Advanced Hierarchical
Models

Russ Salakhutdinov

Department of Statistics and Computer Science
University of Toronto



Motivation

* Learning abstract representations that support transfer to novel
tasks, lies at the core of many problems in computer vision, speech
perception, natural language processing, and machine learning.

* In many machine learning applications performance is measured
using hundreds or thousands of training examples.

 For human learners, a single example of a novel category is often
sufficient to make meaningful generalizations to novel instances.

Goal: Transfer higher-order knowledge abstracted from
previously learned concept to infer parameters of a

novel concept from few examples.
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One-shot Learning

“zarc” segway”
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How can we learn a novel concept — a high dimensional
statistical object — from few examples.
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(Lake, Salakhutdinov, Gross, Tenenbaum, CogSci 2011)



Traditional Supervised Learning

Motorcycle

Test:
What is this?




Learning to Transfer

Background Knowledge
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/I\/Iillions of unlabeled images\ Learn to Transter
| = Knowledge

Learn novel concept
from one example

Test: T
What is this? w




Learning to Transfer

Background Knowledge

/I\/Iillions of unlabeled images Learn to Transter
- - Knowledge

2

Key problem in computer vision,
speech perception, natural language
. processing, and many other domains.

Some Tabeled images

Learn novel concept
from one example

T e L Test: éz
T 0T S I What is this? @
Elephant Tractor
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Hierarchical Bayes

Level 3
{72, a%

Level 2
{pk, 7%, o}

Hierarchical Bayesian
Models

Hierarchical Prior.

Probability of observed Prior probability of

data given parameters weight vector W
Posterior probability of ™~ 1/
parameters given the \ D P
training data D. p(W|D) _ p( |W> (W>
P(D)

* Fei-Fei, Fergus, and Perona, TPAMI 2006

* E. Bart, I. Porteous, P. Perona, and M. Welling, CVPR 2007
* Miller, Matsakis, and Viola, CVPR 2000

* Sivic, Russell, Zisserman, Freeman, and Efros, CVPR 2008



Hierarchical-Deep Models

Deep Nets
HD Models: Compose hierarchical Bayesian Part-based Hierarchy
models with deep networks, two influential
approaches from unsupervised learning .
Deep Networks: LIS
* learn multiple layers of nonlinearities. i (© - :,

* trained in unsupervised fashion --
unsupervised feature learning — no need to
rely on human-crafted input representations.
* labeled data is used to slightly adjust the

Marr and Nishihara (1978)

Hierarchical Bayes
Category-based Hierarchy

model for a specific task. breathes
Hiera rChicaI Baye5: CarTﬂy animal can_swim
* explicitly represent category hierarchies for

. bird
sharing abstract knowledge.

* explicitly identify only a small number of canary eagle shdrk  salmon
parameters that are relevant to the new

] Collins & Quillian (1969)
concept being learned.

(Salakhutdinov, Tenenbaum, Torralba, NIPS 2011)



Motivation for Our Approach

Learning to transfer knowledge: /

/

Super-class

\

Hierarchical
r

* Super-category: “A segway looks Segway

like a funny kind of vehicle”.

<

* Higher-level features, or parts, shared

~ Wwith other classes:
» wheel, handle, post

<

* Lower-level features:
\_ » edges, composition of edges
Deep

Edges

AR =



Hierarchical Generative Model

Hierarchical Latent Dirichlet
Allocation Model

0
el hellie
horse | | cow car van | | truck
&
h* (OOOJ]
%3 DBM Model
h' Q00000

Lower-level generic features:
* edges, combination of edges




Hierarchical Generative Model

Hierarchical Latent Dirichlet
Allocation Model

“vehicle” Hierarchical Organization of Categories:

* express priors on the features that are
typical of different kinds of concepts

9 * modular data-parameter relations
= K

1L T—"7 1
(hip|| || (hiy (ip|| ||Rip|| || (i Higher-level class-sensitive features:
horse| | cow 3 car | | van ] |truck * capture distinctive perceptual

h? (0000 structure of a specific concept

%3 DBM Model

1

h" (OO0 000)

Lower-level generic features:
* edges, combination of edges
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Deep Boltzmann Machines

- &
Higher-level features:
" Combination of edges

Internal representations capture
higher-order statistical structure

) Low-level features:
Edges

NS
29 ¢\

NN
AT ”%ﬂ‘!‘
f !h\!‘o

Image

ity

Built from unlabeled inputs.

Input: Pixels




A Brief Review

P*(v) 1 Trrrl11 1T /21,2 2T 11,313
P, = = —— W-h h- W-<h h“ W-h
(V) Z(0) Z(0) hl%;hg exp [V — +

Deep Boltzmann Machine 0 = {W' W= W=} model parameters

 Dependencies between hidden variables.
* All connections are undirected.

e Bottom-up and Top-down:

Input



Decomposition

The joint probability can be decomposed:
PQ(V7 hla h27 hg) — PQ(Va h17 h2‘h3)P9(h3)
J) \\

¢ J
Y
Conditional DBM Prior term

h3

W Replace the last term with

, more structured hierarchical

h C ) prior.

W2
h!(C ) C )

Wl
Vv

DBM Conditional DBM

1
Z(6,h?)

Ps(v,h!, h2[h?®) = exp |[vIWh! + h! ' W2h? + h? ' Wihs



Stage-wise Learning

The joint probability can be decomposed:
PQ(V7 hla h27 hg) — PQ(Va h17 h2‘h3)P9(h3)
¢ 7\

J
Y
Conditional DBM Prior term

DBMs approximate intractable posterior Py(h|v) with fully factorized
tractable distribution @, (h|v). The variational lower-bound takes form:

log Py(v) > Z Qu( (h' h2‘v)[10gP9(V h! h2|h3)] +7—[(Qu(h\v)1)

h! h2h3 |
Y E
Likelihood term ntropy functional
3 3
+> " Qu(h’v)log Py(h?)
1 h3
1§ J
H(Q,(h|v)) ZQ“ h|v) log 0, (b[v) v

Fit Hierarchical LDA prior



Stage-wise Learning

The joint probability can be decomposed:
PQ(V7 hla h27 h3) — PQ(Va h17 hQ‘hB)PQ(hB)
¢ v '\ J
Conditional DBM Prior term

DBMs approximate intractable posterior Py(h|v) with fully factorized
tractable distribution @, (h|v). The variational lower-bound takes form:

log Py(v) > > Qu(h',h*v) [log Py(v, hl,h2|h3)] + H(Qu(h|v))

h',h2 h3 ) _
Likelihoggterm Entropy functional

. Learn DBM. ?M(h?’lv) log Py(h?)
e Using variational inference, infer the states of v J

the top-level variables and fit an LDA prior. Fit Hierarchical LDA prior
\.
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Bag of Words Representation

Object

—

Bag of ‘words’

Slide credit: Fei fei



Analogy to Documents

S90bn

Id increase
Y/ said

N\ 30%
18%

China, trade,
surplus, commerce,
exports, imports, US,
yuan, bank, domestic,
foreign, increase,
trade, value

visual, perception,
retinal, cerebral cortex,
eye, cell, optical
nerve, image

one fact!
Xiaochuar

trade freely. However, Beijing has made
that it will take its time and tread careful
allowing the yuan to rise further in value.

Intuition: Documents contain multiple topics.
Slide credit: Fei fei



Latent Dirichlet Allocation

The William Randolph Hearst Foundation will give S1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research. education
Text and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200.000 for its new building, which
do cu ment will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400.000 each. The Juilliard School, where music and
the performing arts are taught, will get $250.000. The Hearst Foundation, aleading supporter
of the Lincoln Center Consolidated Corporate Fund. will make its usual annual $100,000
donation, too.

“Arts” “Budgets” “Children” “Education”
NEW MILLION CHILDREN  SCHOOL
FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
. MOVIE  BILLION YEARS TEACHERS
D ISscovere d PLAY FEDERAL FAMILIES HIGH
MUSICAL  YEAR WORK PUBLIC
. BEST SPENDING PARENTS TEACHER
to p ICS ACTOR  NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE  NAMPHY
OPERA  MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

Blei, et al. 2003



Latent Dirichlet Allocation

Pr(topic | doc)

Generative Process: w ~ LDA

Draw each topic 0, ~ Dir(n)fork =1.... K

For each document d:

* Draw topic proportions my ~ Dir(«)

 For each word:

* Draw topic indicator z,,,, ~ Mult(m )

e Draw word

Wy n ~ Mult(@z

d,n)

N

X,

J

K

Pr(word | topic)




Latent Dirichlet Allocation

o Pr(topic | doc)
@

Generative Process: w ~ LDA

Draw each topic 0, ~ Dir(n)fork =1.... K

For each document:
D i i Di @

raw topic proportions w4 ~ Dir(« >
° . | .

* Draw topic indicator 24, ~ Mult(7y)

* Draw word Wd,n ~ Mult(6;, )

“Arts” “Children” “Education”

The William Randolph Hearst will give NEW MILLION CHILDREN  SCHOOL
tan Opera Co., New York Philharmonic and Juilliard Sc FILM TAX WOMEN STUDENTS
real opportunity to make a mark on the future of the per SHOW PROGRAM PEOPLE SCHOOLS

. . .. . . MUSIC BUDGET CHILD EDUCATION
every bit as important as our traditional areas of 1 MOVIE BILLION YEARS TEACHERS
and the social Hearst ] PLAY FEDERAL FAMILIES HIGH

the Lincoln Center’s share will be MUSICAL ~ YEAR WORK PUBLIC
. . BEST SPENDING PARENTS TEACHER

will young artists and new ACTOR NEW SAYS BENNETT
New York Philharmonic will each. Tt FIRST STATE FAMILY MANIGAT

WS o e fo . i YORK PLAN WELFARE NAMPHY
the‘ peltm.nnng al‘ts are tdl‘lght. .\\111 get : The He OPERA MONEY MEN STATE
of the Lincoln Center Consolidated Corporate \ THEATER PROGRAMS PERCENT PRESIDENT

LOVE CONGRESS LIFE HAITI



Latent Dirichlet Allocation

Generative Process: w ~ LDA

Draw each topic 0, ~ Dir(n)fork =1.... K
For each document:

* Draw topic proportions my ~ Dir(«)

* For each word:

* Draw topic indicator 24, ~ Mult(7y)
e Draw word W, n, ~ Mult(6,

Remember: compound HD model:
h® ~ LDA prior

d,n)

Words < activations of DBM’s top-level units.
Topics < distributions over top-level units, or

higher-level parts.

Pr(topic | doc)

N

X,

J

K

Pr(word | topic)




Intuition

h® ~ LDA prior

Words < activations of DBM’s top-level units.
Topics < distributions over top-level units, or
higher-level parts.

DBM generic features:  LDA high-level features:
Words

D Pr(topic | doc)

o ¢

$3C,

I Pr(word | topic)

Images

Each topic is made up of words. Each document is made up of topics.

o +1\ Iﬂﬂ
g V| H"




Hierarchical LDA
Modeling Super-Category Structure

5
* Draw global topic
_ agl  (r¢ proportions: %) ~ Dir(v)
animal “vehicle” .
S - 3 * Draw super-class specific
2 . .
X d topic proportions:
2)1.(3 . (3)..(3
i D@ GO i fH ' )‘77( )~ le(a( Izl ))
* Draw class-class specific
\ topic proportions:
7|73 ~ Dir(a@7?)
@ @ L @ ) Topics * Draw document specific
L T —T1 T . . .
@ @ @ @ topic proportions:
ralr ~ Dir(aM 7))
horse cow car van

Nonparametric extension:
Hierarchical Dirichlet Process (HDP).



Hierarchical LDA: Example

Global topic proportions:

O 1@, Ele] ™ | emald -]
Super-class specific topic /
proportions:

Fruits: apples, oranges, pears Aquatic animals: dolphins, sharks.

QW _[=TIeM [+ 5 Tk
Class specific topic / \

proportions:
Apples: Oranges:

QUe | 7] OV mal [

Image specific topic/ \
proportions:
i 1
ove [| | | owe: e




Hierarchical LDA: Example

Global topic proportions:

O 1@, Ele] ™ | emald -]
Super-class specific topic /
proportions:

Fruits: apples, oranges, pears Aquatic animals: dolphins, sharks.

QW _[=TIeM [+ 5 Tk
Class specific topic / \

proportions:
Apples: Oranges:

QUe | 7] OV mal [

So far we have assumed

a fixed hierarchy J\
- Qe 9w




Modeling the Number of
Super-Categories

Place Chinese Restaurant Process (CRP) Prior over the
number of super-classes.

CRP defines a distribution on partition of integers.

Generating from CRP(a):

/Customers enter a restaurant with an unbounded number of tables,\

where the nt' customer occupies a table k drawn from:
k

n k
—— n" >0
k 1s new
n—14+«

where ¥ is the number of previous customers at table k and «¢ is the

Qoncentration parameter. /

Customers < integers, tables < clusters.




Modeling the Hierarchy

Global

Super class 1 Super class 2

Class 1 Class 2 Class 3 ‘

New class




Modeling the Hierarchy

Global

Super class 1 Super class 2

Class 1 Class2  New class Class 3



Modeling the Hierarchy

Global

Super class 1

Class 1 Class2  New class Class 3 New class



Modeling the Hierarchy

Global

New

Super class 1
P Super class

Class 1 Class 2 New class Class 3 New class New class

Expected number of clusters: O(alogn)

The nested CRP, nCRP, extends CRP to nested sequence of partitions, one for
each level of the tree (Blei et.al. NIPS 2003).



Hierarchical Deep Model
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Hierarchical Deep Model

~ Tree hierarchy of
classes is learned

I” [{} H 14
vehicle
) o i
7 ~ NCRP (Nested Chinese Restaurant Process)
) D@ GO >0 o prior: a nonparametric prior over tree

structures.

~ 1 Topics

()
\
b
RN\
&)
\\

SO
5
@r

ow car van truck

>
(@)
=
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(@]

L
h? Q000
*+3
h!OCOO000
L B 4
vV IOOO000J0




Hierarchical Deep Model

~ Tree hierarchy of
classes is learned

a3 (3
“animal” “vehicle”
2 ) 2
7 ~ NCRP (Nested Chinese Restaurant Process)
) D@ 0 m "0 prior: a nonparametric prior over tree

structures.

0 h3|z ~ HDP (Hierarchical Dirichlet Process) prior:

.
@ - ol e e K a nonparametric prior allowing categories to
il Y e f AP N Topics share higher-level features, or parts.
E|| ||| (|| || )] ||
horse| | cow car van | |truck
&
h?C000
*+ 3
h! Q00000
*+3

vV IOOO000J0




Hierarchical Deep Model

v [ Tree hierarchy of }

classes is learned

(0% 7T(
o H ”»
animal “yehicle”
) o i
7 ~ NCRP (Nested Chinese Restaurant Process)
) ) = ) ") "0 prior: a nonparametric prior over tree
< structures
rd ) h3|z ~ HDP (Hierarchical Dirichlet Process) prior:
AN A7 K a nonparametric prior allowing categories to
Cooll||Co|| || Colpemitttn hare higher-level f
1 gl Topics share higher-level features, or parts.
V\h3 ~ DBM Conditional Deep Boltzmann
Machine.

Enforce (approximate) global consistency
through many local constraints.

*+3
h!OCOO000




a3
“animal”

)

D (0

e

Cr O Gx

horse| | cow

Hierarchical Deep Model

L 4

h!OCOO000

Unlike standard statistical models,

in addition to inferring parameters,

sharin

Topics

\ %we also infer the hierarchy for
5 ,
()

~ Tree hierarchy of
classes is learned
7T(3
“vehicle”
Q2 72
a (D) (D) (1)
| Corr e
—f: ::: ﬂ :// @
car van truck

~

g those parameters. f

v|h® ~ DBM Conditional Deep Boltzmann

Machine.

Enforce (approximate) global consistency
through many local constraints.



CIFAR Object Recognition

7] [H :
Tree hierarchy of
o) Gy classes is learned

50,000 images of 100 classes

o H »n
animal o3 o @) “vehicle”

Gh Gh
i G %) \ﬁ§
Higher-level class

sensitive features

horse| | cow car van

OGO

Lower-level
generic features

Inference: Markov chain
Monte Carlo — Later!

32 x 32 pixels x 3 RGB



Learning to Learn

The model learns how to share the knowledge across many visual

categories. Learned super-

class hierarchy

“global”

“aquatic
animal”

turtle shark

“fruit”

B._| DG

orange sunflower girl  baby man Basic level

dolphin apple

K m class
e #o8—

Learned higher-level
class-sensitive features

ray

Learned low-level
generic features



Learning to Learn

The model learns how to share the knowledge across many visual

O

crocodile spider

. snake
lizar el _“ castle | road
§ squirre bridge
angaroo skyscraper
bus ouse
leopard . ‘ truck train
fox tiger tank
lion  wolf ‘ tractor streetcar
otter| skunk ‘
shrew .
orcupine .
‘ P P pine ‘
dolphin
P ray \ shark O_‘?Ik maple tree
whale willow tree
belarh camel ‘ turtle ‘ bottle can \ lamp
elephant
. cattle () bowl cup
chimpanzee beaver
apple
mouse| raccoon peer \ pepper man boy \ man
hamster apbit POSSUM orange

sunflower girl  woman




Sharing Features

Reconst- Learning to
Real  ructions Shape Color Learn

| OUema | ||
? OUWe W™ |

-

4

apple orange Stmf

\

Apple

Sunflower ROC curve
5 3 1lex’s

) Sy 1
uo 0
] =" T -
(g0}
[ 0.8r
o
© g g = !LJ--.HHH o7
GLJ %o.ef
3 ol Sos
o = e, g 0.4 :
G - ‘ Che Pixel-
(o 0.3
- space
(Vo) 0.2 .
c distance
=
o
o)
()

% 010203 04 050607 08 09 1
false alarm rate

T el

Learning to Learn: Learning a hierarchy for sharing parameters —
rapid learning of a novel concept.



Object Recognition

Area under ROC curve for same/different
(1 new class vs. 99 distractor classes)

') LDA DBM HDP-DBM HDP-DBM
0.95 - GIST (class conditional) (no super-classes)
0.9
0.85 — 1
+
1 3 5 1050 | | ’
# examples [Averaged over 40 test classes]

Our model outperforms standard computer vision
features (e.g. GIST).



Handwritten Character Recognition

mu.nw‘l.mu.u(l..mq.muull_

EFEETEETEEE Y

T g w> 5O 95 ge !

= = V= V= =

Learned lower-
level features

L 4
000000

Edge
S

B 4
OOO0O0OY

25,000

characters




Handwritten Character Recognition

Area under ROC curve for same/different
(1 new class vs. 1000 distractor classes)

1 HDP-DBM HDP-DBM
LDA DBM (no super-classes)
0.95 | (class conditional) h
0.9 Pixels 1
. h
0.85 | | N +
|
0.8 | + JrJr
0.75 +
0.7 i i
0.65 L \ | o ) “
1 3 510

# examples [Averaged over 40 test classes]



Simulating New Characters

Real data within super class

Global
uper Super
class 1 - class 2
New class

Simulated new characters




Simulating New Characters

Real data within super class

Global
uper Super
class 1 - class 2
New class

Simulated new characters




Simulating New Characters

Real data within super class

Global

uper Super
class 1 - class 2
New class

~ N nrF -

v N N o

v N ngr T

TN P

Simulated new characters D Y N s ol

- /£ N o7

S S N F oo




Simulating New Characters

Real data within super clas
Clobal =2k BEpERER K
LY B NEB &R
\\\\ Super )
- class 2

New class

uper
class 1

2
S
<
%
e
<
e

F

Simulated new characters

FFIPPFRFRA
L‘L"JFD‘-]UFD 53] [ﬁpj



Simulating New Characters

Real data within super class

q

Global <

S

(o

— — "
uper Super N
class 1 - class 2 &
b

=

q

L

New class

Simulated new characters




Simulating New Characters

Real data within super class
T ol aUoy YVosFgov sl
Fyo¢Zao oy YOS TVY QM
~ . F Y S ZE T Oy TOr v XM
\ Super oy vyuwg dvIm
- class 2 oS To T X m
T oy YU Vo vEs m

Global

uper
class 1

TCong T Y ov g m

New class

Simulated new characters




Simulating New Characters

Real data within super class

Global

Classl Class2 New class

o O OO OO O OO OO

& ™ T % E = T¢

T eI

= O O&S W =

T msTITrmrT

Simulated new characters



Learning from very few examples

3 examples of ™ T

a hew class

Conditional samples
in the same class

Inferred super-class




Learning from very few examples
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Learning from very few examples




Learning from very few examples




Learning from very few examples

P
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Learning from very few examples

EE




Learning from very few examples

M mim
m T min D
M 1o W m
mminmin
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Learning from very few examples




Walk

.

25. .

Sexy Walk

Motion Capture

Drunken Walk po




Motion Capture

\\£<f”ke”VmG“

'3”7/ Sexy walk ROC curve
1 : : ‘ ‘

a0 ..
350
0.
250 .7
20

HDP-DBM
0.9+

2]

detection rate
o o o o
w SN (@) ]

g Input space distance 7
(no hierarchy) 1

o
\S)

o1l

(elelel®)
OOOO
(elelel®
QOO0

\ 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1
false alarm rate

%)OOO

Time ——




Motion Capture

\D\runken Walk
s I I S O O

N

a0 ..

The same model can be applied to

30
25

1 speech, text, video, or any other
B high-dimensional data.

I'l I Il I'l |

HDP-DBM
0.9¢

0.8¢
0.7}

1 e
.| Tosef

c
| 205
3

| @04
©

0.3 : 1
Input space distance

02 (no hierarchy)

o1l

(elelel®)
(elelele)
(elelel®
(elelel®
(elelele)

\ O0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1
false alarm rate

ﬁ)ooo
3
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Other Hierarchical Models

At a minimum, object categorization requires information about
 category mean (prototype)

e variances along each dimension (similarity metric)

A single example provides some
information about the prototype, but not
about the variances.




Learning Class-Specific
Similarity Metrics

D(X)g XX X X X gxo‘(%))(; >><<X ;(6 o X
Sheep * ﬁ%ﬁ TE MY
Dy

Horse #

Novel Category: Cow

(Salakhutdinov, Tenenbaum, & Torralba, JMLR WC&P 2012)



Learning Class-Specific
Similarity Metrics

)

L R SRR

(Salakhutdinov, Tenenbaum, & Torralba, JMLR WC&P 2012)



Learning Class-Specific
Similarity Metrics

Car ‘Van Truck

In order to transfer appropriate similarity metric, the model needs to
discover how to group related categories into super-categories.



Hierarchical Bayes

* Probabilistic linear model with Gaussian observation noise:
P(z|z =c) = N(u*1/7°)

* Place a conjugate Normal-Gamma prior over the means and precision
parameters:

P(pc,7¢) = N(1"1/(vr°))L (o, %)

Hierarchical Prior. As before, infer the hierarchy.



MSR Cambridge

Dataset

aeroplanes
benches and chairs
bicycles/single
cars/front

cars/rear

cars/side

signs

Image Retrieval

buildings
chimneys
doors’
scenes/office
scenes/urban
windows

Query image

"

Given only one

examples of a cpw

.
/\

trees forks animals/cows clouds
birds knives animals/sheep

flowers spoons

leaves

scenes/countryside

Retrieved images with our model

bl

Nearest neighbor

el YRR Y




Unsupervised Category Discovery

Can we discover when the model has encountered novel categories,
and how can we break up new instances into novel categories?

The test set consists of many unlabeled examples from an
unknown number of basic-level classes.

P Existing Categories ‘ Existing Categories Novel Categorles

Novel: 0.01 Novel: 0.02 Novel: 0.02
Car: Q_.99 Plane: 0.97 Bench: 0.92

! Novel: 0.28 Novel: 042 Novel: 0.87
i Countryside: 0.53 Building: 0.49  Bird: 0.11

-_w‘,

JII;U |

With 18 unlabeled test images the model correctly pIaces nine familiar images
in nine different basic-level categories, while also correctly forming three
novel categories with 3 examples each.




Object Detection Challenge

Consider challenging object detection task.

SRR o

By looking at the output of a detector, can you guess which
object is it trying to detect?

Slide credit: Antonio Torralba



Learning from Few Examples
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(Salakhutdinov, Torralba, & Tenenbaum, CVPR 2011)



Learning from Few Examples
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Generative Model of Classifier
Parameters

Many state-of-the-art object detection systems use sophisticated models,
based on multiple parts with separate appearance and shape components.

Yy = BT 0 (X) Detect objects by testing sub-windows and
scoring corresponding test patches with a linear
function.

We can define hierarchical prior over
parameters of discriminative model and
learn the hierarchy.

Image Specific: concatenation of the

HOG feature pyramid at multiple scales.
Felzenszwalb, McAllester & Ramanan, 2008



Generative Model of Classifier
Parameters

y Hierarchical
}\-xx-/*

. _ _ ;;7;-’, Global Bayes
By learning hierarchical structure, bk
we can improve the current Level1 2R

state-of-the-art. 9(11)

----------

Sun Dataset: 32,855 examples of (2) (2) (2) (2)

. P 0; 9,0 6,0 6;
200 categories Lidebne
Horse Cow Car Van Truck

Hierarchical Model 185ex 27ex 12ex

s
By




Truck

Single
classifier

Hierarchical
Model




Dome

Single
classifier
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Generative Model of Matrix
Factorizations

Image bases Relational data Gene expression data

T[] | [— . BB
HRNEE ~ B e
gir? . N P | IR
\ T , 2
NEEEE - ]
Karklin and Lewicki (2009) Kemp et.al. (2006) Meeds et al. (2007)
How can we automatically choose the right structure from raw data?

..
LF
e g
e
L

Context free grammar: US Senate votes:
low-rank G —- GG+ G (D
clustering G — MG+ G|GMT +G (2
M—->MG+G 3)
linear dynamics G — CG+ G |GCT +G  (4)
C—-CG+G 5)
sparsity G — exp(G) oG (6) )
binary factors G — BG+G|GBT+G (7) ) .
M B | @) Evolution of structure discovery

Grosse, Salakhutdinov, Freeman, and Tenenbaum, UAI 2012



. Talk Roadmap

Part 2: Advanced Hierarchical Models

. ()
%@4&9 * |ntroduction: Transfer Learning/
K One-Shot Learning.
< * Compound Hierarchical Deep
Models:
_ — Deep Boltzmann Machines.
fonmall T TS “vehicle” — Hierarchical Latent Dirichlet
@ B O Allocation Model.
O[o * Applications.
Sl 1SS e MCMC techniques.

horse cow car van truck



Gibbs Sampler

PDNPNNNE
OQ0oOLWNP
oNaX-X-J\YeXe
QQV0QAQO0GQ
cYoNoNeYs Ao Ne
O0C0OOQ00

o
O
O
(0]
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O

Inference

Problem: When dealing with complex high-
dimensional data: the probability landscape is
highly multimodal.

Inability to efficiently explore a distribution
with many isolated modes.

Problem for both directed and undirected
graphical models.

* Posterior distribution: P(6|D) W P(D|0)P(6)
p(—E(2))

* Boltzmann machine: P(z) = %



Tempered Transitions

(Radford Neal, 1994)

Define a sequence of intermediate probability distributions P0s -++5 PS
where:

« ps = p(x;0) isthe original complicated distribution.
D0 is more spread out and easier to sample from.

One way is to define:
ps(x) o p(x;0)%,

where “inverse temperatures” Gy < 41 < ... < Bg =1

are chosen by the user. n

B=0 3=001 B=01 [B=025 B=05 B=1

For each s = 1,..,§ — 1 we define a transition operator
Ty(x'+x) that leaves p, invariant.



Tempered Transitions

Define reverse transition operator ps(x)Ts(x'—x) = Ty(x —x')ps(x').
X0

LO
Ts_a(%g_1|%s—2)

xs—l | ( T » K,

O Toabusabes) O Torslzs
Xs v ~ A85-1\Xg5|X5-1
Q' Ts_1(xs-1|x53) Xs5-1 '\O

* Given a current state, apply a sequence of transition operators
Ts_y...ToTp... Ts_1.

A

. Systematically “move” the sample from the complicated distribution
to the easily sampled distribution and back.

* Accept a new state X° with probability:

min Hp )63 1—Bs (xs)ﬁs—ﬁs—l



Learning MRFs using Tempered

Transitions
Samples with Samples without
Training data Tempered Transitions Tempered Transitions
el Bl e ] a e |4 v
M g b U~ A & & ¢ &
< 1 VIR A& C| T T
B 5L V|V 1| TS s
ok K| 8 R TP
Ljorjem| L=< ¢ &|& & ¢ 8

Plain stochastic approximation using simple Gibbs works badly.

A large fraction of the model’s probability mass is placed on images of

humans.
(Salakhutdinov, NIPS 2010)



Simulated Tempering (ST)

e Simulated tempering: Sample from the joint distribution:

p(x, k) o wy exp(—BpE(x)),
where w, are pre-specified constants, and 0 < Bx < 81 < ... < 1 =1
represent the K “inverse temperatures”.



Simulated Tempering (ST)

e Simulated tempering: Sample from the joint distribution:

p(x, k) o< wpexp(—FrFE(x)),
where w, are pre-specified constants, and 0 < fx < 81 < ... < B =1
represent the K “inverse temperatures”.

e The main problem of ST:

p(k) Zwk exp(—FrE (X)) = wi 2y

* To be efficient, it is important for the Markov chain to spend roughly equal
amount of time at each temperature level.

* Hence w, needs to be proportional to 1/Z.



Adaptive Simulated Tempering (AST)
e Partitioning the state space into K sets {k£} U X, each corresponding
to a different temperature value.
e If the move into a different partition (temperature) is rejected:

- The adaptive weight g, for the current partition k will increase.

- This will (exponentially) increase the probability of accepting the next
move into a different temperature level.

k=3 g3, ~\ ~
k=9 g2 M
W,
k=1 g NA
W, W,

Atchade and Liu, 2004,
Famong Liang, 2005



Adaptive Simulated Tempering (AST)

* Given kt, sample k** from proposal distribution: ¢(k*** « k%)

Accept with probability:
min (1 plxt, K gk k) gy )

: X
p(xt EY)q(kMt k) gpes

Standard M-H update  Adaptive factor

e Update adaptive weights:

g =gl + 7 Ik e {i}), i =1,..., K.

* It can be verified: g;?/g§ — Zi/z; as v; — 0.

/
k=1 glfx/\/ \J\Y-\ Atchade and Liu, 2004,

/ Famong Liang, 2005

Q



Fast-Slow AST

 When using AST for learning, it is hard to balance between:

- Exploration: waiting until adaptive ST escapes from the local mode.
- Exploitation: learning model parameters.



Fast-Slow AST

 When using AST for learning, it is hard to balance between:

- Exploration: waiting until adaptive ST escapes from the local mode.
- Exploitation: learning model parameters.

e Consider two chains, sampling from the same target distribution.
k=3 ) ) : :
) Mast chain  Slow chain evolves according to
k= .
&, the standard Gibbs updates.
1 /\/4\/ \/\/\

Slow chain Fast chain uses adaptive ST.

e Parameters are updated based on the slow chain. The role of the fast
chain is to explore different modes.



Fast-Slow AST

k=3 e e

- Mast chain  Slow chain evolves according to
- N\ the standard Gibbs updates.
k=1 r\/\/ \/\r\

? Slow chain ? Fast chain uses adaptive ST.

e The algorithm is only twice as expensive compared to the standard
stochastic approximation algorithm.

e Parameters are updated after every Gibbs update, while the fast chain
runs in parallel, adaptively mixing between different modes of the
energy landscape.

e Unlike fast Persistent Contrastive Divergence (PCD), the fast chain is
likely to visit spurious modes that may reside far away from the data.



MNIST Dataset

1000 latents

Gibbs Adaptive ST
COOOOJ 22000000¢7302 .73
500 latents 2200060032303 273
2200000203 323
S 2000000 L0220 3 5
208060000 2LO3 237273
28 x 28 20000002233 2727
pixel 2000000002062 223

image

About 890,000
parameters

e Samples from the two-hidden-layer DBM (1000-500-784) produced by
the Gibbs and adaptive ST with 300 Gibbs steps between consecutive

images (by column).



NORB Dataset

Gibbs Adaptive ST
vV s S w ¥ L
VIS ICNIN BED 7
TR E|NVE & FIIIN IV e
v W B % LS FlEIL TV
v %le SN W FZIC L%
YO BISNS| D S| DS

e Samples from two-hidden-layer DBM: 4000-4000-(96x96), produced
by the Gibbs and fast-slow adaptive ST with 500 Gibbs steps between
consecutive images (by column). About 3 million parameters.



Learning DBMs

The estimates of the average test log-probabilities per image (in nats)
for different learning algorithms.

-80

_85- Algorithm MNIST NORB
—90; (+/-0.5) { (+/-1.1)
o5/ Gibbs -87.23 | -596.92
100 5 Fast PCD 86.72 | -597.12
105 f1 Tempered 8541 | -595.54
o Transitions

P Fast-Slow AST -84.12 | -591.18

0 5 10 15 20 25 30 35 40 45 50
Number of parameter updates x 4000

e Fast-Slow AST tends to exhibit a more stable behavior during learning.




Recap

* Efficient learning algorithms for Hierarchical Generative Models.

Text & image retrieval /

Deep Boltzmann Machine Object recognition
—— Learning to
REUTERS P Learn
AP Associated Press /9
Interbank Markets ﬁzfg,if;',ggoﬂg’;{:w

o ¥ oS8

Leading

Filling in Economi I 1 AR U Object detection Motion capture
N 4 Sg  Govemmen g@

_ , N - P \
Y LI ==

 Deep generative models can improve current state-of-the art in
many application domains:

> Object recognition and detection, text and image retrieval, handwritten
character recognition, motion capture, and others.



Summary

Compose hierarchical Bayesian models with deep networks for
transfer learning / one-shot learning.

Deep Networks: Learning Part- =
based Hierarchy: S I A B Y
* multiple layers of nonlinearities.
* distributed representations.

* unsupervised learning of generic features -- no
need to rely on human-crafted input representations. bregthes

Hierarchical Bayes: Learning
Category Hierarchy: bird fish

* explicitly learn category hierarchies for / \ /\

: canar eagle shdrk salmon
sharing abstract knowledge. Ay 5 :

* modular data-parameter relations.
* higher-level class sensitive features.

can T/lyr animal can_swim
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