
Density estimation
Computing, and avoiding, partition functions

Roadmap:
— Motivation: density estimation

— Understanding annealing/tempering

— NADE

Iain Murray
School of Informatics, University of Edinburgh

Includes work with Ruslan Salakhutdinov and Hugo Larochelle

Probabilistic model H

Predict new images: P (x |H)

High density can be boring

P (x |H)

Image reconstruction

Observation model: P (y |x)

Underlying image:

P (x |y) ∝ P (y |x)P (x)

(e.g., Zoran and Weiss, 2011; Lucas Theis’s work)

Roadmap

— Unsupervised learning and P (x |H)

— Evaluating P (x |H)
Salakhutdinov and Murray (2008)

Murray and Salakhutdinov (2009)

Wallach, Murray, Salakhutdinov & Mimno (2009)

— NADE: “density estimation put first”
Larochelle and Murray (2011)

Restricted Boltzmann Machines

P (x,h | θ) =
1

Z(θ)
exp

[∑
ijWijxihj +

∑
i b
x
i xi +

∑
j b

h
jhj

]

P (x | θ) =
∑

h

P (x,h | θ) =
1

Z(θ)

∑

h

exp [· · ·]
︸ ︷︷ ︸

f(x; θ), tractable

Z a normalizer

x

p(x) =
f(x)

Z

x ∼ Uniform

x ∼ Model

Annealing / Tempering

e.g. P (x;β) ∝ P ∗(x)β π(x)(1−β)

β = 0 β = 0.01 β = 0.1 β = 0.25 β = 0.5 β = 1

1/β = “temperature”

Annealed Importance Sampling

x0 ∼ p0(x)

P (X) : x0 x1 x2 xK−1 xK
T̃1 T̃2 T̃K

xK ∼ pK+1(x)

Q(X) : x0 x1 x2 xK−1 xK
T1 T2 TK

P(X) =
P ∗(xK)

Z
K∏

k=1

T̃k(xk−1;xk), Q(X) = π(x0)
K∏

k=1

Tk(xk;xk−1)

Standard importance sampling of P(X) = P∗(X)
Z with Q(X)

Annealed Importance Sampling

Z ≈ 1

S

S∑

s=1

P∗(X)

Q(X)

Q↓ ↑P
 10 100 500 1000 10000

252

253

254

255

256

257

258

259

Number of AIS runs

lo
g

 Z

Large Variance

20 sec

3.3 min

17 min

33 min

5.5 hrs

Estimated logZ
True logZ

Parallel tempering

Standard MCMC: Transitions + swap proposals on joint:

P (X) =
∏

β

P (X;β)

P (x)

Pβ1(x)

Pβ2(x)

Pβ3(x)

T1

Tβ1

Tβ2

Tβ3

T1

Tβ1

Tβ2

Tβ3

T1

Tβ1

Tβ2

Tβ3

T1

Tβ1

Tβ2

Tβ3

T1

Tβ1

Tβ2

Tβ3

• larger system

• information from low β diffuses up by slow random walk

Tempered transitions

Drive temperature up. . .

x̂0 ∼ P (x)

P (X) :

x̂0

x̂1

x̂2

x̂K−1

x̄K

x̌K−1

x̌2

x̌1

x̌0

T̂β1

T̂β2

T̂βK
ŤβK

Ťβ2

Ťβ1

. . . and back down

Proposal: swap order, final point x̌0 putatively ∼ P (x)

Acceptance probability:

min

[
1,

Pβ1(x̂0)

P (x̂0)
· · · PβK(x̂K−1)

PβK−1(x̂0)

PβK−1(x̌K−1)

PβK(x̌K−1)
· · · P (x̌0)

Pβ1(x̌0)

]

Summary on Z

Whirlwind tour of annealing / tempering

Must be able to get anywhere in distribution

Methods to use generally for hardest problems.

An experiment

Take 60,000 binarized MNIST digits, like these:

— Train an RBM using CD (and then find Z)

— Train a mixture of multivariate Bernoullis with EM

Compare samples and test-set log-probs

A comparison

Samples from:

• mixture of Bernoullis, −143 nats/test digit

• RBM, −106 nats/test digit

Which is which?

A better fitted RBM

RBM samples Training set examples

Test log-prob now 20 nats better (−86 nats/digit)

Dependent latent variables

“Deep Belief Net” Lateral connections

Directed model

P (x) =
1

Z
∑

h

P ∗(x,h), not available

Chib-style estimates

Bayes Rule:

P (h |x) =
P (h,x)

P (x)

For any special state h∗:

P (x) =
P (h∗,x)

P (h∗ |x) ← Estimate

Murray and Salakhutdinov (2009)

Variational approach

h(2)

h(1)

x

logP (x) = log
∑

h

1

ZP
∗(x,h)

≥
∑

h

Q(h) logP ∗(x,h) − logZ + H[Q(h)]

Results MNIST

5 10 15 20 25 30 35 40

−87

−86.5

−86

−85.5

−85

Number of Markov chain steps

E
st

im
at

ed
 T

es
t L

og
−p

ro
ba

bi
lit

y

Estimate of Variational
Lower Bound

AIS Estimator

Our Proposed Estimator

Results Natural Scenes

5 10 15 20 25 30 35 40
−585

−580

−575

−570

−565

Number of Markov chain steps

E
st

im
at

ed
 T

es
t L

og
−p

ro
ba

bi
lit

y

Estimate of Variational
Lower Bound

AIS Estimator

Our Proposed Estimator

P (x |H) taught me

— RBM: state-of-the-art for binary dists

— Deep nets only very slightly better on MNIST

— Some Gaussian RBMs are really bad...
...and going deep won’t help

— Most topic model P (x |H) ests wrong

Roadmap

— Unsupervised learning and P (x |H)

— Evaluating P (x |H)
Salakhutdinov and Murray (2008)

Murray and Salakhutdinov (2009)

Wallach, Murray, Salakhutdinov & Mimno (2009)

— NADE: “density estimation put first”
Larochelle and Murray (2011)

Decompose into scalars

P (x) = P (x1)P (x2 |x1)P (x3 |x1, x2) . . .

=
∏

k

P (xk |x<k)

Fully Visible Bayesian Networks

• Good at estimating (tractable)

• Not as good a model as RBMs

W

x̂

x

ck

x1 x2 x3 x4

General graphical model
Fully Visible Sigmoid
Belief Net (FVSBN)

p(x)

p(x) =
�

k

p(xk|x<k)
�xk

p(xk = 1|x<k)

FVSBN: Fully Visible Sigmoid Belief Net

Logistic regression for conditionals

Fully Visible Bayesian Networks

• Good at estimating (tractable)

• Not as good a model as RBMs

W

x̂

x

ck

x1 x2 x3 x4

General graphical model
Fully Visible Sigmoid
Belief Net (FVSBN)

p(x)

p(x) =
�

k

p(xk|x<k)
�xk

p(xk = 1|x<k)

FVSBNs beat mixtures, but not RBMs

Approximate RBM

P (xk |x<k) from MCMC

or mean field

(Requires fitted RBM. Creates new model.)

One Mean Field step
Neural Autoregressive

Distribution Estimator (NADE)

• We turn this into an efficient
autoencoder by:

1. by using only 1 up-down iteration
2. untying the up and down weights
3. by fitting to the data

h(k) = sigm (b + W·,<kx<k)

�xk = sigm
�
ck + Vk,·h(k)

� W

V

x

�x

h h h h(1) (2) (3) (4)

p(xk|x<k)

x̂k = σ
(
bxk +Wk,.h

(k)
)

h(k) = σ
(
bh +W>

.,<kx<k
)

NADE Neural Autoregressive Distribution Estimator
Neural Autoregressive

Distribution Estimator (NADE)

• We turn this into an efficient
autoencoder by:

1. by using only 1 up-down iteration
2. untying the up and down weights
3. by fitting to the data

h(k) = sigm (b + W·,<kx<k)

�xk = sigm
�
ck + Vk,·h(k)

� W

V

x

�x

h h h h(1) (2) (3) (4)

p(xk|x<k)

Fit as new model

P (x |H) =
∏

k p̂(xk)

Tractable, O(DH)

NADE results
Experiments

Manuscript under review by AISTATS 2011

Table 1: Distribution estimation results. To normalize the results, the average test log-likelihood (ALL) for each
model on a given dataset was subtracted by the ALL of MoB (which is given in the last row under “Normalization”).

95% confidence intervals are also given. The best result as well as any other result with an overlapping confidence

interval is shown in bold.

Model adult connect-4 dna mushrooms nips-0-12 ocr-letters rcv1 web

MoB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
± 0.10 ± 0.04 ± 0.53 ± 0.10 ± 1.12 ± 0.32 ± 0.11 ± 0.23

RBM 4.18 0.75 1.29 -0.69 12.65 -2.49 -1.29 0.78
± 0.06 ± 0.02 ± 0.48 ± 0.09 ± 1.07 ± 0.30 ± 0.11 ± 0.20

RBM 4.15 -1.72 1.45 -0.69 11.25 0.99 -0.04 0.02
mult. ± 0.06 ± 0.03 ± 0.40 ± 0.05 ± 1.06 ± 0.29 ± 0.11 ± 0.21
RBForest 4.12 0.59 1.39 0.04 12.61 3.78 0.56 -0.15

± 0.06 ± 0.02 ± 0.49 ± 0.07 ± 1.07 ± 0.28 ± 0.11 ± 0.21
FVSBN 7.27 11.02 14.55 4.19 13.14 1.26 -2.24 0.81

± 0.04 ± 0.01 ± 0.50 ± 0.05 ± 0.98 ± 0.23 ± 0.11 ± 0.20
NADE 7.25 11.42 13.38 4.65 16.94 13.34 0.93 1.77

± 0.05 ± 0.01 ± 0.57 ± 0.04 ± 1.11 ± 0.21 ± 0.11 ± 0.20

Normalization -20.44 -23.41 -98.19 -14.46 -290.02 -40.56 -47.59 -30.16

To measure the sensitivity of NADE to the ordering of

the observations we trained a dozen separate models for

the mushrooms, dna and nips-0-12 datasets using

different random shufflings. We then computed the

standard deviation of the twelve associated test log-

likelihood averages, for each of the datasets. Standard
deviations of 0.045, 0.050 and 0.150 were observed on
mushrooms, dna and nips-0-12 respectively, which

is quite reasonable when compared to the intrinsic

uncertainty associated with using a finite test set (see
the confidence intervals of Table 1). Hence, it does

not seem necessary to optimize the ordering of the

observation variables.

One could try to reduce the variance of the learned so-

lution by training an ensemble of several NADE models

on different observation orderings, while sharing the

weight matrix W across those models but using differ-
ent output matrices V. While we haven’t extensively
experimented with this variant, we have found such

sharing to produce better filters when used on the

binarized MNIST dataset (see next section).

6.2 NADE vs. an intractable RBM

While NADE was inspired by the RBM, does its per-
formance come close to that of the RBM in its most

typical regime, i.e. with hundreds of hidden units? In
other words, was tractability gained with a loss in

performance?

To answer these questions, we trained NADE on a

binarized version of the MNIST dataset. This ver-

sion was used by Salakhutdinov and Murray (2008) to

train RBMs with different versions of contrastive di-

vergence and evaluate them as distribution estimators.
Since the partition function cannot be computed ex-

actly, it was approximated using annealed importance
sampling. This method estimates the mean of some

unbounded positive weights by an empirical mean of

samples. It isn’t possible to meaningfully upper-bound

the partition function from these results: the true test
log-likelihood averages could be much smaller than the

values and error bars reported by Salakhutdinov and

Murray (2008), although their approximations were

shown to be accurate in a tractable case.

RBMs with 500 hidden units were reported to ob-

tain −125.53, −105.50 and −86.34 in average test log-
likelihood when trained using contrastive divergence

with 1, 3 and 25 steps of Gibbs sampling, respectively.
In comparison, NADE with 500 hidden units, a learn-
ing rate of 0.0005 and a decrease constant of 0 obtained

−88.86. This is almost as good as the best RBM claim

and much better than RBMs trained with just a few

steps of Gibbs sampling. Again, it also improves over
mixtures of Bernoullis which, with 10, 100 and 500 com-

ponents obtain −168.95, −142.63 and −137.64 average

test log-likelihoods respectively (taken from Salakhut-
dinov and Murray (2008)). Finally, FVSBN trained

by stochastic gradient descent achieves −97.45 and

improves on the mixture models but not on NADE.

It then appears that tractability was gained at almost
no cost in terms of performance. We are also confident

that even better performance could have been achieved

with a better optimization method than stochastic gra-

dient descent. Indeed, the log-likelihood on the training

★ Little variation when changing input ordering:
 DNA = +/- 0.05
 MUSHROOMS = +/- 0.045
 NIPS-0-12 = +/- 0.15

NADE results

• On a binarized version of MNIST:

Experiments

Model Log. Like.
MoB -137.64

 RBM (CD1) -125.53
 RBM (CD3) -105.50

 RBM (CD25) -86.34
FVSBN -97.45
NADE -88.86

Manuscript under review by AISTATS 2011

Figure 2: (Left): samples from NADE trained on a binary version of mnist. (Middle): probabilities from
which each pixel was sampled. (Right): visualization of some of the rows of W. This figure is better seen on a
computer screen.

set it to 0, to obtain:

0 =
∂KL(q(vi,v>i,h|v<i)||p(vi,v>i,h|v<i))

∂τk(i)

0 = −ck −Wk,·µ(i) + log

�
τk(i)

1− τk(i)

�

τk(i)

1− τk(i)
= exp(ck + Wk,·µ(i))

τk(i) =
exp(ck + Wk,·µ(i))

1 + exp(ck + Wk,·µ(i))

τk(i) = sigm


ck +

�

j≥i

Wkjµj(i) +
�

j<i

Wkjvj




where in the last step we have replaced the ma-
trix/vector multiplication Wk,·µ(i) by its explicit sum-

mation form and have used the fact that µj(i) = vj for

j < i.

Similarly, we set the derivative with respect to µj(i)
for j ≥ i to 0 and obtain:

0 =
∂KL(q(vi,v>i,h|v<i)||p(vi,v>i,h|v<i))

∂µj(i)

0 = −bj − τ(i)�W·,j + log

�
µj(i)

1− µj(i)

�

µj(i)

1− µj(i)
= exp(bj + τ(i)�W·,j)

µj(i) =
exp(bj + τ(i)�W·,j)

1 + exp(bj + τ(i)�W·,j)

µj(i) = sigm

�
bj +

�

k

Wkjτk(i)

�

We then recover the mean-field updates of Equa-
tions 7 and 8.

References

Bengio, Y., & Bengio, S. (2000). Modeling high-
dimensional discrete data with multi-layer neural
networks. Advances in Neural Information Process-
ing Systems 12 (NIPS’99) (pp. 400–406). MIT Press.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H.

(2007). Greedy layer-wise training of deep networks.
Advances in Neural Information Processing Systems
19 (NIPS’06) (pp. 153–160). MIT Press.

Chen, X. R., Krishnaiah, P. R., & Liang, W. W. (1989).

Estimation of multivariate binary density using or-
thogonal functions. Journal of Multivariate Analysis,
31, 178–186.

Freund, Y., & Haussler, D. (1992). A fast and exact
learning rule for a restricted class of Boltzmann ma-
chines. Advances in Neural Information Processing
Systems 4 (NIPS’91) (pp. 912–919). Denver, CO:
Morgan Kaufmann, San Mateo.

Frey, B. J. (1998). Graphical models for machine learn-
ing and digital communication. MIT Press.

Frey, B. J., Hinton, G. E., & Dayan, P. (1996). Does the

wake-sleep algorithm learn good density estimators?
Advances in Neural Information Processing Systems
8 (NIPS’95) (pp. 661–670). MIT Press, Cambridge,
MA.

Hinton, G. E. (2002). Training products of experts by

minimizing contrastive divergence. Neural Computa-
tion, 14, 1771–1800.

Hinton, G. E., Osindero, S., & Teh, Y. (2006). A
fast learning algorithm for deep belief nets. Neural
Computation, 18, 1527–1554.

Larochelle, H., & Bengio, Y. (2008). Classification using

discriminative restricted Boltzmann machines. Pro-
ceedings of the 25th Annual International Conference

Sam
ples

In
tr

ac
ta

bl
e{ ≈

≈
≈

*

*

*

*

* : taken from Salakhutdinov and Murray (2008)

Talking points

When should we learn P (x |H)?

Monte Carlo methods

Autoregressive models (see also Lucas Theis)

A longer talk on NADE:

http://videolectures.net/aistats2011_larochelle_neural/

Appendix slides

Markov chain estimation

Stationary condition for Markov chain:

P (h∗|x) =
∑

h

T (h∗←h)P (h|x)

≈
[

1

S

S∑

s=1

T (h∗←h(s)), h(s) ∼ P(H)

]
= p̂

P(H) draws a sequence from an equilibrium Markov chain:

h(1) ∼ P (h|v)

h(1) h(2) h(3) h(4) h(5)

T T T T

Bias in answer

P (x) =
P (h∗,x)

P (h∗|x)
=
P (h∗,x)

E[p̂]
≤ E

[
P (h∗,x)

p̂

]

Idea: bias Markov chain by starting at h∗

1
S

∑S
s=1 T (h∗←h(s)) will often overestimate P (h∗|x)

h∗

h(1) h(2) h(3) h(4) h(5)

T

T T T T

Q(H) =
T (h(1)←h∗)

P (h(1)|x)
P(H)

New estimator

We actually need a slightly more complicated Q:

h∗

h(1) h(2) h(3) h(4) h(5)

T̃

T̃ T̃ T̃

T

Q(H) =
1

S

S∑

s=1

T̃ (h(s)←h∗)

P (h(s)|x)
P(H)

EQ(H)

[
1

/
1

S

S∑

s=1

T (h∗←h(s))

]
=

1

P (h∗|x)

P̂ (x) =
P (x,h∗)

P̂ (h∗|x)
unbiased ⇒ stochastic lower bound on logP (x)

