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Group sparse coding

Sparse components exhibit statistical dependencies.

How to model this structure?



Simoncelli (1997)
‘bow ties’

allows a system with limited response
range to handle a wider dynamic range of
input. Divisive normalization achieves
this goal, producing sigmoidal con-
trast–response functions similar to those
seen in neurons. In addition, it seems
advantageous for tuning curves in stim-
ulus parameters such as orientation to
retain their shape at different contrasts,
even in the presence of response satura-
tion20. Previous models have accom-
plished this by computing a normalization
signal that is independent of parameters
such as orientation (achieved with a uni-
formly weighted sum over the entire neur-
al population). A consequence of this
design is that the models can account for
the response suppression that occurs, for example, when a grat-
ing of non-optimal orientation is superimposed on a stimulus.

Model simulations versus physiology
We compared our model with electrophysiological measurements
from single neurons. To simulate an experiment, we chose a pri-
mary filter and a set of neighboring filters that would interact
with this primary filter. We pre-computed the optimal normal-
ization weights for an ensemble of natural signals (see Methods).
We then simulated each experiment, holding all parameters of
the model fixed, by computing the normalized responses of the
primary filter to the experimental stimuli. We compared these
responses to the physiologically measured average firing rates of
neurons. Our extended normalization model, with all parame-
ters chosen to optimize statistical independence of responses,
accounted for those nonlinear behaviors in V1 neurons previ-
ously modeled with divisive normalization (see above). Figure 5
shows data and model simulations demonstrating preservation
of orientation tuning curves and cross-orientation inhibition.

Our model also accounted for nonlinear behaviors not pre-
viously modeled using normalization. Figure 6a shows data from
an experiment in which an optimal sinusoidal grating stimulus
was placed inside the classical receptive field of a neuron in pri-
mary visual cortex of a macaque monkey24. A mask grating was
placed in an annular region surrounding the classical receptive
field. Each curve in the figure indicates the response as a func-

Fig. 3. Examples of variance dependency in
natural signals. (a) Responses of two filters to
several different signals. Dependency is strong
for natural signals, but is negligible for white
noise. Filters as in Fig. 1. (b) Responses of dif-
ferent pairs of filters to a fixed natural signal.
The strength of the variance dependency
depends on the filter pair. For the image, the
red ! represents a fixed spatial location on
the retina. The ordinate response is always
computed with a vertical filter, and the
abscissa response is computed with a vertical
filter (shifted 4 pixels), vertical filter (shifted
12 pixels) and horizontal filter (shifted 12 pix-
els). For the sound, the red ! represents a
fixed time. Temporal frequency of ordinate fil-
ter is 2000 Hz. Temporal frequencies of
abscissa filter are 2000 Hz (shifted 9 ms in
time), 2840 Hz (shifted 9 ms) and 4019 Hz
(shifted 9 ms).

tion of the center contrast for a particular surround contrast. The
sigmoidal shape of the curves results from the squaring nonlin-
earity and the normalization. Presentation of the mask grating
alone does not elicit a response from the neuron, but its presence
suppresses the responses to the center grating. Specifically, the
contrast response curves are shifted to the right (on a log axis),
indicative of a divisive gain change. When the mask orientation is
parallel to the center, this shift is much larger than when the mask
orientation is orthogonal to the center (Fig. 6b).

Our model exhibits similar behavior (Fig. 6a and b), which
is due to suppressive weighting of neighboring model neurons
with the same orientation preference that is stronger than that
of neurons with perpendicular orientation preference (see also
ref. 25). This weighting is determined by the statistics of our
image ensemble, and is due to the increased likelihood that adja-
cent regions in natural images have similar rather than orthogo-
nal orientations. For example, oriented structures in images (such
as edges of objects) tend to extend along smooth contours, yield-
ing strong responses in linear filters that are separated from each
other spatially, but lying along the same contour (see also refs.
26, 27). This behavior would not be observed in previous nor-
malization models, because the parallel and orthogonal surround
stimuli would produce the same normalization signal.

An analogous effect is seen in the auditory system. Figure 6
shows example data recorded from a cat auditory nerve fiber, in
which an optimal sinusoidal tone stimulus is combined with a
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statistics. But, unfortunately, there results an interpre-

tation problem if we consider tuning functions for these

filters that are biologically realistic, for example, Gabor

functions. Filters with adjacent frequency or orientation

will then exhibit a certain overlap in the tuning functions,

and this alone will already cause a certain degree of cor-

relation between the responses. When we observe statis-

tical dependencies between the outputs of those filters, it

will thus be complicated to separate these artificial corre-

lations from those dependencies that result from an inef-

ficient adaptation of the linear-filter decomposition to the

structure of the input statistics. Among the neighboring

filters there is one especially suited pair for which this

problem will not arise, the combination of an even- and an

odd-symmetric filter (the classical line and edge detec-

tors). This combination yields responses e(x, y), o(x, y)

which are perfectly decorrelated in the second-order

sense; i.e., E�eo� � 0 (see Appendix A). If the test for

statistical independence fails for this perfectly decorre-

lated pair, we can thus be quite sure that this failure has

to be attributed to an inefficient adaptation of the repre-

sentation to the input statistics. The results of applying

this test are shown in Fig. 2.

Since the individual pdf’s p(e), p(o) exhibit the typical

sparse (peaked) distributions,
10,11,22,23

the separable pdf

p̂(e, o) should have the starlike shape shown on the left

side. This hypothesis is clearly falsified by the actual

joint pdf p(e, o), which is shown on the right. Its

roughly circular symmetric shape is grossly inconsistent

with the starlike shape of the separable pdf, i.e., p(e, o)

� p(e)p(o). Rather, the joint pdf is separable in polar
coordinates, since p(e, o) � q(r, �) � q(r)q(�). From

the information-theoretical perspective, i.e., if we con-

sider how much of the environmental redundancies could

be exploited by a Cartesian representation, this structure

of the statistics is hence providing strong evidence

against the hypothesis that linear Cartesian mechanisms

might be essentially sufficient as visual atoms. Further-

more, the structure of the pdf has several important im-

plications for an alternative efficient organization of the

feature space of early vision.

First, owing to the circular symmetry of the pdf, there

will exist no preferred axes for a Cartesian encoding.

With respect to the achievable adaptation to the environ-

mental statistics, any rotated version of a Cartesian sys-

tem would be just as useful as the cardinal system, which

is given by the directions of pure even and odd symmetry

(i.e., by linear line and edge detectors). This may provide

an explanation for the puzzling results of the apparently

nonspecific distribution of preferred symmetries among

cortical simple cells, see, for example, Ref. 30.

Even more important, however, are the implications of

Fig. 2. Even- and odd-symmetric linear filters with standard parameters (radial octave bandwidth, �15-deg orientation bandwidth)

were applied to the set of natural images shown on the left, and the individual filter statistics p(e), p(o), and the joint pdf p(e, o) were

evaluated to determine whether p(e, o) � p̂(e, o) � p(e)p(o), i.e., whether the linear Cartesian components are statistically indepen-

dent. The predicted pdf p̂(e, o) and the actual joint pdf p(e, o) are shown in two versions, as surface plots (upper row) and as contour

plots (bottom row) on the left and on the right side, respectively. Obviously, a Cartesian encoding cannot even approach the desired

statistical independence, since the shape of the true pdf p(e, o) is far from the predicted starlike shape of ẋ(e, o) and exhibits instead a

strong circular symmetry. Further tests showed that this basic result is independent of the special type of imagery and calibration.

1556 J. Opt. Soc. Am. A/Vol. 16, No. 7 /July 1999 Zetzsche et al.

Zetzsche (2000)
circularly symmetric 
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masking tone. As in the visual data, the rate–level curves of the
auditory nerve fiber shift to the right (on a log scale) in the pres-
ence of the masking tone (Fig. 6c and d). This shift is larger when
the mask frequency is closer to the optimal frequency for the cell.
Again, the model behavior is due to variations in suppressive
weighting across neurons tuned for adjacent frequencies, which
in turn arises from the statistical properties illustrated in Fig. 3b.

As mentioned above, a motivating characteristic of normal-
ization models has been the preservation of the shape of the tun-
ing curve under changes in input level. However, the shapes of
physiologically measured tuning curves for some parameters
exhibit substantial dependence on input level in both audition16

and vision17,18. Figure 7a shows an example of this behavior in a
neuron from primary visual cortex of a macaque monkey24. The
graph shows the response of the cell as a function of the radius of
a circular patch of sinusoidal grating, at two different contrast lev-
els. The high-contrast responses are generally larger than the low-
contrast responses, but in addition, the shape of the curve changes.
Specifically, for higher contrast, the peak response occurs at a
smaller radius. The same behavior is seen in our model neuron.

Analogous results were obtained for a typical cell in the audi-
tory nerve fiber of a squirrel monkey16 (Fig. 7b). Responses are
plotted as a function of frequency, for a number of different sound
pressure levels. As the sound pressure level increases, the frequency
tuning becomes broader, developing a ‘shoulder’ and a secondary
mode (Fig. 7b). Both cell and model show similar behavior,
despite the fact that we have not adjusted the parameters to fit
these data; all weights in the model are chosen by optimizing the
independence of the responses to the ensemble of natural sounds.
The model behavior arises because the weighted normalization
signal is dependent on frequency. At low input levels, this fre-
quency dependence is inconsequential because the additive con-
stant dominates the signal. But at high input levels, this frequency
dependence modulates the shape of the frequency tuning curve

that is primarily established by the numerator kernel of the model.
In Fig. 7b, the high contrast secondary mode corresponds to fre-
quency bands with minimal normalization weighting.

DISCUSSION
We have described a generic nonlinear model for early sensory
processing, in which linear responses were squared and then
divided by a gain control signal computed as a weighted sum of
the squared linear responses of neighboring neurons and a con-
stant. The form of this model was chosen to eliminate the type
of dependencies that we have observed between responses of pairs
of linear receptive fields to natural signals (Fig. 2). The parame-
ters of the model (in particular, the weights used to compute the
gain control signal) were chosen to maximize the independence
of responses to a particular set of signals. We demonstrated that
the resulting model accounts for a range of sensory nonlinearities
in ‘typical’ cells. Although there are quantitative differences
among individual cells, the qualitative behaviors we modeled
have been observed previously. Our model can account for phys-
iologically observed nonlinearities in two different modalities.
This suggests a canonical neural mechanism for eliminating the
statistical dependencies prevalent in typical natural signals.

The concept of gain control has been used previously to explain
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Fig. 4. Generic normalization model for vision and audition. Each filter
response is divided by the weighted sum of squared responses of neigh-
boring filters and an additive constant. Parameters are determined using
Maximum Likelihood on a generic ensemble of signals (see Methods).
The conditional histogram of normalized filter responses demonstrates
that the variance of N2 is roughly constant, independent of N1. The dia-
gram is a representation of the computation and is not meant to specify
a particular mechanism or implementation (see Discussion).
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Fig. 5. Classical nonlinear behaviors of V1 neurons. (a) Contrast inde-
pendence of orientation tuning22. (b) Orientation masking22. Dashed line
indicates response to a single grating, as a function of orientation. Solid
line indicates response to an optimal grating additively superimposed on
a mask grating of variable orientation. All curves are normalized to have a
maximum value of one. (c) Cross-orientation suppression23. Responses
to optimal stimulus are suppressed by an orthogonal masking stimulus
within the receptive field. This results in a rightward shift of the contrast
response curve (on a log axis). Curves on cell data plot are fitted with a
Naka–Rushton function, r(c) = c2/(ac2 + b2).
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Divisive normalization
(Schwartz & Simoncelli 2001)
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Statistical dependencies among coefficients arise due to 
interpolation of image features occurring at different positions 

along a continuum



Sparse representations tile the manifold of natural images 
in such a way that data points along the manifold are 
spanned by a small number of basis vectors.

Coefficients are interpolation weights within linear 
subspaces spanned by basis vectors along the manifold.



Subspace ICA model
Hyvarinen & Hoyer (2000)

Emergence of Phase- and Shift-Invariant Features 1709

Figure 1: Graphical depiction of the feature subspaces. First, dot products of the

input data with a set of basis vectors are taken. Here, we have two subspaces

with four basis vectors in each. The dot products are then squared, and the

sums are taken inside the feature subspaces. Thus we obtain the (squares of the)

norms of the projections on the feature subspaces, which are considered as the

responses of the subspaces. Square roots may be taken for normalization . This

scheme represents features that go beyond simple linear �lters, possibly obtain-

ing invariance with respect to some transformations of the input, for example,

shift and phase invariance. The subspaces, or the underlying vectors wi, may

be learned by the principle of maximum sparseness, which coincides here with

maximum likelihood of a generative model.

Emergence of Phase- and Shift-Invariant Features 1713

Figure 2: Linear filter sets associated with the feature subspaces (model complex
cells), as estimated from natural image data. Every group of four filters spans a
single feature subspace (for whitened data).

changes in the learning rule. The density p was chosen as in equation 3.4.
The algorithm was initialized as in Bell and Sejnowski (1997) by taking as
wi the 160 middle columns of the identity matrix. We also tried random
initial values for W. These yielded qualitatively identical results, but using
a localized filter set as the initial value considerably improves the conver-
gence of the method, especially avoiding some of the filters getting stuck in
local minima. This initialization led, incidentally, to a weak topographical
organization of the filters. The computations took about 10 hours on a single
RISC processor. Experiments were made with different dimensions Sj for
the subspaces: 2, 4, and 8 (in a single run, all the subspaces had the same
dimension). The results we show are for four-dimensional subspaces, but
the results are similar for other dimensions.

4.2 Results. Figure 2 shows the filter sets of the 40 feature subspaces
(complex cells), when subspace dimension was chosen to be 4. The results
are shown in the zero-phase whitened space. Note that due to orthogonal-
ity, the filters are equal to the basis vectors. The filters look qualitatively
similar in the original, not whitened space. The only difference is that in the
original space, the filters are sharper—that is, more concentrated on higher
frequencies.



Topographic Independent Component Analysis 1533
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Figure 2: Illustration of the topographic ICA model. First, the “variance-
generating” variables ui are generated randomly. They are then mixed linearly
inside their topographic neighborhoods. (The �gure shows a one-dimensional
topography.) The mixtures are then transformed using a nonlinearity w , thus
giving the local variances s2

i . Components si are then generated with variances
s2

i . Finally, the components si are mixed linearly to give the observed variables xi.

� All the components si are uncorrelated. This is because according to
equation 2.6 we have

Efsisjg D EfzigEfzjgE
(

w

�
X

k

h(i, k)uk

´
w
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X
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h( j, k)uk

)́

D 0 (2.7)

due to the independence of the uk from zi and zj. (Recall that zi and zj are
zero mean.) To simplify things, one can de�ne that the marginal variances
(i.e., integrated over the distibution of si) of the si are equal to unity, as in
ordinary ICA. In fact, we have

Efs2
i g D Efz2

i gE

8
<

:w

�
X

k

h(i, k)uk

2́
9
=

; , (2.8)

so we only need to rescale h(i, j) (the variance of zi is equal to unity by
de�nition). Thus, the vector s can be considered to be sphered, that is, white.

�Components that are far from each other are more or less independent.
More precisely, assume that si and sj are such that their neighborhoods have
no overlap; that is, there is no index k such that both h(i, k) and h( j, k) are
nonzero. Then the components si and sj are independent. This is because
their variances are independent, as can be seen from equation 2.5. Note,
however, that independence need not be strictly true for the estimated com-
ponents, just as independence does not need to hold for the components
estimated by classic ICA.

� Components si and sj that are near to each other, such that h(i, j) is
signi�cantly nonzero, tend to be active (nonzero) at the same time. In other

Topographic Independent Component Analysis 1547

Figure 5: Topographic ICA of natural image data. Neighborhood size 3 £ 3.
The model gives Gabor-like basis vectors for image windows. Basis vectors that
are similar in location, orientation, and/or frequency are close to each other.
The phases of nearby basis vectors are very different, giving each neighborhood
properties similar to those of complex cells (see Figure 10).

Figure 6: Topographic ICA of natural image data, this time with neighborhood
size 5£5. With this bigger neighborhood, the topographic order is more strongly
in�uenced by orientation.

Topographic ICA model
Hyvarinen, Hoyer & Inki (2001) 



‘association field’ statistics
Geisler (2001)

W.S. Geisler et al. / Vision Research 41 (2001) 711–724 715

Fig. 3. Statistical analysis of edge co-occurrence in natural images. For each image, edge elements were extracted, and then each edge element was
compared with other edge elements. (A) Edge elements. Each red pixel in this image indicates the location of the center of a significant edge
element; the orientations of the elements are not shown. (B) First edge cooccurrence property. The line segments show the most frequently
occurring orientation difference for each given distance and direction from the central reference element. The color of a line segment indicates the
relative probability. (C) Second edge co-occurrence property. The line segments show the most frequently occurring direction for each given
distance and orientation difference from the central reference element. (D) Bayesian likelihood-ratio function. Each line segment shows a possible
geometrical relationship between an element and the reference element. The color of a line segment indicates the likelihood that the element and
reference belong to the same physical contour divided by the likelihood they belong to different physical contours. (E) A thresholded local
grouping function derived from the edge co-occurrence plot in C. (F) A thresholded local grouping function derived from the Bayesian
likelihood-ratio function in D.

(r=0.98). Note that the increased scatter at small
log-likelihood values is expected because log probabil-
ities are generally more variable when the estimated
probabilities are small.

As can be seen in Fig. 3D, edge elements that are
co-circular (i.e. consistent with a smooth continuous
contour) are more likely to belong to the same physi-
cal contour. These results support our interpre-
tation of the absolute statistics in Fig. 3C, and

provide further evidence that the Gestalt principle of
good continuation has a physical basis in the statis-
tics of the natural world. Most importantly, these re-
sults allow us to determine a maximum likelihood
(optimal) local grouping function for contour group-
ing in natural scenes. Given the fundamental impor-
tance of contour grouping for useful vision, it is
possible that the human local grouping function is
near this optimum.
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Fig. 3. Statistical analysis of edge co-occurrence in natural images. For each image, edge elements were extracted, and then each edge element was
compared with other edge elements. (A) Edge elements. Each red pixel in this image indicates the location of the center of a significant edge
element; the orientations of the elements are not shown. (B) First edge cooccurrence property. The line segments show the most frequently
occurring orientation difference for each given distance and direction from the central reference element. The color of a line segment indicates the
relative probability. (C) Second edge co-occurrence property. The line segments show the most frequently occurring direction for each given
distance and orientation difference from the central reference element. (D) Bayesian likelihood-ratio function. Each line segment shows a possible
geometrical relationship between an element and the reference element. The color of a line segment indicates the likelihood that the element and
reference belong to the same physical contour divided by the likelihood they belong to different physical contours. (E) A thresholded local
grouping function derived from the edge co-occurrence plot in C. (F) A thresholded local grouping function derived from the Bayesian
likelihood-ratio function in D.

(r=0.98). Note that the increased scatter at small
log-likelihood values is expected because log probabil-
ities are generally more variable when the estimated
probabilities are small.

As can be seen in Fig. 3D, edge elements that are
co-circular (i.e. consistent with a smooth continuous
contour) are more likely to belong to the same physi-
cal contour. These results support our interpre-
tation of the absolute statistics in Fig. 3C, and

provide further evidence that the Gestalt principle of
good continuation has a physical basis in the statis-
tics of the natural world. Most importantly, these re-
sults allow us to determine a maximum likelihood
(optimal) local grouping function for contour group-
ing in natural scenes. Given the fundamental impor-
tance of contour grouping for useful vision, it is
possible that the human local grouping function is
near this optimum.



Modeling dependencies with horizontal connections
Garrigues & Olshausen (2008)

function is active, and a delta function centered at zero when it is silent as in [10]. We model the bi-
nary variables or “spins” that control the activation of the basis functions with an Ising model, whose
coupling weights model the dependencies among the coefficients. The representations inferred by
this model are also “hard-sparse”, which is a desirable feature [2].

Our model is motivated in part by the architecture of the visual cortex, namely the extensive network
of horizontal connections among neurons in V1 [11]. It has been hypothesized that they facilitate
contour integration [12] and are involved in computing border ownership [13]. In both of these
models the connections are set a priori based on geometrical properties of the receptive fields. We
propose here to learn the connection weights in an unsupervised fashion. We hope with our model to
gain insight into the the computations performed by this extensive collateral system and compare our
findings to known physiological properties of these horizontal connections. Furthermore, a recent
trend in neuroscience is to model networks of neurons using Ising models, and it has been shown
to predict remarkably well the statistics of groups of neurons in the retina [14]. Our model gives a
prediction for what is expected if one fits an Ising model to future multi-unit recordings in V1.

2 A non-factorial sparse coding model

Let x ∈ Rn be an image patch, where the xi’s are the pixel values. We propose the following
generative model:

x = Φa + ν =
m

∑

i=1

aiϕi + ν,

where Φ = [ϕ1 . . .ϕm] ∈ Rn×m is an overcomplete transform or basis set, and the columns ϕi

are its basis functions. ν ∼ N (0, ε2In) is small Gaussian noise. Each coefficient ai = si+1
2 ui is a

Gaussian scale mixture (GSM). We model the multiplier s with an Ising model, i.e. s ∈ {−1, 1}m

has a Boltzmann-Gibbs distribution p(s) = 1
Z

e
1
2 sT Ws+bT s, where Z is the normalization constant.

If the spin si is down (si = −1), then ai = 0 and the basis function ϕi is silent. If the spin si is up
(si = 1), then the basis function is active and the analog value of the coefficient ai is drawn from a
Gaussian distribution with ui ∼ N (0, σ2

i ). The prior on a can thus be described as a “hard-sparse”
prior as it is a mixture of a point mass at zero and a Gaussian.

The corresponding graphical model is shown in Figure 1. It is a chain graph since it contains
both undirected and directed edges. It bears similarities to [15], which however does not have the
intermediate layer a and is not a sparse coding model. To sample from this generative model, one
first obtains a sample s from the Ising model, then samples coefficients a according to p(a | s), and
then x according to p(x | a) ∼ N (Φa, ε2In).

s1 s2 sm

a1 a2 am

x1 x2 xn

Φ

W1m

W2m

Figure 1: Proposed graphical model

The parameters of the model to be learned from data are θ = (Φ, (σ2
i )i=1..m, W, b). This model

does not make any assumption about which linear code Φ should be used, and about which units
should exhibit dependencies. The matrixW of the interaction weights in the Ising model describes
these dependencies. Wij > 0 favors positive correlations and thus corresponds to an excitatory
connection, whereas Wij < 0 corresponds to an inhibitory connection. A local magnetic field
bi < 0 favors the spin si to be down, which in turn makes the basis function ϕi mostly silent.
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Figure 3: On the left is shown the entire set of basis functions Φ learned on natural images. On the
right are the learned variances (σ2

i )i=1..m (top) and the biases b in the Ising model (bottom).

the spatial properties (position, orientation, length) of the basis functions that are linked together
by them. Each basis function is denoted by a bar that indicates its position, orientation, and length
within the 16 × 16 patch.

(a) 10 most positive weights (b) 10 most negative weights

#
i

#
j

#
k

(c) Weights visualization

(d) Association fields

Figure 4: (a) (resp. (b)) shows the basis function pairs that share the strongest positive (resp. neg-
ative) weights ordered from left to right. Each subplot in (d) shows the association field for a basis
function ϕi whose position and orientation are denoted by the black bar. The horizontal connections
(Wij)j !=i are displayed by a set of colored bars whose orientation and position denote those of the
basis functions ϕj to which they correspond, and the color denotes the connection strength, where
red is positive and blue is negative (see (c),Wij < 0 andWik > 0). We show a random selection of
36 association fields, see www.eecs.berkeley.edu/ garrigue/nips07.html for the whole set.

We observe that the connections are mainly local and connect basis functions at a variety of orien-
tations. The histogram of the weights (see Figure 5) shows a long positive tail corresponding to a
bias toward facilitatory connections. We can see in Figure 4a,b that the 10 most “positive” pairs
have similar orientations, whereas the majority of the 10 most “negative” pairs have dissimilar ori-
entations. We compute for a basis function the average number of basis functions sharing with it
a weight larger than 0.01 as a function of their orientation difference in four bins, which we refer
to as the “orientation profile” in Figure 5. The error bars are a standard deviation. The resulting
orientation profile is consistent with what has been observed in physiological experiments [24, 25].

We also show in Figure 5 the tradeoff between the signal to noise ratio (SNR) of an image patch x
and its reconstructionΦâ, and the #0 norm of the representation ‖â‖0. We consider â inferred using
both the Laplacian prior and our proposed prior. We vary λ (see Equation (4)) and ε respectively,
and average over 1000 patches to obtain the two tradeoff curves. We see that at similar SNR the
representations inferred by our model are more sparse by about a factor of 2, which bodes well for
compression. We have also compared our prior for tasks such as denoising and filling-in, and have
found its performance to be similar to the factorial Laplacian prior even though it does not exploit
the dependencies of the code. One possible explanation is that the greater sparsity of our inferred
representations makes them less robust to noise. Thus we are currently investigating whether this
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Hierarchical models

Cortex has hierarchical structure.

Scenes have compositional structure.

How to learn from images?



Multiple paths to recognition
(Ledoux et al. 1994)



What do these edges mean?

offers a complete description.)
Luminance, illuminance, and reflectance, are physical

quantities that can be measured by physical devices. There
are also two subjective variables that must be discussed.

Lightness is defined as the perceived reflectance of a sur-
face. It represents the visual system’s attempt to extract
reflectance based on the luminances in the scene. 

Brightness is defined as the perceived intensity of light
coming from the image itself, rather than any property of the
portrayed scene. Brightness is sometimes defined as per-
ceived luminance. 

These terms may be understood by reference to figure 24.7.
The block is made of a 2x2 set of cubes, each colored either
light or dark gray. We call this the “checker- b l o c k . ”
Illumination comes from an oblique angle, lighting different
faces differently. The luminance image can be considered to
be the product of two other images: the reflectance image
and the illuminance image, shown below. These underlying
images are termed intrinsic images in machine vision
(Barrow and Tenenbaum, 1978). Intrinsic image decomposi-
tions have been proposed for understanding lightness per-
ception (Arend, 1994; Adelson and Pentland, 1996)

Patches p and q have the same reflectance, but different
luminances. Patches q and r have different reflectances and
d i fferent luminances; they share the same illuminance.
Patches p and r happen to have the same luminance, because
the lower reflectance of p is counterbalanced by its higher

illuminance. 
Faces p and q appear to be painted with the same gray,

and thus they have the same lightness. However, it is clear
that p has more luminance than q in the image, and so the
patches differ in brightness. Patches p and r differ in both
lightness and brightness.

The problem of lightness constancy

From a physical point of view, the problem of lightness con-
stancy is as follows. An illuminance image, E(x,y), and a
reflectance image, R(x,y), are multiplied to produce a lumi-
nance image, L(x,y):

An observer is given L at each pixel, and attempts to
determine the two numbers E and R that were multiplied to
make it. Unfortunately, unmultiplying two numbers is
impossible. If E(x,y) and R(x,y) are arbitrary functions, then
for any E(x,y) there exists an R(x,y) that produces the
observed image. The problem appears impossible, but
humans do it pretty well. This must mean that illuminance
and reflectance images are not arbitrary functions. They are
constrained by statistical properties of the world, as pro-
posed by Land and McCann.

Note that Land and McCann’s constraints fail when
applied to the checker-block image. Figure 24.8(a) shows
two light-dark edges. They are exactly the same in the
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FIGURE 24.6  Variants on the Koffka ring. (a) The ring appears about
uniform. (b) When split, the two half-rings appear distinctly differ-
ent. (c) When shifted, the two half-rings appear quite different. FIGURE 24.7  The “checker-block” and its analysis into two intrinsic

images.

L(x,y) = E(x,y)R(x,y).
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reflectance shading (Adelson, 2000)



How to factorize time-varying images 
into form and motion?



Traditional motion estimation

estimate pattern

estimate motion motion

pattern

time-varying image estimate motion optic flow
regularization 
(smoothness)

natural scene 
statistics prior

natural scene 
statistics prior

time-varying image

a)

b)
v̂ = argmin

v
||I(x, t+∆t)− I(x− v∆t, t)||2



estimate pattern

estimate motion motion

pattern

time-varying image estimate motion optic flow
regularization 
(smoothness)

natural scene 
statistics prior

natural scene 
statistics prior

time-varying image

a)

b)

form form

Motion and form must be estimated
simultaneously



Factorization of form and motion

B
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Form Motion

image

first layer

second layer

I(t)

exp()exp()

a(t) ejφ(t)

v(t) w(t)

j

Cadieu & Olshausen (2012), Neural Computation, 24



image neural
activities
(sparse)

features other
stuff

aiφi(x,y)I(x,y)

.

.

.

Internal
model

External
world

Sparse coding 
image model



Amplitudes change slowly (presence of edge)

Phases precess (movement of edge)



I(t) = Φa(t) + �(t)

Factorization of sparse components into
invariant and variant parts

Invariant part:  Presence, 
amplitude (contrast) of feature

Variant part:  Interpolation weight,
relative contribution of feature

Wainwright & Simoncelli (2002)
Hyvarinen & Hoyer (2002)
Karklin & Lewicki (2003)
Schwartz & Simoncelli (2004)
Osindero & Hinton (2005)
Berkes, Turner & Sahani (2009)
Zou, Ng & Yu (2011)

See also:

ai(t) = σi(t) × ui(t)



Amplitude and phase decomposition
via complex basis functions

I(x, y, t) = !

{

∑

i

zi(t) φi(x, y)

}

=
∑

i

σi(t) [cos αi(t) φR
i (x, y) + sinαi(t) φI

i (x, y)]

*

zi(t) = σi(t) ej αi(t)

φi(x, y) = φR
i (x, y) + j φR

i (x, y)I



a
α

w

σ
z

Complex basis function model

sparse + slow

image

features

coefficients

amplitude + phase
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curved trajectories in coefficient space and thus allows the second layer to capture the

higher-order motion structure via a simple linear generative model (see Figures 3 and 4).

The insensitivity of phase to contrast variations is also key to the motion-selective in-

variance achieved by the phase-shift components. Another class of models of biological

motion processing (Simoncelli and Heeger, 1998; Rust et al., 2006) implicitly removes

form information by dividing out the local image contrast. This divisive normalization

operation is analogous to the separation of amplitude and phase in the first layer of our

model. We can make this relationship explicit by expressing the time derivative of the

phase in terms of quadrature-pair simple cell responses, uc and us:

d

dt
φ(t) =

d

dt
arctan

�
us

uc

�
=

u̇suc − usu̇c

u2
c + u2

s

=
usut−1

c − ut−1
s uc

u2
c + u2

s

(18)

where the last equality is achieved by approximating the time derivative with a first-

order difference. This relationship, described by Simoncelli (1993), shows an alterna-

tive way to compute the phase-shift variables in our model in terms of variables that are

readily available in divisive normalization models Simoncelli and Heeger (1998); Rust

et al. (2006).

The structure that emerges within the phase-shift components reflects the dynamics

and structure contained in natural movies. The diversity of this structure has not been

addressed by previous models of motion processing (Nowlan and Sejnowski, 1995;

Zhang et al., 1993; Grimes and Rao, 2005; Rolls and Stringer, 2007). One of the most

important questions in computing motion is how to build a complete representation that

tiles the joint domain of space (spatial position) and motion (speed and direction). The

model in (Simoncelli and Heeger, 1998) for example proposes specific weight patterns

among spatiotemporal filters that are hand-tuned to reproduce physiological data, but

the question of how to design an entire population of such units to encode the complex

motion that actually occurs in dynamic natural scenes is unaddressed. These details

are precisely what is learned by our model: The majority of phase-shift components

correspond to image translation operators that are localized within different regions

of the space domain and which extend over different spatial scales, allowing for the

complex segmentation of motion in time-varying natural images. Previous models of

biological motion processing (Simoncelli and Heeger, 1998; Rust et al., 2006) have

not specified over what spatial extent motion should be computed, and indeed it would

35

may be computed from normalized simple cell responsesφ̇

(see Eero Simoncelli thesis)



Factorization of form and motion
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first layer

second layer

I(t)

exp()exp()
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sparse + slow



Visualizing Second-layer Weights
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Learned form components B

a) Amplitude Component Weights

Spatial Domain Freq. Domain

b) Amplitude Component Weights

Spatial Domain Freq. Domain

c) Amplitude Component Weights

Spatial Domain Freq. Domain
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Spatial Domain Freq. Domain
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Spatial Domain Freq. Domain
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Negative Response PatchesPositive Response Patches
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image patches yielding maximum response
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Spatial Domain Freq. Domain Spatial Domain Freq. Domain

Texture Boundaries Oriented Structure Cross-Orientation Spatially Global

Learned form components B



Learned motion components D
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Other examples



a) b)
Spatial Domain Freq. Domain Spatial Domain Freq. Domain

c)
Spatial Domain Freq. Domain

Direction Tiling Spatial Tiling (medium) Spatial Tiling (small)

Learned motion components D



Recursive ICA

Figure 1: The RICA (Recursive ICA) model. After the first layer of linear efficient encoding,

sensory inputs X are now represented by S. The signs of S are discarded. Then coordinate-wise

nonlinear activation functions gi are applied to each dimension of S, so that the input of the next

layer X � = g(|S|) satisfies the input constraints imposed by the LEE model. The statistical structure

among dimensions of X �
are then extracted by the next layer of linear efficient encoding.

2 Bayesian Explanation of Linear Efficient Encoding

It has long been hypothesized that the functional role of perception is to capture the statistical struc-

ture of the sensory stimuli so that appropriate action decisions can be made to maximize the chance

of survival (see [10] for a brief review). Barlow provided the insight that the statistical structure

is measured by the redundancy of the stimuli and that completely independent stimuli cannot be

distinguished from random noise [11]. He also hypothesized that one way for the neural system to

capture the statistical structure is to remove the redundancy in the sensory outputs. This so-called

redundancy reduction principle forms the foundation of ICA algorithms.

Algorithms following the sparse coding principle are also able to find interesting structures when

applied to natural image patches [2]. Later it was realized that although ICA and sparse coding

algorithms started out from different principles and goals, their implementations can be summarized

in the same Bayesian framework [12]. In this framework, the observed data X is assumed to be

generated by some underlying signal sources S:

X = AS + �

where A is a linear mixing matrix and � is additive Gaussian noise. Also, it is assumed that the

features Sj are independent from each other, and that the marginal distribution of Sj is sparse. For

the sparse coding algorithm described in [2], although it started from the goal of finding sparse fea-

tures, the algorithm’s implementation implicitly assumes the independence of Sj’s. For the infomax

ICA algorithm [1], although it aimed at finding independent features, the algorithm’s implementa-

tion assumes a sparse marginal prior (p(Sj) ∝ sech(Sj)). The energy-based ICA algorithm using a

student-t prior [13] can also be placed in this framework for complete representations.

The moral here, though, is that in practice, the samples available are always insufficient to allow

any efficient inference without making some assumptions about the data distribution. A sparseness

and independence assumption about the data distribution is appropriate because: (1) independence

allows the system to capture the statistical structure of the stimuli, as described above, and (2)

sparse distribution of the sensory outputs is energy-economic. This is important for the survival of

the biological system, considering the fact that human brain consists 2% of the body weight but

accounts for 20% of its resting metabolism [14]. The linear efficient encoding model captures the

Figure 4: A subset of the 397 ICA image basis functions. Each basis function is 20x20 pixels. They
are 2D Gabor like filters.

Figure 5: Sample units from the second layer. The upper panel arranges the connection weights
from layer-2 units to layer-1 units by the centers of the fitted Gabor filters. Every point corresponds
to one basis function of the first layer, located at the center of the fitted Gabor filter. Warm colors
represent strong positive connections; cold colors represent negative connections. For example, the
leftmost unit prefers strong activation of layer-1 units located on the right and weak activation of
layer-1 units on the left. The lower panel arranges the connection weights by the frequencies and the
orientations of the fitted Gabor filters. Now every point corresponds to the Gabor filter’s frequency
and orientation (in polar coordinates). The third leftmost unit welcomes strong activation of Gabor
filters whose orientations are around 3

4π but prefers no/little activation from those whose orientations
are around 1

4π.

5 Discussion

The key idea of our model is to transform the high-order residual redundancy to linear dependency
that can be easily exploited again by the LEE model. By using activation functions that are depen-
dent on the marginal distribution of the outputs, a normal Gaussian interface is provided at every
layer. This procedure can then repeat itself and a hierarchical model with same structure at every
level can thus be constructed. As the redundancy is reduced progressively along the layers, statistical
structures are also captured to progressively higher orders.

Our simulation of a three layer Recursive ICA shows the effectiveness of our model. The first layer,
not surprisingly, produces the Gabor like basis functions as linear ICA always does. The second
layer, however, produces basis functions that qualitatively resemble those produced by a previous
hierarchical generative model [7]. This is remarkable given that our model is essentially a filtering
model with no assumptions of underlying independent variables, but merely targeting redundancy
reduction. The advantage of our model is the theoretical simplicity of generalization to a third layer
or more. For the Karklin and Lewicki model, the assumption that the ultimate independent causal
variables are two layers away from the images has to be reworked for a three layer system. It is not
clear how the variables at every layer should affect the next when an extra layer is added. Osindero
et al. [8] employed an energy based model. The energy function used at the first layer made it
essentially a linear ICA algorithm, thus it also produces Gabor like filters. The first layer outputs
are squared to discard the signs and then fed to the next layer. The inputs for the second layer are
thus all positive and bear a very different marginal distribution from those for the first layer. The
energy function is changed accordingly and the second layer is essentially doing nonnegative ICA.
The output of this layer, however, will all be positive, which makes discarding the signs no longer an
effective way of exposing higher-order dependence. Thus, to extend to another layer, new activation
functions and new energy function must be derived.

The third layer of our model produces some interesting results in that some units seem to have
preferences for complicated textures (Figure 6). However, as the statistical structure represented
here must be of very high order, we are still looking for an effective visualization method. Also, as

Figure 4: A subset of the 397 ICA image basis functions. Each basis function is 20x20 pixels. They
are 2D Gabor like filters.

Figure 5: Sample units from the second layer. The upper panel arranges the connection weights
from layer-2 units to layer-1 units by the centers of the fitted Gabor filters. Every point corresponds
to one basis function of the first layer, located at the center of the fitted Gabor filter. Warm colors
represent strong positive connections; cold colors represent negative connections. For example, the
leftmost unit prefers strong activation of layer-1 units located on the right and weak activation of
layer-1 units on the left. The lower panel arranges the connection weights by the frequencies and the
orientations of the fitted Gabor filters. Now every point corresponds to the Gabor filter’s frequency
and orientation (in polar coordinates). The third leftmost unit welcomes strong activation of Gabor
filters whose orientations are around 3

4π but prefers no/little activation from those whose orientations
are around 1

4π.

5 Discussion

The key idea of our model is to transform the high-order residual redundancy to linear dependency
that can be easily exploited again by the LEE model. By using activation functions that are depen-
dent on the marginal distribution of the outputs, a normal Gaussian interface is provided at every
layer. This procedure can then repeat itself and a hierarchical model with same structure at every
level can thus be constructed. As the redundancy is reduced progressively along the layers, statistical
structures are also captured to progressively higher orders.

Our simulation of a three layer Recursive ICA shows the effectiveness of our model. The first layer,
not surprisingly, produces the Gabor like basis functions as linear ICA always does. The second
layer, however, produces basis functions that qualitatively resemble those produced by a previous
hierarchical generative model [7]. This is remarkable given that our model is essentially a filtering
model with no assumptions of underlying independent variables, but merely targeting redundancy
reduction. The advantage of our model is the theoretical simplicity of generalization to a third layer
or more. For the Karklin and Lewicki model, the assumption that the ultimate independent causal
variables are two layers away from the images has to be reworked for a three layer system. It is not
clear how the variables at every layer should affect the next when an extra layer is added. Osindero
et al. [8] employed an energy based model. The energy function used at the first layer made it
essentially a linear ICA algorithm, thus it also produces Gabor like filters. The first layer outputs
are squared to discard the signs and then fed to the next layer. The inputs for the second layer are
thus all positive and bear a very different marginal distribution from those for the first layer. The
energy function is changed accordingly and the second layer is essentially doing nonnegative ICA.
The output of this layer, however, will all be positive, which makes discarding the signs no longer an
effective way of exposing higher-order dependence. Thus, to extend to another layer, new activation
functions and new energy function must be derived.

The third layer of our model produces some interesting results in that some units seem to have
preferences for complicated textures (Figure 6). However, as the statistical structure represented
here must be of very high order, we are still looking for an effective visualization method. Also, as

Shan, Zhang & Cottrell (2007)



Figure 6: Activation maps on two images (upper and lower panel respectively) for two units per
layer. The leftmost two images are the raw images. The second left column to the rightmost column
are activation maps of two units from the first layer to the third respectively. The first layer units
respond to small local edges, the second layer units respond to larger borders, and the third layer
units seem to respond to large area of textures.

units at the second layer have larger receptive field than those at the first layer, it is reasonable to
expect the third layer to bear even larger ones. We believe that a wider range of visual structure will
be picked up by the third layer units with a larger patch size on a larger training set.
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