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"End-to-End Learning.

M&J

E""—“}W“’Et @ Making every single module in the

system trainable.

Objective Function

& Every module is trained simultaneously

actual desired o o .
output / \Dutput so as to optimize a global loss function.
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' Using Graphs instead of Vectors.
|
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traditional graph cys .
radient-based transformer | @ Whereas traditional learning
earner network . . . .
machines manipulate fixed-size
fixed-size
vectors Variohiea graphs vectors, Graph Transformer
; rks manipul raphs.
TN Networks manipulate graphs

i [] II
Layer Graph
| Pt |

f
|
]

Graph
Transformer

Lo
0

Yann LeCun t New York University




’Enéi;gy-Based Model

& Highly popular methods in the Machine Learning and Natural Language
Processing Communities have their roots in Speech and Handwriting
Recognition

» Structured Perceptron, Conditional Random Fields, and related learning
models for “structured prediction” are descendants of discriminative

learning methods for speech recognition and word-level handwriting
recognition methods from the early 90's

& A Tutorial and Energy-Based Learning:
» [LeCun & al., 2006]

& Discriminative Training for “Structured Output” models

» The whole literature on discriminative speech recognition [1987-]

» The whole literature on neural-net/HMM hybrids for speech [Bottou
1991, Bengio 1993, Haffner 1993, Bourlard 1994]

» Graph Transformer Networks [LeCun & al. Proc IEEE 1998]
» Structured Perceptron [Collins 2001 ]

» Conditional Random Fields [Lafferty & al 2001 ]

» Max Margin Markov Nets [Altun & al 2003, Taskar & al 2003]

Yann LeCun * New York University
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Energy-Based Model for Decision-Mm

=SS . =

Human

Animal ] @ Model: Measures the compatibility
Airplane T | between an observed variable X and
Car NN ] a variable to be predicted Y through
Lcic | M. an energy function E(Y,X).

1‘ E(Y, X)
E Function E(Y, X * :
nergy Function E(Y, X) Y' = argmlnYEyE(Ya X)
T T i@ Inference: Search for the Y that
X Y minimizes the energy within a set y
Observed variables Variables to be If th has | dinali
(input) predicted i If the set has low cardinality, we can
(answer) use exhaustive search.
Human
Animal
Airplane
Car
Truck
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Complex Tasks: Inference is non-trivial

S . ==

! ! T

E(Y, X) | [ E(Y, X) ] [ E(Y, X) ]"'Whe“ the
A | A cardinality or
YT YT dimension of Y is
(084 10962 10962 2425070000 large, exhaustive
. search is
impractical.
¥ We need to use
@ Y © “smart” inference
T T T procedures: min-
B(Y, X) BE(Y, X) E(Y, X) sum, Viterbi, min
| ‘ | | | | cut, belief
X T YT X T YT X T YT propagation,
‘C h LS s stV (Penon e Rl ) - gradient decent.....

(d) () (H)
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Converting Energies to Probabilities

& Energies are uncalibrated

» The energies of two separately-trained systems cannot be combined
» The energies are uncalibrated (measured in arbitrary untis)

& How do we calibrate energies?
» We turn them into probabilities (positive numbers that sum to 1).

» Simplest way: Gibbs distribution
» Other ways can be reduced to Gibbs by a suitable redefinition of the

energy.
6— 6 E (Y:X )
P(Y|X) =
A
Partition function Inverse temperature

Yann LeCun t New York University



andwriting recognition § sz

Haffner, Proc IEEE 1998]

Sequence labeling Viterbi </ —————-———EEEEEE
- — Transformer ? !

& integrated segmentation and 3 > |
recognition of sequences. e W‘ |

4 |

@ Each segmentation and ’ A i
recognition hypothesis is a path ;. . 1.cior ;,/_' _________ = i

in a graph ] o

@ inference = finding the shortest Grint : Oﬁ_}. i E
path in the interpretation graph. ; 1 i i

& Un-normalized hierarchical i i
HMMs a.k.a. Graph / i i
Transformer Networks RecosmIbon %&Q I G5 I I

» [LeCun, Bottou, Bengio fransformer [ | |

/ SN D N0 N A

| |

| |
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& The energy includes ‘‘hidden” variables Z whose value is never given to us

E(Y,X)=min E(Z,Y, X).

A=A
* .
Y" = argminy .y 7.z E(Z,Y, X).
EW. Y, X) E(W, 2,Y, X)

IRGLOREE R e .
( o~ ? L 4 I
? | ] L | |
L ) S |
| T |
‘ | . |
T | DUt el I
Gface (X) l [) [ ) [ ] ‘ ® | |
| | |
. | | I
A | CraceX)| | Grace )| |Crace(X)|= = = = | Grace(X | |
| |
| ! 1
1 llI l I

face" (= 1) position "face" (= 1)

or of or
"no face" (= 0) face "no face" (= 0)
Y Z Y
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What can the latent variables represent? =

& Variables that would make the task easier if they were known:
» Face recognition: the gender of the person, the orientation of
the face.

» Object recognition: the pose parameters of the object
(location, orientation, scale), the lighting conditions.

» Parts of Speech Tagging: the segmentation of the sentence
into syntactic units, the parse tree.

» Speech Recognition: the segmentation of the sentence into
phonemes or phones.

» Handwriting Recognition: the segmentation of the line into
characters.

» Object Recognition/Scene Parsing: the segmentation of the
image into components (objects, parts,...)

& In general, we will search for the value of the latent variable that
allows us to get an answer (Y) of smallest energy.

Yann LeCun * New York University



Probabilistic Latent Variable Models

& Marginalizing over latent variables instead of minimizing.

6_6E(Z?Y7X)
P(Z,Y|X) = [ ey sez € PE@=X)
e_l@E(Z:YnX)
P(Y|X) = Jez

& Equivalent to traditional energy-based inference with a redefined
energy function:

1
zeZ

& Reduces to traditional minimization when Beta->infinity

Yann LeCun t New York University



_Training an EBM

& Training an EBM consists in shaping the energy function so that the
energies of the correct answer is lower than the energies of all other
answers.

» Training sample: X = image of an animal, Y = “animal”

E(animal, X)<E(y, X)¥ y#animal

Human R |—F Human T ]
Animal BT |3+— After Animal B
Airplane I =%  training  Airplane T ]
Car ] = = Car H R |
Truck R ]— Truck R ]
. >
E(Y, X) E(Y,X)

Yann LeCun t New York University



_Architecture and Loss Function

@ Family of energy functions E — { E(W, Y, X) - W € W}
@ Training set 8 — {(X?':!Yi) + g = l-...P}

@ Loss functional / Loss function  L(FE, S) L(W,S)

» Measures the quality of an energy function on training
set
% .
& Training W* = min ﬁ(m S)
] Wew
& Form of the loss functional

» invariant under permutations and repetitions of the samples

P
1 . .
£(Ea3) — F L(Y%aE(Wa«ya X%))_I_R(W)
z=1/ \
| Energy surface Regularizer
Per-sample Desired  for a given Xi
loss answer as Y varies

Yann LeCun t New York University



Designing a L.oss Functional
[

Human T |— Human
Animal BT 13— After Animal
Airplane I |1—F  training  Airplane
Car EJ =% P Car
Truck I |—F Truck
A A
push down
o w After £
:}i : training -
= 5 =
K K
E i > - >
Answer (Y) Answer (Y)

& Push down on the energy of the correct answer

& Pull up on the energies of the incorrect answers, particularly if they
are smaller than the correct one

Yann LeCun t New York University



Architecture + Inference Algo + Loss Function = Model

S e e

E(W.,Y.X) i@ 1. Design an architecture: a particular form for E(W,Y,X).

* i 2. Pick an inference algorithm for Y: MAP or conditional
distribution, belief prop, min cut, variational methods,
gradient descent, MCMC, HMC.....

i@ 3. Pick a loss function: in such a way that minimizing it
with respect to W over a training set will make the inference
algorithm find the correct Y for a given X.

W%

!

& 4. Pick an optimization method.

=~ —P»

& PROBLEM: What loss functions will make the machine approach
the desired behavior?

Yann LeCun t New York University



Examples of Loss Functions: Energy Loss
I ————

@ Energy Loss  Lepergy (Y, E(W, Y, X")) = E(W,Y", X").

» Simply pushes down on the energy of the correct answer
S

[| Net(X) - Net(Y) ||L1

ergy
E(W,Y,X)
Neural Net Neural Net
1-6-6 1-6-6
|| Net(X) - Y ||L1 param Wx param Wy
A [ Y
A * \ \
C input X X output Y )
Neural Net
1-20-1 b) N
(26 hidd
uni:s)en ( \\.o
param W %o
: ¥
/ ]
C input X X output Y ) \})v
(a) CJQ
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Negative Log-Likelihood Loss

m&_@. —_—

& Conditional probability of the samples (assuming independence)

P

P!, YPIX L xP o) = [ POy X, w).
P P 1=1

—log | [ POV X", W) =) —log P(Y'| X', ).

=1 1=1

. 6_18E(W3Y:XZ)
& Gibbs distribution: P(Y|XZ j W) —

—BE(W,y,X?%) "
fyey@ BE(W,y )

P P
~log [ POV |X", W) = Y BEOV, Y, X) + log / e,
=1 =1 ye

& We get the NLL loss by dividing by P and Beta:

P
1 L 1

Lon(W,8) = = (E(W, Y X 4 = log/
P ; p yey

& Reduces to the perceptron loss when Beta->Infinity

G—BE(W,y,X*')) .

Yann LeCun t New York University



Negative Log-Likelihood Loss

M%ﬁﬁ‘m,;; =

& Pushes down on the energy of the correct answer

& Pulls up on the energies of all answers in proportion to their probability

. ) 1 i
( (W, Y%, X% + = log / e PEWy, X >).
B ye)y

8Lnu(W, Y“',Xi) 8E(W, Y%',X“') / aE(W, Y, Xi)
Yey

M:

Lon(W,S)

?,=1

P(Y|X", W),

oW B oW oW
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. Negative Log-Likelihood Loss

& A probabilistic model is an EBM in which:

» The energy can be integrated over Y (the variable to be predicted)
» The loss function is the negative log-likelihood

& Negative Log Likelihood Loss has been used for a long time in many
communities for discriminative learning with structured outputs
» Speech recognition: many papers going back to the early 90's

[Bengio 92], [Bourlard 94]. They call *"Maximum Mutual
Information”

» Handwriting recognition [Bengio LeCun 94], [LeCun et al. 98]
» Bio-informatics [Haussler]

» Conditional Random Fields [Lafferty et al. 2001]

» Lots more......

» In all the above cases, it was used with non-linearly parameterized
energies.

Yann LeCun * New York University



A Simpler Loss Functions:Perceptron Loss

Lyerceptron(Y', E(W, ¥, X")) = E(W,Y", X*) — min E(W,Y, X").

& Perceptron Loss [LeCun et al. 1998], [Collins 2002]

» Pushes down on the energy of the correct answer

» Pulls up on the energy of the machine's answer

» Always positive. Zero when answer is correct

» No “margin”: technically does not prevent the energy surface from
being almost flat.

» Works pretty well in practice, particularly if the energy
parameterization does not allow flat surfaces.

» This is often called “discriminative Viterbi training” in the
speech and handwriting literature

Yann LeCun * New York University
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| Perceptron Loss for Binary Classification
S IS

Lyerceptron(Y', EOW, ¥, X")) = E(W,Y", X*) — min E(W,Y, X").

@ Energy: EW)Y, X)=-YGw(X),

@ Inference: Y™ = argminyc;_; 3 — YGw(X) = sign(Gw (X)).

P
1 : i i i
@ Loss: Eperceptron(vva 3) — F Z (SlgD(GW (X )) -Y ) GW (X )
i=1
. : L OGw (X"
& Learning Rule: W —W+n (YZ _ sign(GW(X“)) gv; ) :
@ If Gw(X) is linear in W:  E(W. Y, X) = _yw?T (X))

W — W +n (Y —sign(WTd(X7))) ®(X7)

Yann LeCun



A Better Loss Function: Generalized Margin Losses
[ = —

e ————

& First, we need to define the Most Offending Incorrect Answer

& Most Offending Incorrect Answer: discrete case

Definition 1 Let Y be a discrete variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are incorrect:

V' = argminy ¢ yonay 2y E(W, Y, X*). (8)

& Most Offending Incorrect Answer: continuous case

Definition 2 Let Y be a continuous variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y" is the answer that has the lowest energy among
all answers that are at least e away from the correct answer:

Y* = argminy ey y_yi|>E(W, Y, X?). (9)

Yann LeCun

t New York University



’ Examples of Generalized Margin Losses

Lhinge(W,Y*, X") = max (0,m + E(W,Y*, X*) — E(W,Y", X")),

& Hinge Loss

» [Altun et al. 2003], [Taskar et al. 2003]

» With the linearly-parameterized binary
classifier architecture, we get linear SVMs

—
% 1.5
o
—

Liog (W, Y X’i) — log (1 4 GE(W,W,X@)—E(W,?@',X‘@)) .

& Log Loss
» “soft hinge” loss

» With the linearly-parameterized binary
classifier architecture, we get linear
Logistic Regression

Loss: L

Yann LeCun

t New York University
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| Examples of Margin Losses: Square-Square Loss
h—-———.—._._.__A -

Leq—sq(W, Y%, X%) = EOW,Y?, X1)? + (max(0,m — E(W,Y", X%)))"
@ Square-Square Loss gt et ey

» [LeCun-Huang 2005]

» Appropriate for positive energy
functions

energy
E(W,Y,X)

|| Net(X) - Net(Y) ||L1

Neural Net Neural Net
1-6-6 1-6-6

param Wx param Wy
A [
\ \

( input X X output Y )
(b)

Yann LeCun t New York University



_Other Margin-Like Losses

& LVQ2 Loss [Kohonen, Oja], Driancourt-Bottou 1991]

L EW,Y', X)) —-EW,Y"! X"
leqg(VV,Yz,Xz)zmin(l,maX(O, (WY, X°) v, Y7, ))>,

SE(W,Y' X1)

& Minimum Classification Error Loss [Juang, Chou, Lee 1997]
Linee W, Y, X") =0 (E(W,Y", X") — E(W,Y", X")),
o(x) = (1+e %) !
& Square-Exponential Loss [Osadchy, Miller, LeCun 2004 ]

Loqmexp(W,Y', X7) = EOV,Y', X)? 4y POVYXD,

Yann LeCun t New York University



What Make a ‘“Good’’ Loss Function

& Good and bad loss functions

Loss (equation #) | Formula Margin
energy loss E(W,Y"', X") none
perceptron EW,Y", X*) —minyey E(W,Y, X?) 0
hinge max (0,m+ E(W,Y", X*) — E(W,Y", X")) m
log log (1 + GE(W;Y@',X“')—E(W;W,XZ')) >0
LVQ2 min (M, max(0, E(W,Y", X*) — E(W,Y", X")) 0
MCE (14 e~ (BOWYXD=ERYTXD) ) - >0
square-square EW,Y" X")? — (max(0, m — E(W, Y, X'E)))2 m
square-exp E(W,Y?, X2 4 ge FVY"XY) | >0
NLL/MMI E(W,Y*, X") + 4 log [y, e #EWsX0) >0
MEE | — e BEWY' X /fuey e~ PEW,y,X") > 0

& Slightly more general form:

LW, XY

Yann LeCun

ZH

EwW.,Y X)—E(W,y, X)+C(Y',))

t New York University
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: Advantages/Disadvantages of various losses

& Loss functions differ in how they pick the point(s) whose energy is
pulled up, and how much they pull them up

& Losses with a log partition function in the contrastive term pull up all
the bad answers simultaneously.

» This may be good if the gradient of the contrastive term can be
computed efficiently

» This may be bad if it cannot, in which case we might as well
use a loss with a single point in the contrastive term

& Variational methods pull up many points, but not as many as with the
full log partition function.

& Efficiency of a loss/architecture: how many energies are pulled up for
a given amount of computation?
» The theory for this is to be developed

Yann LeCun * New York University
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ace Detection and Pose Estimation with

a Convolutional EBM

— e e e

m;‘ffr‘ S

i@ Training: 52,850, 32x32 E* (W X) = minZ| |GW (X) — F(Z)H

grey-level images of faces,

52,850 selected non-faces. T* — argminz| |GW (X) — F(Z)| |

@ Each training image was used
5 times with random variation

) . . E(W,Z,X)
in scale, in-plane rotation, 7Y
brightness and contrast. I
il 2" phase: half of the initial
negative set was replaced by ‘ IG,, (X)—F(Z)
false positives of the initial /
G (X
version of the detector . wX) Fiz)
: analytical
convolutional :
~>| network ;nap pIng '(;nicol
ace manilio
W (param) — N
4 ) 4 N
Small E*(W,X): face X 7
Large E*(W,X): no face (Image) (pose)
. J . y

[Osadchy, Miller, LeCun, NIPS 2004]

Yann LeCun

t New York University



‘Face Manifold

Low dimensional space

IG(X)-min_z F(Z)Ill — o G(X)

Face Manifold —/

parameterized by pose

Apply =) Mapping: G
1




Enéfgy-Based Contrastive Loss Function
——

1
L(W) = LY (EW,Z, X +L—( min EW,Z,X)
" £+ pl X;Zefges—l—pose [ - ))] X,Z€bckgnd,poses ( )

LT (EW,Z,X))=EW,Z,X)* = ||Gw(X) — F(Z)|]?

Attract the network output Gw(X) to the

location of the desired pose F(Z) on the manifold

- ] EW,. Z, X =K —mi ckond.poses| | Gw (X)) — F(Z
1 peamin,  BOV:Z,X) ) = K oxp (-mins.zenesgnt o] G (X) — F(2))

Repel the network output Gw(X) away

from the face/pose manifold




Convoleork Architture

M"* = - — — — —

[LeCun et al. 1988, 1989, 1998, 2005]

Cl: feature
g 2Bx.28
LR AR C3: f. maps

Input , 20@10x10
32x32 51: f. maps S4: f. maps

. 20@5x5 C5: 120
8@14x14 F @5x5 RN
— - —

- Subsamplin el :
Convolutions Lt el ~ subsampling  oapection
Convolutions Convolutions

Hierarchy of local filters (convolution kernels),
sigmoid pointwise non-linearities, and spatial subsampling

All the filter coefficients are learned with gradient descent (back-prop)

Yann LeCun t New York University
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Bulldlng a Detector/Recogmzer' Replicated Conv. Nets

m e s s =SS0 Sl

output: 3x3

input:40x40

@@ Traditional Detectors/Classifiers must be applied to every
location on a large input image, at multiple scales.

i@ Convolutional nets can replicated over large images very
cheaply.

@@ The network is applied to multiple scales spaced by sqrt(2)

& Non-maximum suppression with exclusion window

Yann LeCun t New York University
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‘Building a Detector/Recognizer:

Replicated Convolutional Nets

i SSSS== ===

i Computational cost for replicated convolutional net:
il 96x96 -> 4.6 million multiply-accumulate operations
il 120x120 -> 8.3 million multiply-accumulate operations
il 240x240 -> 47.5 million multiply-accumulate operations
il 480x480 -> 232 million multiply-accumulate operations

i Computational cost for a non-convolutional detector of the
same size, applied every 12 pixels:

il 96x96 -> 4.6 million multiply-accumulate operations

il 120x120 -> 42.0 million multiply-accumulate operations
il 240x240 -> 788.0 million multiply-accumulate operations
il 480x480 -> 5,083 million multiply-accumulate operations

<+— 96x96 window
<4 ]2 pixel shift

84x84 overlap




1

Face Detection: Results

S

Data Set->| TILTED PROFILE MIT+CMU
False positives per image->| 4.42 | 269 | 0.47 | 3.36 0.5 1.28
Our Detector 90% | 97% | 67% | 83% 83% 88%
Jones & Viola (tilted) 90% | 95% X
Jones & Viola (profile) 70% 83%

Yann LeCun




Face Detection and Pose Estimation: Results

GOOSSENS - N-APAMS
OTLiB~-COUTELIS-SolLE

Yann LeCun t New York University
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_The Oldest Example of Structured Prediction

& Trainable Automatic Speech Recognition system with a
convolutional net (TDNN) and dynamic time warping (DTW)

& The feature extractor p EW,2,Y,X)
and the structured ( P )
classifier are trained lr,7,1 <
simultanesously in an L"//, ~’ DTW
integrated fashion. 1 P
feature | vectors L
& with the LVQ2 Loss : e —

» Driancourt and 1\ [ ’ Y ]_l
Bottou's speech :
recognizer (1991) [ TDNN ] |

< with NLL: A word templates :

» Bengio's speech |
recognizer (1992) Path word in

» Haffner's speech the lexicon
recognizer (1933) X (acoustic vectors) A Y

Yann LeCun * New York University



Energy-Based Factor Graphs: Energy = Sum of ‘‘factors”
R E————————

@ Sequence Labeling Y* = argmiﬂygy?ZeZE(Z: Y, X)

» Qutput is a sequence

Y1,Y2,Y3,Y4......

» NLP parsing, MT,
speech/handwriting
recognition, biological
sequence analysis

» The factors ensure
grammatical consistency

» They give low energy to
consistent sub-sequences of
output symbols

» The graph is generally simple
(chain or tree)

» Inference is easy (dynamic X
programming, min-sum)

Y4

Yann LeCun t New York University
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. Energy-Based Factor Graphs

[ —

& When the energy is a sum of partial energy functions (or when the
probability is a product of factors):

» Efficient inference algorithms can be used for inference (without the
normalization step).

Elx.zD) | [E2z1.22)| [E3(22.23)| [E4(Z3.Y)
VA VA VA VAN
X 71 72 73 Y

Yann LeCun t New York University



Effic1ent Inference Energy-Based Factor Graphs

& Example:

& The energy is a sum of “factor” functions
»Z1,Z2, Y1 are binary

» Z2 is ternary Factor graph

» A naive exhaustive T E(Y, Z,X)
inference would require
2X2X2X3=24 energy /\
evaluations (= 96 factor / \
evaluations) ( Eo(X,71) ] [Eb(X 7y, 22)] (E (Z3, Y1) ] [ Eq(Y1, Yz)]

» BUT: Ea only has 2 possible AN AN N N
input configurations, Eb X/\Zl/ \22/ \Yl/ \Y2

and Ec have 4, and Ed 6.

» Hence, we can precompute : : 2
the 16 factor values, and Equivalent trellis
put them on the arcs in a
trellis.

» A path in the trellis is a
config of variable ™

» The cost of the path is the
energy of the config Zol

Yann LeCun * New York University

Ey(X,1,1)




& The previous picture shows a chain graph of factors with 2
inputs.

& The extension of this procedure to trees, with factors that can
have more than 2 inputs the ‘“min-sum” algorithm (a non-
probabilistic form of belief propagation)

& Basically, it is the sum-product algorithm with a different semi-
ring algebra (min instead of sum, sum instead of product), and
no normalization step.

» [Kschischang, Frey, Loeliger, 2001][McKay's book]

Yann LeCun

t New York University



_Simple Energy

Based Factor Graphs wit

] (1R TSIV

& Linearly Parameterized Factors

& with the NLL Loss :

>

Lafferty's
Conditional
Random Field

& with Hinge Loss:

>

Taskar and
Altun/Hofmann's
Max Margin
Markov Nets and
Latent SVM

& with Perceptron Loss

» Collins's Structured

Yann LeCun

Perceptron model

t New York University



Example The Condltlonal Random Fleld Archltecture

& A CREF is an energy-based factor graph in which:

» the factors are linear in the parameters (shallow factors)
» The factors take neighboring output variables as inputs
» The factors are often all identical

_

2

[f(X, Y1,Yz)} [f(X, Yz,Ys)J [f(X,Y:»,,YZ;)}

Y, Y. TN Ys Y,

Yann LeCun t New York University



Example The Condltlonal Random Fleld Archltecture

& Applications:

» X is a sentence, Y is a sequence of Parts of Speech Tags (there is
one Yi for each possible group of words).

» X is an image, Y is a set of labels for each window in the image

(vegetation, building, sky....).
Cgﬂmx

T
P %

[f(X, Y1,Y2)} [f(X, Yz,Ys)J [f(X,l/%,,Y4)J

Y, Y. TN Ys Yy

Yann LeCun t New York University



; Deep/non-linear Factors for Speech and Handwriting

& Trainable Speech/Handwriting Recognition systems that integrate Neural Nets (or
other *‘deep” classifiers) with dynamic time warping, Hidden Markov Models, or
other graph-based hypothesis representations

@ Training the feature & With Minimum Empirical Error loss

extractor as part of the  ” Ljolje and Rabiner (1990)

whole process. & with NLL:
@ with the LVQ2 Loss : > Blegngg‘ilo (1992), Haffner (1993), Bourlard
» Driancourt and ( )
Bottou's speech & With MCE
recognizer (1991) » Juang et al. (1997)
& with NLL: & Late normalization scheme (un-normalized
» Bengio's speech HMM)
recognizer (1992) » Bottou pointed out the label bias
» Haffner's speech problem (1991)
recognizer (1993) » Denker and Burges proposed a solution
(1995)

Yann LeCun t New York University



"eep Factors & impheit”

 grap CJTN

& Handwriting Recognition with
Graph Transformer Networks

& Un-normalized hierarchical
HMMs
» Trained with Perceptron loss

[LeCun, Bottou, Bengio,
Haffner 1998]

» Trained with NLL loss
[Bengio, LeCun 1994],
[LeCun, Bottou, Bengio,
Haffner 1998]

& Answer = sequence of symbols

& Latent variable = segmentation

Yann LeCun

Viter bl 4;’ — i ! o ) ! e e e e
Transformer ?

3 2

GTsel w °
4

3

Path Selector it L

Grint Oﬁ—:.

Recognition Gw| [Gw| oo Gw
Transformer f

~NN

t New York University



[0.7i+1)

“*‘(f}raph

Transformer

prae CLAMPED PHASE

C™ b‘t\ﬂun]:n]/.

= | Viterbi %inrmur [
ETCAN S 4 [2450)

< Variables: % Qangﬂm
» X: input image "

» Z: path in the m%éﬁm
interpretation "
graph/segmentation

»Y: sequence of labels on a (TS S
path W o | I 4 | 4 q Tlflrrrsi:-msr

@ Loss function: computing the ™"
energy of the desired answer: —
EW,Y, X) T -
Goeg

|  Segmenter |

W

Yann LeCun t New York University




[C'E][ 1)

"Graph |
FREE/UNCLAMPED PHASE
Transformer

3['“]'1 1]34['3-4111 1]B1W1I -1l

1

Viterbi Transformer

& Variables:
» X: input image

» Z: path in the ?}:
interpretation
graph/segmentation

»Y: sequence of labels on a

path N w. PTITH N H N H AN TETH._:ET
& Loss function: computing the - [ \ A\

constrastive term:

E(W,Y,X)

Feacognition

Zeqmentation
Graph

| Segmenter |

k0

Yann LeCun t New York University




Graph

Transformer
yNetworks

& Example: Perceptron loss

& Loss = Energy of desired
answer — Energy of best
answer.

» (no margin)

Yann LeCun

Loss Function

[+ 1)
711, T [0Eli-1)
3[0]i+1)
Gevi 8 Wbl

3[':I 1](—1]H4[U4]l: 1]BT[U1I -1

| Viterbi Tansformer § t
[EI'I]: +1 i 4[2.4]:'!]
,;I | Viterbi Transfarmer §
G[GAIEI] 4[oE)+1]

ll34ll -I FE{H EE EEEDF I /
Desied
_ ‘ 1][ 1 | ntenpretation

Graph
Gint

\\[_” /[+1:| (f[_” Fecognition

4 1 Tamtmsar
w  — | § m T
Meuml et M
Weights

Segmentation
Graph

t New York University



W“! : ' — "Script'

| o o A
.Global Training Helps Viterbl Graph
—_— — )
Beam Search
.. .o Transformer
& Pen-based handwriting recognition I
(for tablet computer) Interpretation Graph $
> [Bengio&LeCun 1995] kﬂ%ﬂdgeﬁage Ry Cnm*pnse
Recognition Graph S
Recognition
Transformer
I
SDNN/HMM Mg Gangusge toasi AMAP Graph %
no albaliraining s T YT TR T B ST 7 12.4 - * -
i R ————— = AMAP Computation
s
HOS | Ho Language Model Segmentation Graph u%%@
no glebaliraining T 8.5 = +
With Qlobal raining | €. 5 Segmentation
Transformer
HOS | 25K Word Lexicon Normallzed Word
no ghobaliraining rr—
with globalfraining F 1.4 Word Normalization
0 5 10 15 Seript

Yann LeCun * New York University



Interpretations:

Interpretatl h ut (2.0
" Graph Miemreation grap cap (03]
0.8 cat (1.4)

Composition,

grammar graph

& The composition of two
graphs can be computed,
the same way the dot
product between two
vectors can be computed.

Graph Composition

& General theory: semi-ring
algebra on weighted finite-
state transducers and
acceptors.

Recognltion
Graph

Yann LeCun

t New York University



1.1 discdminant cost

i — 4
. Check Reader /+,O‘—\
[ ————— negative log-likellhood 4.3 3.2 negative log-likellhood
Forward Forward
' §-02 ! =3-02 all posslble

@@ Graph transformer network comect Interpretation gQq_g %% % *a1 nidibretations

trained to read check amounts. : b Grammar

Compose Compose - o
& Trained globally with ‘ - :‘h“\h —ra
ecognltlon Grap -
Negative-Log-Likelihood loss. | % @9 T
correct Character
& 50% percent corrent, 49 % e Recognizer
Fola | g

reject, 1% error (detectable Segmentatlon Graph u:“%*’: - =

later in the process. Segmenter
& Fielded in 1996, used in many Fleld Graph ,,; ﬁ?—i;-

banks in the US and Europe. i
& Processes an estimated 10% of Check Graph nL

all the checks written in the rmee i $ s

US. tThree dolhms and 455 I !

Yann LeCun

t New York University



; Deep Factors / Deep Graph: ASR with TDNN/HM

& Discriminative Automatic Speech Recognition system with HMM and
various acoustic models

» Training the acoustic model (feature extractor) and a
(normalized) HMM in an integrated fashion.
& With Minimum Empirical Error loss
» Ljolje and Rabiner (1990)

& with NLL:
» Bengio (1992)
» Haffner (1993)
» Bourlard (1994)

& With MCE
» Juang et al. (1997)

& Late normalization scheme (un-normalized HMM)

» Bottou pointed out the label bias problem (1991)
» Denker and Burges proposed a solution (1995)

Yann LeCun t New York University



- Keed-Forward, Causal, and Bi-directional Models *

& EBFG are all ‘“‘undirected”, but the architecture determines the
complexity of the inference in certain directions

Distance

omplicated
unction

X Y X Y X Y
& Feed-Forward & ““Causal” & Bi-directional
» Predicting Y » Predicting Y » X->Y and Y->X are
from X is easy from X is both hard if the two
» Predicting X hard factors don't agree.
from Y is hard » Predicting X » They are both easy if
from Y is easy the factors agree

Yann LeCun * New York University
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