
IPAM Summer School 2012

Tutorial on:
Deep Learning

Geoffrey Hinton
Canadian Institute for Advanced Research

&
Department of Computer Science

University of Toronto

Overview of the tutorial

•  A brief history of deep learning.
•  How to learn multi-layer generative models of unlabelled

data by learning one layer of features at a time.
–  What is really going on when we stack RBMs to form a

deep belief net.
•  How to use generative models to make discriminative

training methods work much better for classification and
regression.

•  How to modify RBMs to deal with real-valued input.

PART 1

Introduction to Deep Learning
&

Deep Belief Nets

A brief history of deep learning

•  The backpropagation algorithm for learning
multiple layers of non-linear features was
invented several times in the 1970’s and 1980’s
(Werbos, Amari?, Parker, LeCun, Rumelhart et. al.)

•  Backprop clearly had great promise, but by the
1990’s people in machine learning had largely
given up on it because:
–  It did not seem to be able to make good use

of multiple hidden layers (except in “time-
delay” and convolutional nets).

–  It did not work well in recurrent networks.

How to learn many layers of features (~1985)

input vector

hidden
layers

outputs

Back-propagate
error signal to
get derivatives
for learning

Compare outputs with
correct answer to get
error signal

What is wrong with back-propagation?

•  It requires labeled training data.
– Almost all data is unlabeled.

•  The learning time does not scale well
– It is very slow in networks with multiple

hidden layers. Why?
•  It can get stuck in poor local optima.

– These are often quite good, but for deep
nets they are far from optimal.

Some major issues in deep learning

•  Deep vs Shallow
– Are deep nets really needed?
– Why?

•  Supervised vs Unsupervised
–  Is almost all learning unsupervised?
–  Is unsupervised learning more efficient?
– Was unsupervised learning just a quick fix

because we had weak optimization methods
and/or small datasets?

More major issues in deep learning

•  Priors and Prejudice

–  How much prior knowledge should we try to wire into the
weights or the activities of the networks?

–  Smugglng knowledge into the networks without
prejudicing the solution by manipulating the training set.

•  How do we map a task onto a neural network?
–  Attention and recursion.
–  Intelligent decomposition vs brute force scanning.

Overcoming the limitations of back-propagation
by using unsupervised learning

•  Keep the efficiency and simplicity of using a

gradient method for adjusting the weights, but use
it for modeling the structure of the sensory input.
– Adjust the weights to maximize the probability

that a generative model would have produced
the sensory input.

– Learn p(image) not p(label | image)
•  If you want to do computer vision, first learn

computer graphics
•  What kind of generative model should we learn?

 Belief Nets
•  A belief net is a directed

acyclic graph composed of
stochastic variables.

•  We get to observe some of
the variables and we would
like to solve two problems:

•  The inference problem: Infer
the states of the unobserved
variables.

•  The learning problem: Adjust
the interactions between
variables to make the
network more likely to
generate the observed data.

stochastic
hidden
cause

visible
effect

We will use nets composed of
layers of stochastic binary variables
with weighted connections. Later,
we will generalize to other types of
variable.

Stochastic binary units
(Bernoulli variables)

•  These have a state of 1
or 0.

•  The probability of
turning on is determined
by the weighted input
from other units (plus a
bias)

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been
corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then
insert it again.

0
0

1

∑−−+
==

j
jiji

i wsb
sp

)exp(1
)(1
1

∑+
j

jiji wsb

)(1=isp

 Learning Deep Belief Nets
•  It is easy to generate an

unbiased example at the
leaf nodes, so we can see
what kinds of data the
network believes in.

•  It is hard to infer the
posterior distribution over
all possible configurations
of hidden causes.

•  It is hard to even get a
sample from the posterior.

•  So how can we learn deep
belief nets that have
millions of parameters?

stochastic
hidden
cause

visible
effect

The learning rule for sigmoid belief nets

•  Learning is easy if we can
get an unbiased sample
from the posterior
distribution over hidden
states given the observed
data.

•  For each unit, maximize
the log probability that its
binary state in the sample
from the posterior would be
generated by the sampled
binary states of its parents.

∑−+
==≡

j
jij

ii ws
spp

)exp(1
)(1
1

j

i

jiw

)(iijji pssw −=Δ ε

is

js

learning
rate

Explaining away (Judea Pearl)

•  Even if two hidden causes are independent, they can
become dependent when we observe an effect that they can
both influence.
–  If we learn that there was an earthquake it reduces the

probability that the house jumped because of a truck.

truck hits house earthquake

house jumps

20 20

-20

-10 -10

p(1,1)=.0001
p(1,0)=.4999
p(0,1)=.4999
p(0,0)=.0001

posterior

Why it is usually very hard to learn
sigmoid belief nets one layer at a time

•  To learn W, we need the posterior
distribution in the first hidden layer.

•  Problem 1: The posterior is typically
complicated because of “explaining
away”.

•  Problem 2: The posterior depends
on the prior as well as the likelihood.
–  So to learn W, we need to know

the weights in higher layers, even
if we are only approximating the
posterior. All the weights interact.

•  Problem 3: We need to integrate
over all possible configurations of
the higher variables to get the prior
for first hidden layer. Its hopeless!

 data

hidden variables

hidden variables

hidden variables

 likelihood W

prior

Some methods of learning
deep belief nets

•  Monte Carlo methods can be used to sample
from the posterior.
– But its painfully slow for large, deep models.

•  In the 1990’s people developed variational
methods for learning deep belief nets
– These only get approximate samples from the

posterior.
– Nevetheless, the learning is still guaranteed to

improve a variational bound on the log
probability of generating the observed data.

A breakthrough that makes deep
learning efficient

•  To learn deep nets efficiently, we need to learn one layer
of features at a time. This does not work well if we
assume that the latent variables are independent in the
prior :
–  The latent variables are not independent in the

posterior so inference is hard for non-linear models.
–  The learning tries to find independent causes using

one hidden layer which is not usually possible.
•  We need a way of learning one layer at a time that takes

into account the fact that we will be learning more
hidden layers later.
–  We solve this problem by using an undirected model.

Two types of generative neural network

•  If we connect binary stochastic neurons in a
directed acyclic graph we get a Sigmoid Belief
Net (Radford Neal 1992).

•  If we connect binary stochastic neurons using
symmetric connections we get a Boltzmann
Machine (Hinton & Sejnowski, 1983).
–  If we restrict the connectivity in a special way,

it is easy to learn a Boltzmann machine.

Restricted Boltzmann Machines
(Smolensky ,1986, called them “harmoniums”)

•  We restrict the connectivity to make
learning easier.
–  Only one layer of hidden units.

•  We will deal with more layers later
–  No connections between hidden units.

•  In an RBM, the hidden units are
conditionally independent given the
visible states.
–  So we can quickly get an unbiased

sample from the posterior distribution
when given a data-vector.

–  This is a big advantage over directed
belief nets

hidden

i

j

visible

The Energy of a joint configuration
(ignoring terms to do with biases)

∑−=
ji

ijji whvv,hE
,

)(

weight between
units i and j

Energy with configuration
v on the visible units and
h on the hidden units

binary state of
visible unit i

binary state of
hidden unit j

ji
ij

hv
w
hvE

=
∂

∂
−

),(

Weights à Energies à Probabilities

•  Each possible joint configuration of the visible

and hidden units has an energy
–  The energy is determined by the weights and

biases (as in a Hopfield net).
•  The energy of a joint configuration of the visible

and hidden units determines its probability:

•  The probability of a configuration over the visible
units is found by summing the probabilities of all
the joint configurations that contain it.

),(),(hvEhvp e−∝

Using energies to define probabilities

•  The probability of a joint
configuration over both visible
and hidden units depends on
the energy of that joint
configuration compared with
the energy of all other joint
configurations.

•  The probability of a
configuration of the visible
units is the sum of the
probabilities of all the joint
configurations that contain it.

∑ −

−

=

','

)','(

),(
),(

hv

hvE

hvE

e
ehvp

∑
∑

−

−

=

','

)','(

),(

)(

hv

hvE
h

hvE

e

e
vp

partition
function

A picture of the maximum likelihood learning
algorithm for an RBM

0>< jihv ∞>< jihv

i

j

i

j

i

j

i

j

t = 0 t = 1 t = 2 t = infinity

∞><−><=
∂

∂
jiji

ij
hvhv

w
vp 0)(log

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in
parallel and updating all the visible units in parallel.

a fantasy

A quick way to learn an RBM

0>< jihv 1>< jihv

i

j

i

j

t = 0 t = 1

)(10 ><−><=Δ jijiij hvhvw ε

Start with a training vector on the
visible units.

Update all the hidden units in
parallel

Update the all the visible units in
parallel to get a “reconstruction”.

Update the hidden units again.

This is not following the gradient of the log likelihood. But it
works well. It is approximately following the gradient of another
objective function (Carreira-Perpinan & Hinton, 2005).

reconstruction data

Three ways to combine probability density
models (an underlying theme of the tutorial)

•  Mixture: Take a weighted average of the distributions.
–  It can never be sharper than the individual distributions.

It’s a very weak way to combine models.
•  Product: Multiply the distributions at each point and then

renormalize (this is how an RBM combines the distributions defined
by each hidden unit)
–  Exponentially more powerful than a mixture. The

normalization makes maximum likelihood learning
difficult, but approximations allow us to learn anyway.

•  Composition: Use the values of the latent variables of one
model as the data for the next model.
–  Works well for learning multiple layers of representation,

but only if the individual models are undirected.

Training a deep network
(the main reason RBM’s are interesting)

•  First train a layer of features that receive input directly
from the pixels.

•  Then treat the activations of the trained features as if
they were pixels and learn features of features in a
second hidden layer.

•  It can be proved that each time we add another layer of
features we improve a variational lower bound on the log
probability of the training data.
–  The proof is slightly complicated.
–  But it is based on a neat equivalence between an

RBM and a deep directed model (described later)

The generative model after learning 3 layers

•  To generate data:
1.  Get an equilibrium sample

from the top-level RBM by
performing alternating Gibbs
sampling for a long time.

2.  Perform a top-down pass to
get states for all the other
layers.

 So the lower level bottom-up

connections are not part of
the generative model. They
are just used for inference.

 h2

 data

 h1

 h3

2W

3W

1W

Why does greedy learning work?
An aside: Averaging factorial distributions
•  If you average some factorial distributions, you

do NOT get a factorial distribution.
–  In an RBM, the posterior over the hidden units

is factorial for each visible vector.
– But the aggregated posterior over all training

cases is not factorial (even if the data was
generated by the RBM itself).

Why does greedy learning work?

∑=
h

hvphpvp)|()()(

The weights, W, in the bottom level RBM define
p(v|h) and they also, indirectly, define p(h).

So we can express the RBM model as

If we leave p(v|h) alone and improve p(h), we will
improve p(v).

To improve p(h), we need it to be a better model of
the aggregated posterior distribution over hidden
vectors produced by applying W to the data.

Another view of why layer-by-layer
learning works (Hinton, Osindero & Teh 2006)

•  There is an unexpected equivalence between
RBM’s and directed networks with many layers
that all use the same weights.
– This equivalence also gives insight into why

contrastive divergence learning works.

An infinite sigmoid belief net
that is equivalent to an RBM

•  The distribution generated by this
infinite directed net with replicated
weights is the equilibrium distribution
for a compatible pair of conditional
distributions: p(v|h) and p(h|v) that
are both defined by W
–  A top-down pass of the directed

net is exactly equivalent to letting
a Restricted Boltzmann Machine
settle to equilibrium.

–  So this infinite directed net
defines the same distribution as
an RBM.

W
 v1

 h1

 v0

 h0

 v2

 h2

TW

TW

TW

W

W

etc.

•  The variables in h0 are conditionally
independent given v0.
–  Inference is trivial. We just

multiply v0 by W transpose.
–  The model above h0 implements

a complementary prior.
–  Multiplying v0 by W transpose

gives the product of the likelihood
term and the prior term.

•  Inference in the directed net is
exactly equivalent to letting a
Restricted Boltzmann Machine settle
to equilibrium starting at the data.

Inference in a directed net
with replicated weights

W
 v1

 h1

 v0

 h0

 v2

 h2

TW

TW

TW

W

W

etc.

+

+

+

+

•  The learning rule for a sigmoid belief
net is:

•  With replicated weights this becomes:

W
 v1

 h1

 v0

 h0

 v2

 h2

TW

TW

TW

W

W

etc.

0
is

0
js

1
js

2
js

1
is

2
is

∞∞

+−

+−

+−

ij

iij

jji

iij

ss

sss

sss

sss

...)(

)(

)(

211

101

100

TW

TW

TW

W

W

)ˆ(iijij sssw −∝Δ

•  First learn with all the weights tied
–  This is exactly equivalent to

learning an RBM
–  Contrastive divergence learning

is equivalent to ignoring the small
derivatives contributed by the tied
weights between deeper layers.

Learning a deep directed
network

W

W
 v1

 h1

 v0

 h0

 v2

 h2

TW

TW

TW

W

etc.

 v0

 h0

W

•  Then freeze the first layer of weights
in both directions and learn the
remaining weights (still tied
together).
–  This is equivalent to learning

another RBM, using the
aggregated posterior distribution
of h0 as the data.

W
 v1

 h1

 v0

 h0

 v2

 h2

TW

TW

TW

W

etc.

frozenW

 v1

 h0

W

T
frozenW

How many layers should we use and how
wide should they be?

•  There is no simple answer.
–  Extensive experiments by Yoshua Bengio’s group

(described later) suggest that several hidden layers is
better than one.

–  Results are fairly robust against changes in the size of a
layer, but the top layer should be big.

•  Deep belief nets give their creator a lot of freedom.
–  The best way to use that freedom depends on the task.
–  With enough narrow layers we can model any distribution

over binary vectors (Sutskever & Hinton, 2007)

What happens when the weights in higher layers
become different from the weights in the first layer?

•  The higher layers no longer implement a complementary
prior.
–  So performing inference using the frozen weights in

the first layer is no longer correct. But its still pretty
good.

–  Using this incorrect inference procedure gives a
variational lower bound on the log probability of the
data.

•  The higher layers learn a prior that is closer to the
aggregated posterior distribution of the first hidden layer.
–  This improves the network’s model of the data.

•  Hinton, Osindero and Teh (2006) prove that this
improvement is always bigger than the loss in the variational
bound caused by using less accurate inference.

Fine-tuning with a contrastive version of the
“wake-sleep” algorithm

 After learning many layers of features, we can fine-tune
the features to improve generation.

1. Do a stochastic bottom-up pass
–  Adjust the top-down weights to be good at

reconstructing the feature activities in the layer below.
2.  Do a few iterations of sampling in the top level RBM

-- Adjust the weights in the top-level RBM.
3.  Do a stochastic top-down pass

–  Adjust the bottom-up weights to be good at
reconstructing the feature activities in the layer above.

Removing structured noise by using
top-down effects

•  After an initial bottom up
pass, gradually turn down
the bottom up weights and
turn up the top down
weights.

•  Look at what the first hidden
layer would like to
reconstruct.

•  It removes noise!
•  Does it improve recognition

of noisy images?

2000 units

500 units

500 units

28 x 28
pixel
image

10 labels

Removing structured noise by using
top-down effects

noisy
image

PART 2:

 Using backpropagation for fine-tuning
a generative model to be better at

discrimination

Fine-tuning for discrimination

•  First learn one layer at a time greedily.
•  Then treat this as “pre-training” that finds a

good initial set of weights which can be fine-
tuned by a local search procedure.
– Contrastive wake-sleep is one way of fine-

tuning the model to be better at generation.
•  Backpropagation can be used to fine-tune the

model for better discrimination.
– This overcomes many of the limitations of

standard backpropagation.

Why backpropagation works better with
greedy pre-training: The optimization view

•  Greedily learning one layer at a time scales well
to really big networks, especially if we have
locality in each layer.

•  We do not start backpropagation until we already
have sensible feature detectors that should
already be very helpful for the discrimination task.
– So the initial gradients are sensible and

backprop only needs to perform a local search
from a sensible starting point.

Why backpropagation works better with
greedy pre-training: The overfitting view

•  Most of the information in the final weights comes from
modeling the distribution of input vectors.
–  The input vectors generally contain a lot more

information than the labels.
–  The precious information in the labels is only used for

the final fine-tuning.
–  The fine-tuning only modifies the features slightly to get

the category boundaries right. It does not need to
discover features.

•  This type of backpropagation works well even if most of
the training data is unlabeled.
–  The unlabeled data is still very useful for discovering

good features.

First, model the distribution of digit images

2000 units

500 units

500 units

28 x 28
pixel
image

The network learns a density model for
unlabeled digit images. When we generate
from the model we get things that look like
real digits of all classes.

But do the hidden features really help with
digit discrimination?

Add 10 softmaxed units to the top and do
backpropagation.

The top two layers form a restricted
Boltzmann machine whose free energy
landscape should model the low
dimensional manifolds of the digits.

Results on permutation-invariant MNIST task

•  Very carefully trained backprop net with 1.6%
one or two hidden layers (Platt; Hinton)

•  SVM (Decoste & Schoelkopf, 2002) 1.4%

•  Generative model of joint density of 1.25%
images and labels (+ generative fine-tuning)

•  Generative model of unlabelled digits 1.15%
followed by gentle backpropagation
(Hinton & Salakhutdinov, Science 2006)

Unsupervised “pre-training” also helps for
models that have more data and better priors

•  Ranzato et. al. (NIPS 2006) used an additional
600,000 distorted digits.

•  They also used convolutional multilayer neural
networks that have some built-in, local
translational invariance.

Back-propagation alone: 0.49%

Unsupervised layer-by-layer
pre-training followed by backprop: 0.39% (record)

Phone recognition with a DNN pre-trained as a
deep belief net (Mohamed, Dahl & Hinton 2009)

–  After the standard

post-processing using
a bi-phone model this
gets 23.0% phone
error rate.

–  The best previous
result on TIMIT was
24.4% and this
required averaging
several models.

11 frames of
39 MFCC’s

2000 binary hidden units

2000 binary hidden units

2000 binary hidden units

2000 binary hidden units

128 units

183 labels
not pre-trained

We can do much better now
using the spectrogram!

Learning Dynamics of Deep Nets
 the next 4 slides describe work by Yoshua Bengio’s group

Before fine-tuning After fine-tuning

Effect of Unsupervised Pre-training

51

Erhan et. al. AISTATS’2009

Effect of Depth

52

w/o pre-training
with pre-training without pre-training

Learning Trajectories in Function Space
(a 2-D visualization produced with t-SNE)

•  Each point is a
model in function
space

•  Color = epoch
•  Top: trajectories

without pre-training.
Each trajectory
converges to a
different local min.

•  Bottom: Trajectories
with pre-training.

•  No overlap!

Erhan et. al. AISTATS’2009

Why unsupervised pre-training makes sense

stuff

image label

stuff

image label

If image-label pairs were
generated this way, it
would make sense to try
to go straight from
images to labels.
For example, do the
pixels have even parity?

If image-label pairs are
generated this way, it
makes sense to first learn
to recover the stuff that
caused the image by
inverting the high
bandwidth pathway.

high
bandwidth

low
bandwidth

Modeling real-valued data

•  For images of digits it is possible to represent
intermediate intensities as if they were probabilities by
using “mean-field” logistic units.
–  We can treat intermediate values as the probability

that the pixel is inked.
•  This will not work for real images.

–  In a real image, the intensity of a pixel is almost
always, almost exactly the average of the neighboring
pixels.

–  Mean-field logistic units cannot represent precise
intermediate values.

Replacing binary variables by
integer-valued variables

 (Teh and Hinton, 2001)

•  One way to model an integer-valued variable is
to make N identical copies of a binary unit.

•  All copies have the same probability,
of being “on” : p = logistic(x)
– The total number of “on” copies is like the

firing rate of a neuron.
–  It has a binomial distribution with mean N p

and variance N p(1-p)

A better way to implement integer values

•  Make many copies of a binary unit.
•  All copies have the same weights and the same

adaptive bias, b, but they have different fixed offsets to
the bias:

....,5.3,5.2,5.1,5.0 −−−− bbbb

→x

A fast approximation

•  Contrastive divergence learning works well for the sum of

binary units with offset biases.
•  It also works for rectified linear units. These are much faster

to compute than the sum of many logistic units with different
biases.
output = max(0, x + noise(x)) many possible noise models

)1log()5.0(logistic
1

x
n

n

enx +≈−+∑
∞=

=

How to train a bipartite network of rectified
linear units

•  Just use contrastive divergence to lower the energy of
data and raise the energy of nearby configurations that
the model prefers to the data.

data>< jihv
recon>< jihv

i

j

i

j

)(recondata ><−><=Δ jijiij hvhvw ε

Start with a training vector on the
visible units.

Update all hidden units in parallel
with sampling noise

Update the visible units in parallel
to get a “reconstruction”.

Update the hidden units again reconstruction data

 3D Object Recognition: The NORB dataset
 Stereo-pairs of grayscale images of toy objects.

- 6 lighting conditions, 162 viewpoints
- Five object instances per class in the training set
-  A different set of five instances per class in the test set
- 24,300 training cases, 24,300 test cases

Animals

Humans

Planes

Trucks

Cars

Normalized-
uniform
version of
NORB

Simplifying the data

•  Each training case is a stereo-pair of 96x96 images.
– The object is centered.
– The edges of the image are mainly blank.
– The background is uniform and bright.

•  To make learning faster I simplified the data:
– Throw away one image.
– Only use the middle 64x64 pixels of the other

image.
– Downsample to 32x32 by averaging 4 pixels.

Simplifying the data even more so that it can
be modeled by rectified linear units

•  The intensity histogram for each 32x32 image has a
sharp peak for the bright background.

•  Find this peak and call it zero.
•  Call all intensities brighter than the background zero.
•  Measure intensities downwards from the background

intensity.

0

Test set error rates on NORB after greedy
learning of one or two hidden layers using

rectified linear units
Full NORB (2 images of 96x96)
•  Logistic regression on the raw pixels 20.5%
•  Gaussian SVM (trained by Leon Bottou) 11.6%
•  Convolutional neural net (Le Cun’s group) 6.0%
 (convolutional nets have knowledge of translations built in)

Reduced NORB (1 image 32x32)
•  Logistic regression on the raw pixels 30.2%
•  Logistic regression on first relu hidden layer 14.9%
•  Logistic regression on second relu hid layer 10.2%

See Nair & Hinton ICML 2010 for better results

The
receptive
fields of
some
rectified
linear
hidden
units.

A standard type of real-valued visible unit

•  We can model pixels as
Gaussian variables.
Alternating Gibbs
sampling is still easy,
though learning needs to
be much slower.

ijj
ji i
iv

hidj
jj

visi i

ii whhbbv,E ∑∑∑ −−
−

=
,

2

2

2
)(

)(
σ

εε σ
hv

E
 à

energy-gradient
produced by the total
input to a visible unit

parabolic
containment
function

→ii vb

Welling et. al. (2005) show how to extend RBM’s to the
exponential family. See also Bengio et. al. (2007)

Gaussian-Binary RBM’s

•  Lots of people have
failed to get these to
work and its extremely
hard to learn tight
variances for the
visible units.

•  It took a long time to
figure out why it is so
hard to learn the visible
variances.

iji
i

ij w
w

σ
σ

When sigma is much
less than 1, the bottom-
up effects are too big
and the top-down effects
are too small.

The solution:

•  Use as many hidden units as it takes to provide
big enough top-down effects using small weights

•  Relu’s do this automatically.
–  If a relu has a bias of zero, it exhibits scale

equivariance:
– This is a very nice property to have for

images.
–  It is like the equivariance to translation

exhibited by convolutional nets.
))(())((xx RshiftshiftR =

)()(xx RaaR =

An early example of Gaussian-Relu RBMs
 •  Gaussian-Relu RBM’s can be made to learn very

nice convolutional filters on 32x32 color images
(Alex Krizhevsky)
–  With an extra hidden layer of binary units and a few

tricks, these gave record-breaking discrimination on
CIFAR-10.

before fine-tuning after fine-tuning

Why are rectified linear units so
powerful?

•  The non-linearity allows later layers to ignore
irrelevant variations.

•  The linear part of a hidden relu unit can model
covariance between pixel intensities much more
efficiently than the binary hidden units in a binary
Gaussian RBM.

•  An RBM with Gaussian visible units and Relu
hidden units is a competitor to a mixture of factor
analysers as a density model.
– But MFA usually wins.

