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Tutorial Overview 

9.00am:  Introduction   Rob Fergus (NYU) 

10.00am: Coffee Break 

10.30am: Sparse Coding  Kai Yu (Baidu) 

11.30am: Neural Networks Marc’Aurelio Ranzato (Google) 

12.30pm: Lunch 

1.30pm: Restricted Boltzmann  Honglak Lee (Michigan) 

  Machines  

2.30pm: Deep Boltzmann Ruslan Salakhutdinov (Toronto) 

      Machines  

3.00pm: Coffee Break 

3.30pm: Transfer Learning  Ruslan Salakhutdinov (Toronto) 

  

4.00pm: Motion & Video  Graham Taylor (Guelph) 

5.00pm: Summary / Q & A All 

5.30pm: End 



Overview 

• Learning Feature Hierarchies for Vision 

– Mainly for recognition 

 

• Many possible titles: 

– Deep Learning 

– Feature Learning 

– Unsupervised Feature Learning 

 

• This talk:    Basic concepts 

        Links to existing 

vision approaches 

 

 



Existing Recognition Approach 

Hand-

designed 

Feature 

Extraction 

Trainable 

Classifier 

Image/Video 

Pixels 

• Features are not learned 

 

• Trainable classifier is often generic (e.g. 

SVM) 

Object 

Class 

Slide: Y.LeCun 



Motivation 

• Features are key to recent progress in recognition 

 

• Multitude of hand-designed features currently in use 
– SIFT, HOG, LBP, MSER, Color-SIFT…………. 

 

• Where next? Better classifiers? Or keep building more 

features? 

Felzenszwalb,  Girshick,  

McAllester and Ramanan, PAMI 

2007 

Yan & Huang  
(Winner of PASCAL 2010 classification competition) 



What Limits Current Performance? 

• Ablation studies on Deformable Parts 

Model  

–  Felzenszwalb, Girshick, McAllester, Ramanan, 

PAMI’10 

 

• Replace each part with humans (Amazon 

Turk): 

 

 

 

 

 

 

• Also removal of part deformations has 

small (<2%) effect. Are “Deformable Parts” 

necessary in the Deformable Parts Model? 

Divvala, Hebert, Efros, Arxiv 2012 

Parikh & Zitnick, CVPR’10 



Hand-Crafted Features 

• LP-β  Multiple Kernel Learning 

– Gehler and Nowozin, On Feature 

Combination for Multiclass Object 

Classification, ICCV’09 

• 39 different kernels 

– PHOG, SIFT, V1S+, 

Region Cov.  Etc.   

• MKL only gets  

 few % gain over  

 averaging features 

 Features are  

doing the work 



• Mid-level cues 

 

 

 

 

 

 

 

 

 

 

 

Mid-Level Representations 

“Tokens”  from Vision by D.Marr: 

Continuation Parallelism Junctions Corners 

• Object parts: 

• Difficult to hand-engineer   What about learning them? 



Why Learn Features? 

• Better performance 

 

• Other domains (unclear how to hand engineer): 

– Kinect 

– Video 

– Multi spectral 

 

• Feature computation time 

– Dozens of features now regularly used 

– Getting prohibitive for large datasets (10’s sec /image)  

 



Why Hierarchy? 

Theoretical:  
“…well-known depth-breadth tradeoff in circuits 

design [Hastad 1987].  This suggests many 

functions can be much more efficiently 

represented with deeper architectures…”  [Bengio 

& LeCun 2007] 

 

Biological:  Visual cortex is hierarchical 
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Hierarchies in Vision 

• Spatial Pyramid Matching 

– Lazebnik et al. CVPR’06 
 

• 2 layer hierarchy 

– Spatial Pyramid 

Descriptor pools 

VQ’d SIFT 

 

Image 

SIFT Descriptors 

Spatial Pyramid 

Descriptor 

Classifier 



Hierarchies in Vision 

• Lampert et al. CVPR’09 
 

• Learn attributes, then classes 

as combination of attributes 

 

 Class 

Labels 

Attributes 

Image  

Features 



• Each layer of hierarchy extracts features from 

output of previous layer 

• All the way from pixels  classifier 

• Layers have the (nearly) same structure 

Learning a Hierarchy  

of Feature Extractors  

Layer 1 Layer 2 Layer 3 
Simple  

Classifier 

Image/Video 

Pixels 

• Train all layers jointly 
 



Multistage HubelWiesel Architecture  

Slide: Y.LeCun 

• Stack multiple stages of simple cells / complex cells 

layers 

• Higher stages compute more global, more invariant 

features 

• Classification layer on top 

 

History: 

• Neocognitron [Fukushima 1971-1982] 

• Convolutional Nets [LeCun 1988-2007]  

• HMAX [Poggio 2002-2006] 

• Many others… 

 

QUESTION: How do we find (or learn) the filters? 



Classic Approach to Training 

• Supervised 

– Back-propagation 

– Lots of labeled data 

– E.g. Convolutional  

Neural Networks 

 

• Problem:  

– Difficult to train deep models (vanishing 

gradients) 

– Getting enough labels 

[LeCun et al. 1998] 



Deep Learning 

• Unsupervised training 

 

• Model distribution of input data 

 

• Can use unlabeled data (unlimited) 

 

• Refine with standard supervised 

techniques (e.g. backprop) 

 



Single Layer Architecture  

Filter 

Normalize 

Pool 

Input:  Image Pixels / Features 

Output:     Features / Classifier 

Details in the 

boxes matter 
(especially in a 

hierarchy) 

Not an 

exact 

separation 
Layer n 



Example Feature Learning Architectures 

Pixels / 

Feature

s 

Filter with  

Dictionary 
(patch/tiled/convoluti

onal) 

Spatial/Feature  

(Sum or Max)  

Normalization 

between  

feature 

responses 

Features 

  + Non-linearity  

Local Contrast 

Normalization  

(Subtractive & 

Divisive) 

(Group) 

 

Sparsit

y 

Max  

/  

Softmax Not an 

exact 

separation 



SIFT Descriptor 

Image  

Pixels Apply 

Gabor filters 

Spatial pool  

(Sum)  

Normalize to 

unit length 

Feature  

Vector 



SIFT 

Feature

s 

Filter with  

Visual Words 

Multi-scale 

spatial pool  

(Sum)  

Max 

Classifier 

Spatial Pyramid Matching 

Lazebnik,  

Schmid,  

Ponce  

[CVPR 2006] 



Filtering 

• Patch 

–  Image as a set of patches 

 

Input 

#patches 
#

fi
lt
e

rs
 

Filters 



Filtering 

• Convolutional 

– Translation equivariance 

– Tied filter weights  
(same at each position  few parameters) 

Input Feature Map 

.

.

. 



Translation Equivariance 

• Input translation  translation of features 

– Fewer filters needed: no translated 

replications 

– But still need to cover orientation/frequency 

 

Patch-based Convolutional 



Filtering 

• Tiled 
– Filters repeat every 

n 

– More filters than 

convolution for 

given # features 

 Input 

Filters Feature maps 



Filtering 

• Non-linearity 

– Per-feature independent 

– Tanh 

– Sigmoid: 1/(1+exp(-x)) 

– Rectified linear 



Normalization 

Filters Input 

• Contrast normalization 
• See Divisive Normalization in Neuroscience  



• Contrast normalization (across feature maps) 

– Local mean = 0, local std. = 1, “Local”  7x7 

Gaussian  

– Equalizes the features maps 

 

 

Normalization 

Feature Maps 

 

Feature Maps 

After Contrast Normalization 



Normalization 

Filters Features K-means Sparse Coding 

• Sparsity 

– Constrain L0 or L1 norm of features 

– Iterate with filtering operation (ISTA sparse 

coding) 

 

 

Input  

Patch 



Role of Normalization  

• Induces local competition between features  

to explain input 

–  “Explaining away” in graphical models 

–   Just like top-down models 

–   But more local mechanism 

 

• Filtering alone cannot  

do this! 

 

 

 

 

  

Example:  

Convolutional Sparse Coding 

Filters 

Convolution 

|.|1 |.|1 |.|1 |.|1 

from Zeiler et al. [CVPR’10/ICCV’11] 



Pooling 

• Spatial Pooling 

– Non-overlapping / overlapping regions 

– Sum or max 

– Boureau et al. ICML’10 for theoretical analysis 

Max 

Sum 



Role of Pooling  

• Spatial pooling 

– Invariance to small 

transformations 

– Larger receptive fields  

(see more of input) 
 

Zeiler, Taylor, Fergus [ICCV 2011] 
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Translation 
 

Videos from: 

http://ai.stanford.edu/~quocle/TCNNweb 

Q.V. Le, J. Ngiam, Z. Chen, D. Chia, P. 

Koh, A.Y. Ng  

Tiled Convolutional Neural Networks. 

NIPS, 2010 

Visualization technique from 

[Le et al. NIPS’10]: 



Role of Pooling  

Chen, Zhu, Lin, Yuille, Zhang [NIPS 

2007] 

 

• Pooling across feature groups 

• Additional form of inter-feature competition 

• Gives AND/OR type behavior via (sum / max) 

• Compositional models of Zhu, Yuille 

[Zeiler et al., ‘11] 



Unsupervised Learning 

• Only have class labels at top layer 

• Intermediate layers have to be trained 

unsupervised 

 

• Reconstruct input 

– 1st layer: image 

– Subsequent layers: features from layer 

beneath 

– Need constraint to avoid learning identity 

 



Auto-Encoder 

Encoder Decoder 

Input (Image/ Features) 

Output Features 

e.g. Feed-back / 

generative / 

top-down 

path 

Feed-forward / 

bottom-up path 



Auto-Encoder Example 1 

σ(Wx) σ(WTz) 

(Binary) Input x 

(Binary) Features z 

e.g. 

• Restricted Boltzmann Machine [Hinton ’02] 

Encoder 

filters W 

 

Sigmoid 

function 

σ(.) 

Decoder 

filters WT 

 

Sigmoid 

function 

σ(.) 



Auto-Encoder Example 2 

σ(Wx) Dz 

Input Patch x 

Sparse Features z 

e.g. 

• Predictive Sparse Decomposition  [Ranzato et al., ‘07] 

Encoder 

filters W 

 

Sigmoid 

function 

σ(.) 

Decoder 

filters D 

 

 

L1 

Sparsit

y 



Auto-Encoder Example 2 

σ(Wx) Dz 

Input Patch x 

Sparse Features z 

e.g. 

• Predictive Sparse Decomposition  [Kavukcuoglu et al., ‘09] 

Encoder 

filters W 

 

Sigmoid 

function 

σ(.) 

Decoder 

filters D 

 

 

L1 

Sparsit

y 

Training 



Taxonomy of Approaches 

• Autoencoder (most Deep Learning 

methods) 

– RBMs / DBMs   [Lee / Salakhutdinov] 

– Denoising autoencoders  [Ranzato] 

– Predictive sparse decomposition  [Ranzato] 

• Decoder-only 

– Sparse coding   [Yu] 

– Deconvolutional Nets [Yu]  

• Encoder-only  

– Neural nets (supervised)  [Ranzato] 

 

 



Stacked Auto-Encoders 

Encode

r 

Decode

r 

Input Image 

Class label 

e.g. 

Features 

Encode

r 

Decode

r 

Features 

Encode

r 

Decode

r 

[Hinton & Salakhutdinov  

Science ‘06]  



At Test Time 

Encode

r 

Input Image 

Class label 

e.g. 

Features 

Encode

r 

Features 

Encode

r 
• Remove decoders 

• Use feed-forward 

path 

 

• Gives 

standard(Convolution

al) 

Neural Network 

 

• Can fine-tune with 

backprop [Hinton & Salakhutdinov  

Science ‘06]  



Information Flow in Vision Models 

• Top-down (TD) vs bottom-up (BU) 

 

• In Vision typically: 

 BU appearance + TD shape 

– Example 1: MRF’s 

– Example 2: Parts & Structure  

         models 

 

• Context models 

– E.g. Torralba et al. NIPS’05 

 

 

Input Image 

Class label 

Top 

Down  

Bottom 

Up 



Deep Boltzmann Machines 

Encode

r 

Decode

r 

Input Image 

Class label 

e.g. 

Features 

Encode

r 

Decode

r 

Features 

Encode

r 

Decode

r 

Both pathways 

use at train & 

test time 

 
 

 

 

TD modulation 

of 

BU features 

Salakhutdinov & Hinton 

AISTATS’09 

See also: 

 

Eslami et al. 

CVPR’12 

Oral 

on Monday 

 

 



Why is Top-Down important? 

• Example: Occlusion 

• BU alone can’t separate sofa from cabinet 

• Need TD information to focus on relevant part of region 



Multi-Scale Models 

HOG Pyramid 

Root 

Parts 

Sub- 

parts 

• E.g. Deformable Parts Model     
• [Felzenszwalb et al. PAMI’10], [Zhu et al. CVPR’10] 

• Note: Shape part is hierarchical 

 

[Felzenszwalb et al. PAMI’10] 



Hierarchical Model 

Input Image/ Features 

[Zeiler et al. ICCV’11] 

Input Image/ Features 

• Most Deep Learning models are hierarchical 



Multi-scale    vs    Hierarchical 

Input Image/ Features 

Appearance term of each part 

is independent of others 

Feature Pyramid 

Root 

Parts 

Sub- 

parts 

Parts at one layer of hierarchy  

depend on others 



Structure Spectrum 

• Learn everything 

– Homogenous architecture 

– Same for all modalities 

– Only concession topology (2D vs 1D) 

 

 

 

• Build vision knowledge into structure 

– Shape, occlusion etc. 

– Stochastic grammars, parts and structure 

models 

How much learning? 



Structure Spectrum 

• Stochastic Grammar Models 

– Set of production rules for objects 

– Zhu & Mumford, Stochastic Grammar of 

Images, F&T 2006 

 

 

Learn 

Hand 

specify [S
.C

. 
Z

h
u

 e
t 
a

l.
] 



Structure Spectrum 

• R. Girshick, P. Felzenszwalb, D. 

McAllester,  Object Detection with 

Grammar Models, NIPS 2011 

• Learn local appearance 

& shape 

Learn 

Hand 

specify 



Structure Spectrum 

• Parts and Structure models 

– Defined connectivity graph 

– Learn appearance / relative position 

 

 

Learn 

Hand 

specify [Felzenszwalb & Huttenlocher CVPR’00 ] [Fischler and R. Elschlager 1973 ] 



Structure Spectrum 

Learn 

Hand 

specify 

• Fidler et al. ECCV’10 

• Fidler & Leonardis CVPR’07 

 

• Hierarchy 

of parts 

and structure 

models 

 



Structure Spectrum 

• Leo Zhu, Yuanhao Chen, Alan Yuille & 

collaborators 

– Recursive composition, AND/OR graph 

– Learn # units at layer 

 

 

Learn 

Hand 

specify 



Structure Spectrum 

Learn 

Hand 

specify 

• Transforming Auto-Encoders 

–  [Hinton et al. ICANN’11]  

• Deconvolutional Networks  

– [Zeiler et al. ICCV’11] 

• Explicit representation of what/where 

 



Structure Spectrum 

• Neural Nets / Auto-encoders 

– Dedicated  

pooling / LCN 

layers 

– No separation of  

what/where 

– Modality  

independent  

(e.g. speech,  

images) 

 

 

Learn 

Hand 

specify [L
e

 e
t 
a

l.
, 
IC

M
L
’1

2
] 



Structure Spectrum 

• Boltzmann Machines 

– Homogenous  

architecture 

– No separation of  

what/where 

– Modality  

independent  

(e.g. speech, images) 

 

 

Learn 

Hand 

specify 
[Salakhutdinov & Hinton AISTATS’09] 



Performance of Deep Learning 

• State-of-the-art on some (simpler) 

datasets 
 

• Classification 

– ILSVRC 2010 (~1.4M images) 

• NEC/UIUC Winners (Sparse coding)   

– Full ImageNet (~16M images @ 2011) 

• Le et al. ICML’12  15.8%  (vs 9.3% Weston et al.) 

• Video  

– Holywood 2 (Action Recognition): Le et al. CVPR’11  53.3%  (vs 

50.9%) 

• Detection 

– INRIA Pedestrians: Sermanet & LeCun (6.6% vs 8.6% miss rate @ 

1FPPI) 

• Not yet state-of-the-art on more 

challenging ones (e.g. PASCAL VOC 

Detection) 



Summary 

• Unsupervised Learning of Feature 

Hierarchies 

– Detailed explanation in following talks 

 

• Showing promise on vision benchmarks 

• Success in other modalities (speech, text) 

 

• But few Deep Learning papers at CVPR! 

 



Further Resources 

• http://deeplearning.net/ 

• http://www.cs.toronto.edu/~hinton/csc2515

/deeprefs.html 

• http://www.cs.toronto.edu/~hinton/MatlabF

orSciencePaper.html 

• NIPS 2011 workshop on Deep Learning 

and Unsupervised Feature Learning 
– http://deeplearningworkshopnips2011.wordpress.com/ 

• Torch5 http://torch5.sourceforge.net/ 

 

http://deeplearning.net/
http://www.cs.toronto.edu/~hinton/csc2515/deeprefs.html
http://www.cs.toronto.edu/~hinton/csc2515/deeprefs.html
http://torch5.sourceforge.net/
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