming
during the next 15 years.

Recent revival in the context of sparse optimization and its many
applications, in conjunction with splitting / coordinate descent.
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Separable Objectives: ADMM

Alternating Directions Method of Multipliers (ADMM) arises when the
objective in the basic linearly constrained problem is separable:

min
(x ,z)

f (x) + h(z) subject to Ax + Bz = c ,

for which

L(x , z , λ; ρ) := f (x) + h(z) + λT (Ax + Bz − c) +
ρ

2
‖Ax − Bz − c‖2

2.

Standard augmented Lagrangian would minimize L(x , z , λ; ρ) over (x , z)
jointly — but these are coupled through the quadratic term, so the
advantage of separability is lost.

Instead, minimize over x and z separately and sequentially:

xk = arg min
x
L(x , zk−1, λk−1; ρk);

zk = arg min
z
L(xk , z , λk−1; ρk);

λk = λk−1 + ρk(Axk + Bzk − c).
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ADMM

Basically, does a round of block-coordinate descent in (x , z).

The minimizations over x and z add only a quadratic term to f and
h, respectictly. This does not alter the cost much.

Can perform these minimizations inexactly.

Convergence is often slow, but sufficient for many applications.

Many recent applications to compressed sensing, image processing,
matrix completion, sparse principal components analysis.

ADMM has a rich collection of antecendents. For an excellent recent
survey, including a diverse collection of machine learning applications, see
(Boyd et al, 2011).
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ADMM for Consensus Optimization

Given

min
m∑
i=1

fi (x),

form m copies of the x , with the original x as a “master” variable:

min
x ,x1,x2,...,xm

m∑
i=1

fi (x i ) subject to x i = x , i = 1, 2, . . . ,m.

Apply ADMM, with z = (x1, x2, . . . , xm), get

x i
k = arg min

x i
fi (x i ) + (λik−1)T (x i − xk−1) +

ρk
2
‖x i − xk−1‖2

2, ∀i ,

xk =
1

m

m∑
i=1

(
x i
k +

1

ρk
λik−1

)
,

λik = λik−1 + ρk(x i
k − xk), ∀i

Obvious parallel possibilities in the x i updates. Synchronize for x update.
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ADMM for Awkward Intersections

The feasible set is sometimes an intersection of two or more convex sets
that are easy to handle separately (e.g. projections are easily computable),
but whose intersection is more difficult to work with.

Example: Optimization over the cone of doubly nonnegative matrices:

min
X

f (X ) s.t. X � 0, X ≥ 0.

General form:

min f (x) s.t. x ∈ Ωi , i = 1, 2, . . . ,m

Just consensus optimization, with indicator functions for the sets.

xk = arg min
x

f (x) +
m∑
i=1

(λik−1)T (x − x i
k−1) +

ρk
2
‖x − x i

k−1‖2
2,

x i
k = arg min

xi∈Ωi

(λik−1)T (xk − x i ) +
ρk
2
‖xk − x i‖2

2, ∀i

λik = λik−1 + ρk(xk − x i
k), ∀i .
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ADMM and Prox-Linear

Given
min
x

f (x) + τψ(x),

reformulate as the equality constrained problem:

min
x ,z

f (x) + τψ(z) subject to x = z .

ADMM form:

xk := min
x

f (x) + τψ(zk−1) + (λk)T (x − zk−1) +
µk
2
‖zk−1 − x‖2

2,

zk := min
z

f (xk) + τψ(z) + (λk)T (xk − z) +
µk
2
‖z − xk‖2

2,

λk+1 := λk + µk(xk − zk).

Minimization over z is the shrink operator — often inexpensive.

Minimization over x can be performed approximately using an
algorithm suited to the form of f .
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and statistical learning via the alternating direction methods of multipliers,”
Foundations and Trends in Machine Learning, 3, pp. 1-122, 2011.

S. Boyd, “Alternating Direction Method of Multipliers,” Talk at NIPS Workshop
on Optimization and Machine Learning, December 2011:
videolectures.net/nipsworkshops2011 boyd multipliers/

J. Eckstein and D. P. Bertsekas, “On the Douglas-Rachford splitting method and
the proximal point algorithm for maximal monotone operators,” Mathematical
Programming, 55, pp. 293-318, 1992.
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