Deep Learning, Graphical Models, Energy-Based Models, Structured Prediction

Yann LeCun,

The Courant Institute of Mathematical Sciences
New York University

http://yann.lecun.com

http://www.cs.nyu.edu/~yann

End-to-End Learning.

- Making every single module in the system trainable.
- **Every module is trained simultaneously so as to optimize a global loss function.**

Using Graphs instead of Vectors.

■ Whereas traditional learning machines manipulate fixed-size vectors, Graph Transformer Networks manipulate graphs.

Energy-Based Model

- Highly popular methods in the Machine Learning and Natural Language Processing Communities have their roots in Speech and Handwriting Recognition
 - Structured Perceptron, Conditional Random Fields, and related learning models for "structured prediction" are descendants of discriminative learning methods for speech recognition and word-level handwriting recognition methods from the early 90's
- A Tutorial and Energy-Based Learning:
 - [LeCun & al., 2006]
- Discriminative Training for "Structured Output" models
 - The whole literature on discriminative speech recognition [1987-]
 - ► The whole literature on neural-net/HMM hybrids for speech [Bottou 1991, Bengio 1993, Haffner 1993, Bourlard 1994]
 - Graph Transformer Networks [LeCun & al. Proc IEEE 1998]
 - Structured Perceptron [Collins 2001]
 - Conditional Random Fields [Lafferty & al 2001]
 - Max Margin Markov Nets [Altun & al 2003, Taskar & al 2003]

Energy-Based Model for Decision-Making

Model: Measures the compatibility between an observed variable X and a variable to be predicted Y through an energy function E(Y,X).

$$Y^* = \operatorname{argmin}_{Y \in \mathcal{Y}} E(Y, X).$$

- Inference: Search for the Y that minimizes the energy within a set
- If the set has low cardinality, we can use exhaustive search.

Complex Tasks: Inference is non-trivial

Converting Energies to Probabilities

Energies are uncalibrated

- The energies of two separately-trained systems cannot be combined
- The energies are uncalibrated (measured in arbitrary untis)

How do we calibrate energies?

- We turn them into probabilities (positive numbers that sum to 1).
- Simplest way: Gibbs distribution
- Other ways can be reduced to Gibbs by a suitable redefinition of the energy.

$$P(Y|X) = \frac{e^{-\beta E(Y,X)}}{\int_{y \in \mathcal{Y}} e^{-\beta E(y,X)}},$$
Partition function Inverse temperature

Handwriting recognition Sequence labeling

- integrated segmentation and recognition of sequences.
- Each segmentation and recognition hypothesis is a path in a graph
- inference = finding the shortest path in the interpretation graph.
- Un-normalized hierarchical HMMs a.k.a. Graph Transformer Networks
 - ► [LeCun, Bottou, Bengio, Haffner, Proc IEEE 1998]

Latent Variable Models

The energy includes "hidden" variables Z whose value is never given to us

$$E(Y, X) = \min_{Z \in \mathcal{Z}} E(Z, Y, X).$$

$$Y^* = \operatorname{argmin}_{Y \in \mathcal{Y}, Z \in \mathcal{Z}} E(Z, Y, X).$$

What can the latent variables represent?

- Variables that would make the task easier if they were known:
 - Face recognition: the gender of the person, the orientation of the face.
 - ▶ **Object recognition**: the pose parameters of the object (location, orientation, scale), the lighting conditions.
 - ▶ Parts of Speech Tagging: the segmentation of the sentence into syntactic units, the parse tree.
 - Speech Recognition: the segmentation of the sentence into phonemes or phones.
 - ▶ Handwriting Recognition: the segmentation of the line into characters.
 - ▶ Object Recognition/Scene Parsing: the segmentation of the image into components (objects, parts,...)
- **■** In general, we will search for the value of the latent variable that allows us to get an answer (Y) of smallest energy.

Probabilistic Latent Variable Models

Marginalizing over latent variables instead of minimizing.

$$P(Z, Y|X) = \frac{e^{-\beta E(Z, Y, X)}}{\int_{y \in \mathcal{Y}, z \in \mathcal{Z}} e^{-\beta E(y, z, X)}}.$$

$$P(Y|X) = \frac{\int_{z \in \mathcal{Z}} e^{-\beta E(Z,Y,X)}}{\int_{y \in \mathcal{Y}, z \in \mathcal{Z}} e^{-\beta E(y,z,X)}}.$$

Equivalent to traditional energy-based inference with a redefined energy function:

$$Y^* = \operatorname{argmin}_{Y \in \mathcal{Y}} - \frac{1}{\beta} \log \int_{z \in \mathcal{Z}} e^{-\beta E(z, Y, X)}.$$

Reduces to traditional minimization when Beta->infinity

Training an EBM

- Training an EBM consists in shaping the energy function so that the energies of the correct answer is lower than the energies of all other answers.
 - Training sample: X = image of an animal, Y = "animal"

$$E(\text{animal}, X) < E(y, X) \forall y \neq \text{animal}$$

Architecture and Loss Function

Family of energy functions

$$\mathcal{E} = \{ E(W, Y, X) : W \in \mathcal{W} \}.$$

Training set
$$\hat{\mathcal{S}} = \{(X^i, Y^i) : i = 1 \dots P\}$$

Loss functional / Loss function

$$\mathcal{L}(E,\mathcal{S})$$
 $\mathcal{L}(W,\mathcal{S})$

- Measures the quality of an energy function on training set
- Training

$$W^* = \min_{W \in \mathcal{W}} \mathcal{L}(W, \mathcal{S}).$$

- Form of the loss functional
 - invariant under permutations and repetitions of the samples

$$\mathcal{L}(E,\mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} L(Y^i, E(W, \mathcal{Y}, X^i)) + R(W).$$
 Energy surface Per-sample Desired for a given Xi loss answer as Y varies

Designing a Loss Functional

- Push down on the energy of the correct answer
- **Pull up** on the energies of the incorrect answers, particularly if they are smaller than the correct one

Architecture + Inference Algo + Loss Function = Model

- **1. Design an architecture:** a particular form for E(W,Y,X).
- **2. Pick an inference algorithm for Y:** MAP or conditional distribution, belief prop, min cut, variational methods, gradient descent, MCMC, HMC.....
- **3. Pick a loss function:** in such a way that minimizing it with respect to W over a training set will make the inference algorithm find the correct Y for a given X.
- 4. Pick an optimization method.

PROBLEM: What loss functions will make the machine approach the desired behavior?

Examples of Loss Functions: Energy Loss

- Energy Loss $L_{energy}(Y^i, E(W, \mathcal{Y}, X^i)) = E(W, Y^i, X^i).$
 - Simply pushes down on the energy of the correct answer

Negative Log-Likelihood Loss

Conditional probability of the samples (assuming independence)

$$P(Y^{1},...,Y^{P}|X^{1},...,X^{P},W) = \prod_{i=1}^{P} P(Y^{i}|X^{i},W).$$

$$-\log \prod_{i=1}^{P} P(Y^{i}|X^{i},W) = \sum_{i=1}^{P} -\log P(Y^{i}|X^{i},W).$$

$$-\log \prod_{i=1}^{P} P(Y^{i}|X^{i}, W) = \sum_{i=1}^{P} \beta E(W, Y^{i}, X^{i}) + \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^{i})}.$$

We get the NLL loss by dividing by P and Beta:

$$\mathcal{L}_{\text{nll}}(W, \mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} \left(E(W, Y^i, X^i) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^i)} \right).$$

Reduces to the perceptron loss when Beta->infinity

Negative Log-Likelihood Loss

- Pushes down on the energy of the correct answer
- Pulls up on the energies of all answers in proportion to their probability

$$\mathcal{L}_{\text{nll}}(W, \mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} \left(E(W, Y^i, X^i) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^i)} \right).$$

$$\frac{\partial L_{\text{nll}}(W, Y^i, X^i)}{\partial W} = \frac{\partial E(W, Y^i, X^i)}{\partial W} - \int_{Y \in \mathcal{Y}} \frac{\partial E(W, Y, X^i)}{\partial W} P(Y|X^i, W),$$

Negative Log-Likelihood Loss

- A probabilistic model is an EBM in which:
 - The energy can be integrated over Y (the variable to be predicted)
 - The loss function is the negative log-likelihood
- Negative Log Likelihood Loss has been used for a long time in many communities for discriminative learning with structured outputs
 - Speech recognition: many papers going back to the early 90's [Bengio 92], [Bourlard 94]. They call "Maximum Mutual Information"
 - Handwriting recognition [Bengio LeCun 94], [LeCun et al. 98]
 - Bio-informatics [Haussler]
 - Conditional Random Fields [Lafferty et al. 2001]
 - Lots more.....
 - In all the above cases, it was used with non-linearly parameterized energies.

A Simpler Loss Functions:Perceptron Loss

$$L_{perceptron}(Y^i, E(W, \mathcal{Y}, X^i)) = E(W, Y^i, X^i) - \min_{Y \in \mathcal{Y}} E(W, Y, X^i).$$

- Perceptron Loss [LeCun et al. 1998], [Collins 2002]
 - Pushes down on the energy of the correct answer
 - Pulls up on the energy of the machine's answer
 - Always positive. Zero when answer is correct
 - No "margin": technically does not prevent the energy surface from being almost flat.
 - Works pretty well in practice, particularly if the energy parameterization does not allow flat surfaces.
 - ▶ This is often called "discriminative Viterbi training" in the speech and handwriting literature

Perceptron Loss for Binary Classification

$$L_{perceptron}(Y^i, E(W, \mathcal{Y}, X^i)) = E(W, Y^i, X^i) - \min_{Y \in \mathcal{Y}} E(W, Y, X^i).$$

- **Energy:** $E(W, Y, X) = -YG_W(X),$
- **Inference:** $Y^* = \operatorname{argmin}_{Y \in \{-1,1\}} YG_W(X) = \operatorname{sign}(G_W(X)).$
- Loss: $\mathcal{L}_{perceptron}(W, \mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} \left(sign(G_W(X^i)) Y^i \right) G_W(X^i).$
- Learning Rule: $W \leftarrow W + \eta \left(Y^i \text{sign}(G_W(X^i)) \right) \frac{\partial G_W(X^i)}{\partial W},$
- If Gw(X) is linear in W: $E(W, Y, X) = -YW^T\Phi(X)$

$$W \leftarrow W + \eta \left(Y^i - \operatorname{sign}(W^T \Phi(X^i)) \right) \Phi(X^i)$$

A Better Loss Function: Generalized Margin Losses

■ First, we need to define the Most Offending Incorrect Answer

Most Offending Incorrect Answer: discrete case

Definition 1 Let Y be a discrete variable. Then for a training sample (X^i, Y^i) , the **most offending incorrect answer** \bar{Y}^i is the answer that has the lowest energy among all answers that are incorrect:

$$\bar{Y}^i = \operatorname{argmin}_{Y \in \mathcal{Y} and Y \neq Y^i} E(W, Y, X^i). \tag{8}$$

Most Offending Incorrect Answer: continuous case

Definition 2 Let Y be a continuous variable. Then for a training sample (X^i, Y^i) , the **most offending incorrect answer** \bar{Y}^i is the answer that has the lowest energy among all answers that are at least ϵ away from the correct answer:

$$\bar{Y}^i = \operatorname{argmin}_{Y \in \mathcal{Y}, ||Y - Y^i|| > \epsilon} E(W, Y, X^i). \tag{9}$$

Examples of Generalized Margin Losses

$$L_{\text{hinge}}(W, Y^{i}, X^{i}) = \max(0, m + E(W, Y^{i}, X^{i}) - E(W, \bar{Y}^{i}, X^{i})),$$

Hinge Loss

- [Altun et al. 2003], [Taskar et al. 2003]
- With the linearly-parameterized binary classifier architecture, we get linear SVMs

$$L_{\log}(W, Y^i, X^i) = \log\left(1 + e^{E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i)}\right).$$

Log Loss

- "soft hinge" loss
- With the linearly-parameterized binary classifier architecture, we get linear Logistic Regression

Examples of Margin Losses: Square-Square Loss

$$L_{\text{sq-sq}}(W, Y^{i}, X^{i}) = E(W, Y^{i}, X^{i})^{2} + (\max(0, m - E(W, \bar{Y}^{i}, X^{i})))^{2}.$$

- Square-Square Loss
 - ▶ [LeCun-Huang 2005]
 - Appropriate for positive energy functions

Learning $Y = X^2$

Other Margin-Like Losses

LVQ2 Loss [Kohonen, Oja], Driancourt-Bottou 1991]

$$L_{\text{lvq2}}(W, Y^i, X^i) = \min\left(1, \max\left(0, \frac{E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i)}{\delta E(W, \bar{Y}^i, X^i)}\right)\right),$$

Minimum Classification Error Loss [Juang, Chou, Lee 1997]

$$L_{\text{mce}}(W, Y^{i}, X^{i}) = \sigma \left(E(W, Y^{i}, X^{i}) - E(W, \bar{Y}^{i}, X^{i}) \right),$$

$$\sigma(x) = (1 + e^{-x})^{-1}$$

Square-Exponential Loss [Osadchy, Miller, LeCun 2004]

$$L_{\text{sq-exp}}(W, Y^i, X^i) = E(W, Y^i, X^i)^2 + \gamma e^{-E(W, \bar{Y}^i, X^i)},$$

What Make a "Good" Loss Function

Good and bad loss functions

Loss (equation #)	Formula	Margin
energy loss	$E(W, Y^i, X^i)$	none
perceptron	$E(W, Y^i, X^i) - \min_{Y \in \mathcal{Y}} E(W, Y, X^i)$	0
hinge	$\max(0, m + E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i))$	m
log	$\log\left(1+e^{E(W,Y^i,X^i)-E(W,\bar{Y}^i,X^i)}\right)$	> 0
LVQ2	$\min \left(M, \max(0, E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i)\right)$	0
MCE	$\left(1 + e^{-\left(E(W,Y^{i},X^{i}) - E(W,\bar{Y}^{i},X^{i})\right)}\right)^{-1}$	> 0
square-square	$E(W, Y^i, X^i)^2 - (\max(0, m - E(W, \bar{Y}^i, X^i)))^2$	m
square-exp	$E(W, Y^{i}, X^{i})^{2} + \beta e^{-E(W, \bar{Y}^{i}, X^{i})}$	> 0
NLL/MMI	$E(W, Y^i, X^i) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^i)}$	> 0
MEE	$E(W, Y^{i}, X^{i}) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^{i})} $ $1 - e^{-\beta E(W, Y^{i}, X^{i})} / \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^{i})} $	> 0

Slightly more general form:

$$L(W, X^{i}, Y^{i}) = \sum_{y} H(E(W, Y^{i}, X^{i}) - E(W, y, X^{i}) + C(Y^{i}, y))$$

Advantages/Disadvantages of various losses

- Loss functions differ in how they pick the point(s) whose energy is pulled up, and how much they pull them up
- **■** Losses with a log partition function in the contrastive term pull up all the bad answers simultaneously.
 - This may be good if the gradient of the contrastive term can be computed efficiently
 - This may be bad if it cannot, in which case we might as well use a loss with a single point in the contrastive term
- Variational methods pull up many points, but not as many as with the full log partition function.
- **Efficiency of a loss/architecture:** how many energies are pulled up for a given amount of computation?
 - The theory for this is to be developed

Face Detection and Pose Estimation with a Convolutional EBM

- **Training:** 52,850, 32x32 grey-level images of faces, 52,850 selected non-faces.
- Each training image was used 5 times with random variation in scale, in-plane rotation, brightness and contrast.
- **2nd phase:** half of the initial negative set was replaced by false positives of the initial version of the detector.

 $E^*(W, X) = \min_Z ||G_W(X) - F(Z)||$

 $Z^* = \operatorname{argmin}_Z ||G_W(X) - F(Z)||$

Small $E^*(W,X)$: face

Large $E^*(W,X)$: no face

[Osadchy, Miller, LeCun, NIPS 2004]

Face Manifold

Energy-Based Contrastive Loss Function

$$\mathcal{L}(W) = \frac{1}{|\mathbf{f} + \mathbf{p}|} \sum_{X, Z \in \text{faces+pose}} \left[L^+ \left(E(W, Z, X) \right) \right] + L^- \left(\min_{X, Z \in \text{bckgnd,poses}} E(W, Z, X) \right)$$

$$L^{+}(E(W,Z,X)) = E(W,Z,X)^{2} = ||G_{W}(X) - F(Z)||^{2}$$

Attract the network output Gw(X) to the location of the desired pose F(Z) on the manifold

$$L^{-}\left(\min_{X,Z\in\text{bckgnd,poses}}E(W,Z,X)\right) = K\exp\left(-\min_{X,Z\in\text{bckgnd,poses}}||G_{W}(X) - F(Z)||\right)$$

Repel the network output Gw(X) away from the face/pose manifold

Convolutional Network Architecture

[LeCun et al. 1988, 1989, 1998, 2005]

Hierarchy of local filters (convolution kernels), sigmoid pointwise non-linearities, and spatial subsampling

All the filter coefficients are learned with gradient descent (back-prop)

Building a Detector/Recognizer: Replicated Conv. Nets

- Traditional Detectors/Classifiers must be applied to every location on a large input image, at multiple scales.
- Convolutional nets can replicated over large images very cheaply.
- The network is applied to multiple scales spaced by sqrt(2)
- Non-maximum suppression with exclusion window

Building a Detector/Recognizer: Replicated Convolutional Nets

- Computational cost for replicated convolutional net:
 - 96x96 -> 4.6 million multiply-accumulate operations
 - 120x120 -> 8.3 million multiply-accumulate operations
 - 240x240 -> 47.5 million multiply-accumulate operations
 - 480x480 -> 232 million multiply-accumulate operations
- Computational cost for a non-convolutional detector of the same size, applied every 12 pixels:
 - 96x96 -> 4.6 million multiply-accumulate operations
 - 120x120 -> 42.0 million multiply-accumulate operations
 - 240x240 -> 788.0 million multiply-accumulate operations
 - 480x480 -> 5,083 million multiply-accumulate operations

Face Detection: Results

Data Set->	t-> TILTED		PROFILE		MIT+CMU	
False positives per image->	4.42	26.9	0.47	3.36	0.5	1.28
Our Detector	90%	97%	67%	83%	83%	88%
Jones & Viola (tilted)	90%	95%	X		X	
Jones & Viola (profile)	X		70%	83%	X	

Face Detection and Pose Estimation: Results

The Oldest Example of Structured Prediction

- Trainable Automatic Speech Recognition system with a convolutional net (TDNN) and dynamic time warping (DTW)
- The feature extractor and the structured classifier are trained simultanesously in an integrated fashion.
- with the LVQ2 Loss:
 - Driancourt and Bottou's speech recognizer (1991)
- with NLL:
 - Bengio's speech recognizer (1992)
 - Haffner's speech recognizer (1993)

Energy-Based Factor Graphs: Energy = Sum of "factors"

Sequence Labeling

- Output is a sequence Y1,Y2,Y3,Y4.....
- NLP parsing, MT, speech/handwriting recognition, biological sequence analysis
- The factors ensure grammatical consistency
- They give low energy to consistent sub-sequences of output symbols
- The graph is generally simple (chain or tree)
- ▶ Inference is easy (dynamic programming, min-sum)

$$Y^* = \operatorname{argmin}_{Y \in \mathcal{Y}, Z \in \mathcal{Z}} E(Z, Y, X).$$

Energy-Based Factor Graphs

- **■** When the energy is a sum of partial energy functions (or when the probability is a product of factors):
 - ▶ Efficient inference algorithms can be used for inference (without the normalization step).

Efficient Inference: Energy-Based Factor Graphs

- Example:
 - Z1, Z2, Y1 are binary
 - Z2 is ternary
 - A naïve exhaustive inference would require 2x2x2x3=24 energy evaluations (= 96 factor evaluations)
 - ▶ BUT: Ea only has 2 possible input configurations, Eb and Ec have 4, and Ed 6.
 - Hence, we can precompute the 16 factor values, and put them on the arcs in a trellis.
 - A path in the trellis is a config of variable
 - The cost of the path is the energy of the config

The energy is a sum of "factor" functions

Factor graph

Energy-Based Belief Prop

- The previous picture shows a chain graph of factors with 2 inputs.
- The extension of this procedure to trees, with factors that can have more than 2 inputs the "min-sum" algorithm (a non-probabilistic form of belief propagation)
- Basically, it is the sum-product algorithm with a different semiring algebra (min instead of sum, sum instead of product), and no normalization step.
 - [Kschischang, Frey, Loeliger, 2001][McKay's book]

Simple Energy-Based Factor Graphs with "Shallow" Factors

Linearly Parameterized Factors

with the NLL Loss:

- Lafferty'sConditionalRandom Field
- with Hinge Loss:
 - Taskar and Altun/Hofmann's Max Margin Markov Nets and Latent SVM
- with Perceptron Loss
 - Collins's Structured Perceptron model

Example: The Conditional Random Field Architecture

- A CRF is an energy-based factor graph in which:
 - the factors are linear in the parameters (shallow factors)
 - The factors take neighboring output variables as inputs
 - The factors are often all identical

Example: The Conditional Random Field Architecture

Applications:

- X is a sentence, Y is a sequence of Parts of Speech Tags (there is one Yi for each possible group of words).
- X is an image, Y is a set of labels for each window in the image (vegetation, building, sky....).

Deep/non-linear Factors for Speech and Handwriting

- Trainable Speech/Handwriting Recognition systems that integrate Neural Nets (or other "deep" classifiers) with dynamic time warping, Hidden Markov Models, or other graph-based hypothesis representations
- Training the feature extractor as part of the whole process.
- with the LVQ2 Loss:
 - Driancourt and Bottou's speech recognizer (1991)
- with NLL:
 - Bengio's speech recognizer (1992)
 - Haffner's speech recognizer (1993)

- With Minimum Empirical Error loss
 - Ljolje and Rabiner (1990)
- with NLL:
 - Bengio (1992), Haffner (1993), Bourlard (1994)
- With MCE
 - Juang et al. (1997)
- Late normalization scheme (un-normalized HMM)
 - Bottou pointed out the label bias problem (1991)
 - Denker and Burges proposed a solution (1995)

Deep Factors & implicit graphs: GTN

- Handwriting Recognition with Graph Transformer Networks
- Un-normalized hierarchical HMMs
 - Trained with Perceptron loss [LeCun, Bottou, Bengio, Haffner 1998]
 - Trained with NLL loss [Bengio, LeCun 1994], [LeCun, Bottou, Bengio, Haffner 1998]
- Answer = sequence of symbols
- Latent variable = segmentation

Graph Transformer Networks

- Variables:
 - X: input image
 - Z: path in the interpretation graph/segmentation
 - Y: sequence of labels on a path
- Loss function: computing the energy of the desired answer: E(W,Y,X)

Variables:

- X: input image
- Z: path in the interpretation graph/segmentation
- Y: sequence of labels on a path
- Loss function: computing the constrastive term:

$$E(W, \check{Y}, X)$$

Graph Transformer Networks

- Example: Perceptron loss
- Loss = Energy of desired answer - Energy of best answer.
 - (no margin)

Yann LeCun

New York University

Global Training Helps

- Pen-based handwriting recognition (for tablet computer)
 - [Bengio&LeCun 1995]

Graph Composition, Transducers.

- The composition of two graphs can be computed, the same way the dot product between two vectors can be computed.
- General theory: semi-ring algebra on weighted finitestate transducers and acceptors.

Check Reader

- Graph transformer network trained to read check amounts.
- Trained globally with Negative-Log-Likelihood loss.
- **■** 50% percent corrent, 49% reject, 1% error (detectable later in the process.
- **Fielded in 1996, used in many banks in the US and Europe.**
- Processes an estimated 10% of all the checks written in the US.

Deep Factors / Deep Graph: ASR with TDNN/HMM

- Discriminative Automatic Speech Recognition system with HMM and various acoustic models
 - Training the acoustic model (feature extractor) and a (normalized) HMM in an integrated fashion.
- With Minimum Empirical Error loss
 - Ljolje and Rabiner (1990)
- with NLL:
 - Bengio (1992)
 - Haffner (1993)
 - Bourlard (1994)
- With MCE
 - Juang et al. (1997)
- Late normalization scheme (un-normalized HMM)
 - Bottou pointed out the label bias problem (1991)
 - Denker and Burges proposed a solution (1995)

Feed-Forward, Causal, and Bi-directional Models

■ EBFG are all "undirected", but the architecture determines the complexity of the inference in certain directions

- Feed-Forward
 - Predicting Y from X is easy
 - Predicting X from Y is hard

- "Causal"
 - Predicting Y from X is hard
 - Predicting X from Y is easy

- Bi-directional
 - X->Y and Y->X are both hard if the two factors don't agree.
 - They are both easy if the factors agree