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This talk

The idea of “deep learning.” Using brain simulations, hope to:
- Make learning algorithms much better and easier to use.
- Make revolutionary advances in machine learning and Al.

Vision is not only mine; shared with many researchers:

E.g., Samy Bengio, Yoshua Bengio, Tom Dean, Jeff Dean, Nando de
Freitas, Jeff Hawkins, Geoff Hinton, Quoc Le, Yann LeCun, Honglak
Lee, Tommy Poggio, Ruslan Salakhutdinov, Josh Tenenbaum, Kai
Yu, Jason Weston, ....

| believe this is our best shot at progress towards real Al.




What do we want computers to do with our data?

Label: “Motorcycle”
5 Suggest tags
Image search

Images/video

Speech recognition

Audio Music classification
Speaker identification
Text Wep search
> Anti-spam

Machine translation

Andrew Ng



Computer vision is hard!

1‘%&*&4 R
e N .
-

G

Migma

Andrew Ng



What do we want computers to do with our data?

Images/video Label: “Motorcycle”
5 Suggest tags
Image search

Audio Speech recognition

Speaker identification
Music classification

Web search
> Anti-spam
Machine translation

Text

Machine learning performs well on many of these problems, but is a
lot of work. What is it about machine learning that makes it so hard
to use?

\ndrew Ng



Machine learning for image classification

> “Motorcycle”

This talk: Develop ideas using images and audio.
Ideas apply to other problems (e.g., text) too.

Andrew Ng



Why is this hard?

You see this:

But the camera sees this:
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Machine learning and feature representations

Learning

algorithm

< Motorbikes
Raw image “Non”-Motorbikes

pixel 2

Andrew Ng



Machine learning and feature representations

Sl Learning
algorithm

< Motorbikes
Raw image “Non”-Motorbikes

+

pixel 2

pixel 1
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Machine learning and feature representations
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What we want

—handlebars

> Feature Sl Learning
wheel representation algorithm

E.g., Does it have Handlebars? Wheels?

Input
-+ Motorbikes
Raw image “Non"-Motorbikes Features
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pixel 1 Handlebars
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Computing features in computer vision

But... we don’t have a handlebars detector. So, researchers try to hand-design features
to capture various statistical properties of the image.

Final
feature

Find edges Sum up edge vector

at four strength in

orientations  each quadrant
Andrew Ng



Feature representations

Learning
Representation algorithm

Andrew Ng



How is computer perception done?

Images/video )

Audio

Text

Image

- - —"

Audio

Vision features

Audio features

Detection

Speaker ID

Text classification,
Machine translation,
Information retrieval,

Andrew Ng



Feature representations

Learning
Representation algorithm

Andrew Ng



Computer vision features
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Gradient Image e
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Audio features

Flux 7CR Rolloff

Andrew Ng



NLP features
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Feature representations

Feature Learning

Representation algorithm

Andrew Ng



The “one learning algorithm” hypothesis

o

ey Ll K
Cortex

Auditory cortex learns to see

[Roe et al., 1992]
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The “one learning algorithm” hypothesis

‘C‘ortex

Somatosensory cortex learns to see

[Metin & Frost, 1989]

Andrew Ng



Sensor representations in the brain

Haptic belt: Direction sense Implanting a 3" eye

[BrainPort; Welsh & Blasch, 1997; Nagel et al., 2005; Constantine-Paton & Law, 2009]



On two approaches to computer perception

The adult visual system computes an incredibly complicated function of
the input.

We can try to directly implement most of this incredibly complicated
function (hand-engineer features).

Can we learn this function instead?

A trained learning algorithm (e.g., neural network, boosting, decision
tree, SVM,...) is very complex. But the learning algorithm itself is
usually very simple. The complexity of the trained algorithm comes
from the data, not the algorithm.

Andrew Ng



Learning input representations

Find a better way to represent images than pixels.

Andrew Ng



Learning input representations
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Find a better way to represent audio.
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Feature learning problem

* Given a 14x14 image patch x, can represent

it using 196 real numbers. e

98

93
87
= |

91
48

* Problem: Can we find a learn a better
feature vector to represent this?

Andrew Ng



Self-taught learning (Unsupervised Feature Learning)

Testing:
What is this?

Motorcycles Not motorcycles

Andrew Ng



Self-taught learning (Unsupervised Feature Learning)

Testing:
What is this?

Motorcycles Not motorcycles

Andrew Ng



First stage of visual processing: V1

V1 is the first stage of visual processing in the brain.
Neurons in V1 typically modeled as edge detectors:

-

Neuron #1 of visual cortex Neuron #2 of visual cortex
(model) (model)

Andrew Ng



Feature Learning via Sparse Coding

Sparse coding (Olshausen & Field,1996). Originally
developed to explain early visual processing In
the brain (edge detection).

Input: Images x®, x@, ..., xM (each in R"*x")

Learn: Dictionary of bases ¢, ¢, ..., ¢, (also R"*"),
so that each input x can be approximately
decomposed as:

k
s.t. a’s are mostly zero (“sparse”)

Andrew Ng



Sparse coding illustration

Natural Images Learned bases (¢; _{g4): “Edges”

L IMANT=Y
e P i, <l o 2
e B BTl B RS 74
M=

Test example

= L
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X ~ (.8 * <|>36 + 0.3 % by TO5% gy
[a}, ..., ag) =10,0,..,00.8,0,..,0,0.3,0,..0,0.5, 0]

(featu re representatign) More succinct, higher-level,
representation.



More examples

coo- N . o5-
Ous 0,

Represent as: [a,5=0.6, a,3=0.8, az; = 0.4].

¢37
+ 0.3 *
¢29

+0.4*

s 0,y

Represent as: [a;=1.3, a,3=0.9, a,¢ = 0.3].

» Method “invents” edge detection.

« Automatically learns to represent an image in terms of the edges that
appear in it. Gives a more succinct, higher-level representation than
the raw pixels.

« Quantitatively similar to primary visual cortex (area V1) in brain.

Andrew Ng



Sparse coding applied to audio

Image shows 20 basis functions learned from unlabeled audio.
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Sparse coding applied to audio

Image shows 20 basis functions learned from unlabeled audio.
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Sparse coding applied to touch data

Collect touch data using a glove, following distribution of grasps used by animals in the wild.

Grasps used by animals

[Macfarlane & Graziano, 2009]

Number of Neurons

Number of Bases

N
a

N

Biological data

n.5

Learning Algorithm

-0.5 0 0.5
Log (Excitatory/Inhibitory Area)

[Andrew Saxe]



Learning feature hierarchies

Higher layer
(Combinations of edges;
cf V2)

“Sparse coding”
(edges; cf. V1)

Input image (pixels)

[Technical details: Sparse autoencoder or sparse version of Hinton’s DBN.]
[Lee, Ranganath & Ng, 2007]



Learning feature hierarchies

Higher layer
(Model V3?)

Higher layer
(Model V27?)

Model V1

Input image

[Technical details: Sparse autoencoder or sparse version of Hinton’s DBN.]
[Lee, Ranganath & Ng, 2007]



Hierarchical Sparse coding (Sparse DBN): Trained on face images

object models

object parts

=\==='=.1" (combination
Vimh®W O of edges)

Training set: Aligned

images of faces. ¥ N B2
NERFA -
ANANN | edoes
~{l|=~{\" |

[Honglak Lee]



Hierarchical Sparse coding (Sparse DBN)

Features learned from training on different object classes.

Cars Elephants Chairs

Faces
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[Honglak Lee]



Machine learning
applications



Video Activity recognition (Hollywood 2 benchmark)

Method Accuracy

Hessian + ESURF [Williems et al 2008] 38%
Harris3D + HOG/HOF [Laptev et al 2003, 2004] 45%
Cuboids + HOG/HOF [Dollar et al 2005, Laptev 2004] 46%
Hessian + HOG/HOF [Laptev 2004, Williems et al 2008] 46%
Dense + HOG / HOF [Laptev 2004] 47%
Cuboids + HOG3D [Klaser 2008, Dollar et al 2005] 46%
Unsupervised feature learning (our method) 52%

Unsupervised feature learning significantly improves
on the previous state-of-the-art.

[Le, Zhou & Ng, 2011]



Sparse coding on audio (speech)
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Dictionary of bases ¢, learned for speech

Many bases seem to correspond to phonemes.

[Honglak Lee]



Hierarchical Sparse coding (sparse DBN) for audio
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Spectrogram



Hierarchical Sparse coding (sparse DBN) for audio

o 0% AR a..w

a9
.w..:' - \ L lV.J\n‘lH:
}x}.{.ﬂb .4,& 5 A,PA P/.no»\mbnf .
DA N L

g O af. {LF \.f..N AN -Nsdxu/ :..
- ul:\ =

T..’?
_;
¢
»
A
)
)

XU

tr) ..\4Lrlb .
ey =&
/.s.ﬂ el £ CAL b Af\ aa an e b

.nda»r.. \.ﬂv«h&_t a Al .Hun.ﬁkau

B

m.

=

MLy L \.Pr.r/ .

[
13
'
K
'

i

fitis

?,.il A3 4— " ST
.\.\ﬁ.u\: B SRl ;
R TR IR uv.»m‘: e

.Cr. BB ST

&v .ﬂrf»«%@uﬁnﬂ‘m

a—— v\k\

Y nu.f (.c., 2 s 0T :}..
TR T R R
R R T
e .r..w e S el
I AN TG

B0

A% .\_aahc P e

u.fw?&at Iz.ﬁﬁ%ﬂf :w»&.
A 4 .. S Ppe ~ e
ahfy s 100 o B

T e R A= o Y DN

[Honglak Lee]

Spectrogram



Hierarchical Sparse coding (sparse DBN) for audio

Spectrogram

[Honglak Lee]



Phoneme Classification (TIMIT benchmark)

Method Accuracy
Clarkson and Moreno (1999) 77.6%
Gunawardana et al. (2005) 78.3%
Sung et al. (2007) 78.5%
Petrov et al. (2007) 78.6%
Sha and Saul (2006) 78.9%
Yu et al. (2006) 79.2%

Unsupervised feature learning (our method) 80.3%

Unsupervised feature learning significantly improves
on the previous state-of-the-art.

[Lee et al., 2009]



State-of-the-art
Unsupervised
feature learning



Images

Prior art (Ciresan et al., 2011) Prior art (Scherer et al., 2010)

Stanford Feature learning Stanford Feature learning

Video

Prior art (Laptev et al., 2004) Prior art (Liu et al., 2009)

Stanford Feature learning Stanford Feature learning

Prior art (Wang et al., 2010) Prior art (Wang et al., 2010)

Stanford Feature learning Stanford Feature learning

Text/NLP

Prior art (Das & Smith, 2009) Prior art (Nakagawa et al., 2010)

Stanford Feature learning Stanford Feature learning

Multimodal (audio/video)

Other unsupervised feature learning records:
Pedestrian detection (Yann LeCun)
Prior art (Zhao et al., 2009) Speech recognition (Geoff Hinton)

PASCAL VOC object classification (Kai Yu)
Stanford Feature learning

Andrew Ng



Technical challenge:
Scaling up



Supervised Learning

« Choices of learning algorithm:
— Memory based

— Winnow

— Perceptron .

— Nalve Bayes §
— SVM &

 \What matters the most?

fraining se_t-size (miII_io'ns)
[Banko & Brill, 2001]

“It's not who has the best algorithm that wins.
It's who has the most data.”

Andrew Ng



Scaling and classification accuracy (CIFAR-10)

Large numbers of features is critical. The specific learning algorithm is
important, but ones that can scale to many features also have a big
advantage.

80 80

75 |75
9
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3
<
S 65 65
3
$ - kmeans (tri) raw
7 kmeans (hard) raw
860 - % - gmm raw 160

- » - autoencoder raw
-» - rbm raw
~e—~ kmeans (tri) white

55! ) kmeans (hard) white 195
x —e—~ gmm white
~&- autoencoder white
—e— rbm white _
50 100 200 400 800 1200 1600 50
# Features

[Adam Coates]



Attempts to scale up

Significant effort spent on algorithmic tricks to get algorithms to run faster.

Efficient sparse coding. [LeCun, Ng, Yu]

Efficient posterior inference [Bengio, Hinton]

Convolutional Networks. [Bengio, de Freitas, LeCun, Lee, Ng]

Tiled Networks. [Hinton, Ng]

Randomized/fast parameter search. [DiCarlo, Ng]

Massive data synthesis. [LeCun, Schmidhuber]

Massive embedding models [Bengio, Collobert, Hinton, Weston]

Fast decoder algorithms. [LeCun, Lee, Ng, Yu]

GPU, FPGA and ASIC implementations. [Dean, LeCun, Ng, Olukotun]

Andrew Ng



Prior art (Ciresan et al., 2011) Prior art (Scherer et al., 2010)

Stanford Feature learning Stanford Feature learning

Prior art (Laptev et al., 2004) Prior art (Liu et al., 2009)

Stanford Feature learning Stanford Feature learning

Prior art (Wang et al., 2010) Prior art (Wang et al., 2010)

Stanford Feature learning Stanford Feature learning

Text/NLP

Prior art (Das & Smith, 2009) Prior art (Nakagawa et al., 2010)

Stanford Feature learning Stanford Feature learning

Multimodal (audio/video)

Other 11Ins1Inervised featiire learnina records:
Pedestrian detection (Yann LeCun)
Prior art (Zhao et aI., 2009) Sheech reconnitinn ((aentt Hlnfnn_\

PASCAL VOC object classification (Kai Yu)
Stanford Feature learning

Andrew Ng



Scaling up: Discovering
object classes

[Quoc V. Le, Marc'Aurelio Ranzato, Rajat Monga,
Greg Corrado, Matthieu Devin, Kai Chen, Jeff Dean]



Training procedure

What features can we learn if we train a massive model on a massive
amount of data. Can we learn a “grandmother cell”?

Train on 10 million images (YouTube)
1000 machines (16,000 cores) for 1 week.
1.15 billion parameters

Test on novel images

B
—
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L_ e A
o TLIRTIES
I\: 404 .. bt. Uk
Training set (YouTube) Test set (FITW + ImageNet)

Andrew Ng



Face neuron

Top Stimuli from the test set Optimal stimulus by numerical optimization

Andrew Ng



Random distractors
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Invariance properties
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Cat neuron

Top Stimuli from the test set Optimal stimulus by numerical optimization

——

Andrew Ng



Cat face neuron

Random distractors

ol

| Cat faces

i



Visualization

Optimal stimulus by numerical optimization

Top Stimuli from the test set
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Pedestrian neuron

Random distractors

1l Pedestrians




Weaknesses &
Criticisms



Weaknesses & Criticisms

You're learning everything. It's better to encode prior knowledge about
structure of images (or audio, or text).

A: Wasn't there a similar machine learning vs. linguists debate in NLP ~20

years ago....

Unsupervised feature learning cannot currently do X, where X is:

—n hovinnd CCalhnAr (1 laviar faatiirace
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\AlAavl, Aan tamnarval Aata hndan)

VVUIRK Ul iCinipurdl bata \viucu)

Il aarn hiararrhiral ranrocantatinne (cnmnncitinnal ecamantire)
LLUCALLTL T1I1TviI A viiliituval |\;'~J| CoulIltCALIVI IO \UUI 1 |PUJ|L|U| 1AL Ou i1l |L|U\J/
(ot ctata_nf_tha_art in activiihvs roecnnnitinn

Nl LLALL UL LiITw Q(LAatl i u\lll\lll.y I\;U\Jul 1nuIvii

(>ot ctata_nf_-tho_art nn iManao e~laccifiratinn

Nl JLLALL UL LI AT L VLT 1111 o VIAVDJIIITUVAALIVIL .

Get state-of-the-art on object detection.

Learn variable-size representations.

A: Many of these were true, but not anymore (were not fundamental
weaknesses). There’s still work to be done though!

We don’t understand the learned features.

A: True. Though many vision/audio/etc. features also suffer from this (e.g,

concatenations/combinations of different features).

Andrew Ng



Conclusion



Unsupervised Feature Learning Summary

 Deep Learning and Self-Taught learning: Lets learn rather than = § Ao

manually design our features. F P
- : o an A.j 8.0
* Discover the fundamental computational principles that Unlabeled images

underlie perception?

» Sparse coding and deep versions very successful on vision
and audio tasks. Other variants for learning recursive
representations.

» To get this to work for yourself, see online tutorial:
http://deeplearning.stanford.edu/wiki
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Learning Recursive
Representations



Feature representations of words

Imagine taking each word, and computing an n-dimensional feature vector for it.
[Distributional representations, or Bengio et al., 2003, Collobert & Weston, 2008.]

2-d embedding example below, but in practice use ~100-d embeddings.

A
ST , On[ 2 ] 0 0
0 1
L AT Monday[ 4 ] 0 0
0 0
? 1 Tuesday |21 1 0
3 3.3 0 0
. [ 9 0 0
-+ B
5 ritain| 2 0 0
-+ France|? . .
1 E5] Monday  Britain
1 1 1 1 1 1 1 1 ] ']
| | | | | | | | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

On Monday, Britain ....

: 8 2 9
Representation: [5 ] [ 4 ] [ 2 ]

Andrew Ng



“Generic” hierarchy on text doesn’t make sense

‘ Node has to represent
sentence fragment “cat
sat on.” Doesn’t make

sense.

G000 0 b

sat on the

Feature representation

for words
Andrew Ng



What we want (illustration)

‘ S This node’s job is
to represent
‘ VP on the mat.
oL

el ) () O () ()

the mat.

Andrew Ng



What we want (illustration)

‘) S This node’s job is

to represent

. ) VP on the mat.
3

(P () v
el ) () O () ()

the mat.

Andrew Ng



What we want (illustration)

A
ST ¢ The day after my birthday
X, 4T / Monday
T Tuesday The country of my birth
-+ Britain
2
T France
—t>

/7 8 9 10

F)CVC) G ) B C)E) ) ()

The day after my birthday, ... The country of my birth...




Learning recursive representations

This node’s job is
to represent
“on the mat.”

Andrew Ng



Learning recursive representations

This node’s job is
to represent
“on the mat.”

Andrew Ng



Learning recursive representations

Basic computational unit: Neural Network This node’s job is
that inputs two candidate children’s to represent
representations, and outputs: “on the mat.”

» Whether we should merge the two nodes.
» The semantic representation if the two
nodes are merged. )

9 3

Neural
Network

w

Andrew Ng



Parsing a sentence

Neural Neural Neural NEEL Neural
Network Network Network Network Network
) 5 7 8 9 4
1 3 1 5 1 3
The cat sat on the mat.

Andrew Ng



Parsing a sentence

Neural Neural Neural
Network Network Network

Andrew Ng



Parsing a sentence

B

U YNNG

The cat sat the mat.

Andrew Ng



Finding Similar Sentences

« Each sentence has a feature vector representation.
» Pick a sentence (“center sentence”) and list nearest neighbor sentences.
« Often either semantically or syntactically similar. (Digits all mapped to 2.)

Similarities Center Nearest Neighbor Sentences (most similar feature
Sentence vector)

Bad News Both took 1. We 're in for a lot of turbulence ...
further hits 2. BSN currently has 2.2 million common shares
yesterday outstanding

3. This is panic buying

4. We have a couple or three tough weeks coming
Something said | had calls all 1. Our intent is to promote the best alternative, he
night long from says
the States, he 2. We have sufficient cash flow to handle that, he
said said

3. Currently, average pay for machinists is 22.22 an
hour, Boeing said

4. Profit from trading for its own account dropped, the
securities firm said

Mochida advanced 22 to 2,222
Commerzbank gained 2 to 222.2

Paris loved her at first sight

Profits improved across Hess's businesses

Gains and good  Fujisawa gained
news 2210 2,222

v RN =

Greenville , Miss
1 INIL/ NAA

Unknown words @ Columbia, S.C

ardsaasls S SR e



Finding Similar Sentences

Similarities Center Nearest Neighbor Sentences (most similar feature
Sentence vector)

Declining to Hess declined to 1. PaineWebber declined to comment

comment = not comment 2. Phoenix declined to comment

disclosing 3. Campeau declined to comment

4. Coastal wouldn't disclose the terms

Large changes in @ Sales grew 1. Sales surged 22 % to 222.22 billion yen from 222.22

sales or revenue | almost 2 % to billion
222.2 million 2. Revenue fell 2 % to 2.22 billion from 2.22 billion
from 222.2 3. Sales rose more than 2 % to 22.2 million from 22.2
million million

4. Volume was 222.2 million shares , more than triple
recent levels

Negation of There's nothing 1. We don't think at this point anything needs to be said
different types unusual about 2. It therefore makes no sense for each market to adopt
business groups different circuit breakers
pushing for 3. You can't say the same with black and white
more 4. | don't think anyone left the place UNK UNK
government
spending
People in bad We were lucky 1. It was chaotic
situations 2. We were wrong
3. People had died 9



Application: Paraphrase Detection

« Task: Decide whether or not two sentences are paraphrases of each
other. (MSR Paraphrase Corpus)

Method

Baseline

Rus et al., (2008)

Mihalcea et al., (2006)

Islam et al. (2007)

Qiu et al. (2006)

Fernando & Stevenson (2008) (WordNet based features)
Das et al. (2009)

Wan et al (2006) (many features: POS, parsing, BLEU, etc.)

Stanford Feature Learning

Andrew Ng



Parsing sentences and parsing images

A small crowd
guietly enters the
historic church.
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Each node in the hierarchy has a “feature vector” representation.
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Parsing Natural Language Sentences
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Nearest neighbor examples for image patches

« Each node (e.g., set of merged superpixels) in the hierarchy has a feature vector.
» Select a node (“center patch”) and list nearest neighbor nodes.
* l.e., what image patches/superpixels get mapped to similar features?

| L) -
s
0;;1 I! ._-LLAQ ’
t“ \
{ g

Selected patch Nearest Neighbors

Andrew Ng



Multi-class segmentation (Stanford background dataset)

0 tree .l()dd .grc‘m .waler .t)ldg .mntn fg ob)

Method Accuracy
Pixel CRF (Gould et al., ICCV 2009) 74.3
Classifier on superpixel features 75.9
Region-based energy (Gould et al., ICCV 2009) 76.4
Local labelling (Tighe & Lazebnik, ECCV 2010) 76.9
Superpixel MRF (Tighe & Lazebnik, ECCV 2010) 77.5
Simultaneous MRF (Tighe & Lazebnik, ECCV 2010) 77.5
Stanford Feature learning (our method) 78.1

Andrew Ng



Multi-class Segmentation MSRC dataset: 21 Classes

TextonBoost (Shotton et al., ECCV 2006)

Framework over mean-shift patches (Yang et al., CVPR
2007)

Pixel CRF (Gould et al., ICCV 2009)

Region-based energy (Gould et al., IJCV 2008)
Stanford Feature learning (out method)

Accuracy
72.2
75.1

75.3
76.5
76.7

Andrew Ng



Analysis of feature
learning algorithms

Andrew Coates Honglak Lee



Supervised Learning

« Choices of learning algorithm:

— Memory based o
— Winnow /

— Perceptron Training set size
>
)
LI} m
— Nalve Bayes S -
— SVM <

 \What matters the most?

[Banko & Brill, 2001]

“It's not who has the best algorithm that wins.
It's who has the most data.”

Andrew Ng



Unsupervised Feature Learning

« Many choices in feature learning algorithms;
— Sparse coding, RBM, autoencoder, etc.
— Pre-processing steps (whitening)
— Number of features learned
—Various hyperparameters.

 \WWhat matters the most?

Andrew Ng



Unsupervised feature learning

Most algorithms learn Gabor-like edge detectors.

Sparse auto-encoder

Andrew Ng



Unsupervised feature learning

Weights learned with and without whitening.

with whitening without whitening with whitening without whitening

Sparse auto-encoder Sparse RBM

with whitening without whitening with whitening without whitening

K-means Gaussian mixture model

Andrew Ng



Scaling and classification accuracy (CIFAR-10)

Cross—Validation Accuracy (%)
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Performance for Raw and Whitened Inputs
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Results on CIFAR-10 and NORB (old result)

« K-means achieves state-of-the-art

— Scalable, fast and almost parameter-free, K-means does
surprisingly well.

CIFAR-10 Test accuracy
Raw pixels

NORB Test accuracy (error)

Convolutional Neural Networks  93.4% (6.6%)
Deep Boltzmann Machines 92.8% (7.2%)
Deep Belief Networks 95.0% (5.0%)
Jarrett et al., 2009 94.4% (5.6%)

RBM with back-propagation
3-Way Factored RBM (3 layers)
Mean-covariance RBM (3 layers)

Improved Local Coordinate Coding Sparse auto-encoder 96.9% (3.1%)

Sparse RBM 96.2% (3.8%)
K-means (Hard) 96.9% (3.1%)

K-means (Triangle) 97.0% (3.0%

Convolutional RBM

Sparse auto-encoder
Sparse RBM
K-means (Hard)

K-means (Triangle, 1600 features)

K-means (Triangle, 4000 features)

Andrew Ng



Tiled Convolution
Neural Networks

Quoc Le Jiquan Ngiam



Learning Invariances

« We want to learn invariant features.

« Convolutional networks uses weight tying to:

— Reduce number of weights that need to be learned.
- Allows scaling to larger images/models.

— Hard code translation invariance. Makes it harder to
learn more complex types of invariances.

« Goal: Preserve computational scaling advantage of
convolutional nets, but learn more complex invariances.

Andrew Ng



Fully Connected Topographic ICA

Pooling Units

(Sqrt)

4

)

Wy d
»,9.”,,.‘ “»
/ w...y

W,

X

t\msh’ﬂr/i
AN
\C

a

Simple Units
(Square)

\Ne//
S

e
4

\

\

Doesn’t scale to large images.
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Fully Connected Topographic ICA

Simple Units
(Square)

009009 -

Doesn’t scale to large images.
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Local Receptive Fields

Simple Units
(Square)
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Convolution Neural Networks (Weight Tying)

Pooling Units Q Q Q

(Sart)

Simple Units
(Square)

pu OO O
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Tiled Networks (Partial Weight Tying)

Q00

Tile Size (k) = 2
<>

Simple Units
(Square)

mpu OO O

Local pooling can capture complex invariances (not just translation);

but total number of parameters is small.
Andrew Ng



Tiled Networks (Partial Weight Tying)

Pooling Units
(Sqart) |
Tile Size

Simple Units
(Square)

0 0
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Tiled Networks (Partial Weight Tying)
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Tiled Networks (Partial Weight Tying)

Pooling Units
(Sqrt)
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NORB and CIFAR-10 results

Deep Tiled CNNs [this work]

CNNs [Huang & LeCun, 2006]

3D Deep Belief Networks [Nair & Hinton, 2009]

Deep Boltzmann Machines [Salakhutdinov & Hinton, 2009]
TICA [Hyvarinen et al., 2001]

SVMs

Improved LCC [Yu et al., 2010]
Deep Tiled CNNs [this work]

LCC [Yu et al., 2010]

McRBMs [Ranzato & Hinton, 2010]
Best of all RBMs [Krizhevsky, 2009]
TICA [Hyvarinen et al., 2001]

Andrew Ng



Summary/Big ideas



Summary/Big ideas

Large scale brain simulations as revisiting of the big “Al
dream.”

“Deep learning” has had two big ideas:
— Learning multiple layers of representation
— Learning features from unlabeled data

Has worked well so far in two regimes (confusing to
outsiders):

— Lots of labeled data. “Train the heck out of the network.”
— Unsupervised Feature Learning/Self-Taught learning

Scalability is important.

Detailed tutorial: http://deeplearning.stanford.edu §e
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