From natural scene statistics to models of neural coding and representation (part 2)

Bruno A. Olshausen

Helen Wills Neuroscience Institute, School of Optometry and Redwood Center for Theoretical Neuroscience UC Berkeley

Today's talk

Group Sparse Coding

Hierarchical Models

Group sparse coding

Sparse components exhibit statistical dependencies.

How to model this structure?

Simoncelli (1997) 'bow ties'

Zetzsche (2000) circularly symmetric distributions

Divisive normalization (Schwartz & Simoncelli 2001)

Bubbles Hyvarinen et al. (2003) JOSA *20*

Statistical dependencies among coefficients arise due to interpolation of image features occurring at different positions along a continuum

Sparse representations tile the manifold of natural images in such a way that data points along the manifold are spanned by a small number of basis vectors.

Coefficients are interpolation weights within linear subspaces spanned by basis vectors along the manifold.

Subspace ICA model Hyvarinen & Hoyer (2000)

•

Topographic ICA model Hyvarinen, Hoyer & Inki (2001)

'association field' statistics Geisler (2001)

Modeling dependencies with horizcatel connections

(d) Association fields

Hierarchical models

Cortex has hierarchical structure.

Scenes have compositional structure.

How to learn from images?

Multiple paths to recognition (Ledoux et al. 1994)

Illustration based on LeDoux JE (1994) Emotion, Memory, and the Brain. Scientific American.

What do these edges mean?

How to factorize time-varying images into form and motion?

Traditional motion estimation

$$\hat{v} = \arg\min_{v} ||I(x, t + \Delta t) - I(x - v\Delta t, t)||^2$$

Motion and form must be estimated simultaneously

Factorization of form and motion

Cadieu & Olshausen (2012), Neural Computation, 24

Amplitudes change slowly (presence of edge) Phases precess (movement of edge)

Factorization of sparse components into *invariant* and *variant* parts

 $\mathbf{I}(t) = \Phi \mathbf{a}(t) + \epsilon(t)$

 $a_i(t) = \sigma_i(t) \times u_i(t)$

Invariant part: Presence, amplitude (contrast) of feature

See also:

Variant part: Interpolation weight, *relative* contribution of feature

Wainwright & Simoncelli (2002) Hyvarinen & Hoyer (2002) Karklin & Lewicki (2003) Schwartz & Simoncelli (2004) Osindero & Hinton (2005) Berkes, Turner & Sahani (2009) Zou, Ng & Yu (2011)

Amplitude and phase decomposition via complex basis functions

$$I(x, y, t) = \Re \left\{ \sum_{i} z_{i}^{*}(t) \phi_{i}(x, y) \right\}$$
$$= \sum_{i} \sigma_{i}(t) \left[\cos \alpha_{i}(t) \phi_{i}^{R}(x, y) + \sin \alpha_{i}(t) \phi_{i}^{I}(x, y) \right]$$

$$z_i(t) = \sigma_i(t) e^{j \alpha_i(t)}$$

$$\phi_i(x, y) = \phi_i^R(x, y) + j \phi_i^{I^{\perp}}(x, y)$$

Complex basis function model

amplitude + phase

coefficients

features

image

Learned complex basis functions

Amplitude and phase linearize statistical dependencies

Amplitude and phase linearize statistical dependencies

 ϕ may be computed from normalized simple cell responses

$$\frac{d}{dt}\phi(t) = \frac{d}{dt}\arctan\left(\frac{u_s}{u_c}\right) = \frac{\dot{u}_s u_c - u_s \dot{u}_c}{u_c^2 + u_s^2} = \frac{u_s u_c^{t-1} - u_s^{t-1} u_c}{u_c^2 + u_s^2}$$

(see Eero Simoncelli thesis)

Factorization of form and motion

Cadieu & Olshausen (2012), Neural Computation, 24

Visualizing Second-layer Weights

 D_{10}

Learned form components B

d)

Amplitude Component Weights Positive Response Patches Negative Response Patches a)

Positive Response Patches Negative Response Patches

Amplitude Component Weights C)

Amplitude Component Weights e)

Amplitude Component Weights

f) Amplitude Component Weights

> Spatial Domain Freq. Domain

Positive Response Patches Negative Response Patches

Positive Response Patches Negative Response Patches

Positive Response Patches Negative Response Patches

image patches yielding maximum response

b)

Learned form components B

Learned motion components D

Learned motion component

Learned motion component

Other examples

Learned motion components D

Recursive ICA

Shan, Zhang & Cottrell (2007)

Recursive ICA

statistics	coding strategy	neurobiological substrate
contrast histogram	histogram equalization	photoreceptors/ bipolar cells
autocorrelation function	whitening	retina/LGN
sparse components	localized, oriented, bandpass feature decomposition	VI 'simple cells'
amplitude components	texture coding	VI/V2 'complex cells'
phase components	motion coding	MT