a Factorization, eigen-spaces and complex cells
@ Factorization
@ Eigen-spaces, energy models, complex cells
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0 Introduction

9 Learning relational features

e Factorization, eigen-spaces and complex cells
@ Factorization

0 Applications and extensions
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Complexity

@ The number of parameters is about n x n x n (!)
@ More, if we want sparse, overcomplete hiddens.
@ There is a simple, yet far-reaching, way to reduce that number.
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Factorization is filter matching
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Factorization is filter matching
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Factorized models

88— 1878
O
o O

Factored Gated Boltzmann machines
@ Exponentiate and normalize energy (just like RBM).
@ Learning and inference exactly like before.
@ (Taylor, 2009), (Memisevic, Hinton; 2009)
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Factorized models

o o
o\A N o
O 2 2 O
o) o)
x A e} A z
o - o 4 o
O\A ~~o—" A/O
o N z A o
o A o
O/ \O

Yy

Factored Relational Autoencoders

@ Everything like before. Back-propagate through the filters.
@ Conditional learning trivial as before.
@ Joint learning by adding two asymmetric objectives.
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@ Toy examples:
@ There is no structure in these images.
@ Only in how they change.
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Learned filters wi

W=
WM

=7/
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Learned filters w;’f
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Frequency/orientation histograms

combined (freq, orient) usage of all filters by channel (left/right)
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Frequency/orientation histograms
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Phase difference in radians
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Velocity tuning of mapping units
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Filters learned from split-screen shifts
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“Filtering”-filters

Roland Memisevic (Fra
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Rotation filters
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Rotation filters
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Rotation filters
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Filters learned by watching TV

&l

EHHH%
1¢awam

A\

===|lI[11}
a7zl
==\

AL

=
—
#

1

QWWf
ﬂ VI

*sh

b
___!"—""-"1\.

\

m
\HW
tﬂﬂHMm
LI{"\ I"JJ /rﬂ ,‘}ﬁ |”J: HH ::-1
S e

Tutorial at IPAM 2012 75/163

1t.u.




Filters learned by watching TV
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Action recognition

s (Hollywood 2)

@ Convolutional GBM (Taylor et al., 2010)
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0 Introduction

9 Learning relational features

e Factorization, eigen-spaces and complex cells

@ Eigen-spaces, energy models, complex cells

0 Applications and extensions
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Linear image warps

@ Consider a linear transformation in pixel space (“warp’):

y=Lx

@ Task:

Given two images (z, y) what is the warp that relates them? )

@ This is exactly the problem that mapping units should be able to
solve.
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y=Lx

@ We restrict our attention to orthogonal warps:
L'L=1

@ Includes all permutations (“shuffling pixels”).

@ Orthogonal warps are the only transformations we can see
anyway, if all our images are white:

I=Cy=LC,L" = LL"

@ (Bethge, 2007)

82/163
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Properties of orthogonal image warps

(I) Orthogonal transformations decompose into 2-D rotations

@ An orthogonal matrix is similar to a matrix that performs
axis-aligned two-dimensional rotations:

Ry
VILV = R; =
Ry,

cos(6;) —sin(6;)

sin(f;)  cos(6;)

@ This follows from the fact that the eigen-decomposition
L=VDVT

has complex eigenvalues of length 1.
@ The eigenspaces are also known as invariant subspaces.
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Properties of orthogonal image warps

Example: Translation and the Fourier spectrum

@ Translation is an example of an orthogonal warp.

@ 1-D translation matrices are circulants, which have ones along an
off-diagonal, like so:

01000
00100
L=]10 0 0 1 O
0 00 01
1 0 000

@ Eigenspaces are spanned by sine-/cosine-pairs (Fourier features).

v
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Properties of orthogonal image warps

Quadrature pairs

@ The invariant subspaces warps are two-dimensional, so
eigenvectors come in pairs:

(vr;vr)

@ In the case of translation, v; is a sine and vy, is a cosine feature.

@ Waves with 90 degrees phase difference are known as
“‘quadrature pair”.

@ But the concept is more general and applies to all orthogonal
matrices.

@ The eigenvector pairs of orthogonal transformations have been
referred to as “generalized quadrature pairs” (Bethge et al.,
2007).
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Properties of commuting image warps

(II) Commuting transformations share an eigen-basis
@ Any two transformations that commute share a single eigen-basis.

@ They differ only in their eigenvalues.

@ “Proof”: Consider A and B with AB = BA and the eigenvector v of B
with A an eigenvalue with multiplicity one. We have

BAv = ABv = MAv.

So Av is also an eigenvector of B with the same eigenvalue. And
therefore, v must be an eigenvector of A, too.
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Properties of commuting image warps

Translation Example continued
@ All circulants share the Fourier basis as eigen-basis.
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Properties of commuting image warps

Any two orthogonal, commuting transformations differ only with
respect to the rotation angles in the eigenpaces. J

@ So to apply a transformation you can equivalently perform a set of
independent two-D rotations.

\m\ ) ﬁ;’j%
Vv = 49‘

%
y = Lx
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Properties of commuting image warps

Any two orthogonal, commuting transformations differ only with
respect to the rotation angles in the eigenpaces. J

@ So to apply a transformation you can equivalently perform a set of
independent two-D rotations.

\x\ - qﬁj{j}
V = 4}

14
y— Lz

@ To infer the transformation, given two images « and y: Project «
and y onto the eigenvectors, then compute the rotation angles!
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Properties of commuting image warps

Any two orthogonal, commuting transformations differ only with
respect to the rotation angles in the eigenpaces. J

@ So to apply a transformation you can equivalently perform a set of
independent two-D rotations.

\mw ) ﬁj{j}
V4 = 4}

14
y= Lz

@ To infer the transformation, given two images « and y: Project «
and y onto the eigenvectors, then compute the rotation angles!
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Extracting subspace rotations, naive approach

O
Im m
O
O
O

by

Re

@ In each subspace:
@ Normalize the 2-D projections to unit norm, then read off the angle
between them.
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Extracting subspace rotations, naive approach
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@ In each subspace:
@ Normalize the 2-D projections to unit norm, then read off the angle
between them.
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Extracting subspace rotations, naive approach
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Extracting subspace rotations, naive approach
"W *
U
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U

by
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@ In each subspace:
@ Normalize the 2-D projections to unit norm, then read off the angle
between them.
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Extracting subspace rotations, naive approach

Extracting rotations by computing angles
@ To read off the angle, compute the inner product:
@ Compute the sum over products of filter responses.
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Extracting subspace rotations, naive approach

®) .
O O
O O
O o

Extracting rotations by computing angles
@ To read off the angle, compute the inner product:
@ Compute the sum over products of filter responses.
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Extracting subspace rotations, naive approach

/Ci /Ci “gos(angle) == inper product” is the
Ti} we OO trigonometric identity:
OO cos(dy ~ o)
O O O O = COS ¢y COS ¢ + sin ¢, sin ¢,
. 8 c:> B ,, = (Vi"y)(Va"a) + (Vo "y) (Vo ")
No——2A0S

Extracting rotations by computing angles
@ To read off the angle, compute the inner product:

@ Compute the sum over products of filter responses.
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The aperture problem

The aperture problem
@ Not all images are represented equally well in each subspace.
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The aperture problem

The aperture problem
@ Not all images are represented equally well in each subspace.
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The aperture problem

The aperture problem
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The aperture problem

The aperture problem
@ Not all images are represented equally well in each subspace.
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The aperture problem

The aperture problem
@ Not all images are represented equally well in each subspace.
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Subspace rotation detectors
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How can we get a code that encodes both the presence and our
uncertainty about subspace rotations given two images?
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Subspace rotation detectors
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How can we get a code that encodes both the presence and our
uncertainty about subspace rotations given two images?

@ |dea: Absorb rotations into eigenvectors.
@ This allows us to turn hiddens into rotation detectors:
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Subspace rotation detectors
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Subspace rotation detectors
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Subspace rotation detectors
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Subspace rotation detectors

@ Inner product is large, when the image transformation matches
the absorbed eigenvalue.
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Subspace rotation detectors

@ Idea: For each subspace, use a panel of mapping units, each
tuned to some angle, 6;.
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Subspace rotation detectors
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@ Transformations encoded in a population code.

@ A mapping unit is conservative: It fires only if a transform is
present and if it is visible in the image pair.
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Subspace rotation detector graphical model
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@ Most transformations affect multiple subspaces.

@ Hiddens should be independent of image content.
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The aperture problem
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The aperture problem
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The aperture problem
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The aperture problem
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Subspace rotation detector graphical model
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@ Most transformations affect multiple subspaces.

@ Hiddens should be independent of image content.
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Subspace rotation detector graphical model
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@ — Let hiddens pool within and pool across subspaces.
@ This is exactly the factored bilinear model.
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Energy models

:
@ Another way to learn matched filters is OGO

square pooling (on concatenation):

e ASSOM (Kohonen, 1996)

e ISA (Hyvarinen, 2000)

e Product of T-distributions (Osindero et

al., 2006) O

o (Karklin, Lewicki; 2008)
e cRBM (Ranzato et al., 2009)

@ Often, W* is constrained so each hidden
sees only a few squared inputs. That way
hiddens can be thought of as encoding
subspace norms.
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Energy models

Square pooling:

@ Why is square pooling the same?
@ The activity that a hidden unit gets is:
S pwi(WeTa + W,‘I}Ty)2
= Zf wkf( (W:CT )(WyT}y)
+(Welz)? + (W?}Tyy)
@ Inference just adds square terms.

@ This may make the rotation detectors
more conservative. Otherwise inference
is the same!
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Energy models

Square pooling:

@ Why is square pooling the same?

@ The activity that a hidden unit gets is:
> wi (W5 + Wi'y)’
=3 wip QW5 ) (WY sy)
WETZ)? 1 (W Ty)?)

@ Inference just adds square terms.

@ This may make the rotation detectors
more conservative. Otherwise inference
is the same!

Roland Memisevic (Frankfurt, Montreal) Multiview Feature Learning Tutorial at IPAM 2012 102/163



Energy models

Square pooling:

@ Learning typically more difficult than with
factored gated feature learning.

@ Example ISA: Gradient-based, while
enforcing W=¥TWw=v = I after every
gradient step (eigen-decomposition).
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Energy models

Quadrature pair

|

X —»

Motion energy

The energy model

@ (Adelson and Bergen, 1985): Motion
@ (Ozhawa, DeAngelis, Freeman; 1990): Disparity

@ Equivalence to cross-correlation: See, for example, (Fleet et al.;
1994).
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Learning energy models on movies

Im

@ What happens when we train energy models on movies?

@ Hiddens receive all pairs of products, so they detect the repeated
application of the same eigenvalue:

(Sota) = (") + 5 70 (o72)
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Learning energy models on movies

Im

@ What happens when we train energy models on movies?

@ Hiddens receive all pairs of products, so they detect the repeated
application of the same eigenvalue:

(Zs: ’USTZDS>2 = Zs: (’uSTmS>2 + %: (vSTazS) : (vtT$t>
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Action recognition

(Hollywood 2)

@ Convolutional GBM (Taylor et al., 2010)
@ hierarchical ISA (Le, et al., 2011)

e s s e s P I i e e O Y
§ A annnaa [l]Il]]III]Ii
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Training energy models via gating
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@ We can use square pooling to simulate gating.
@ But we can also use gating to simulate squaring:
@ Plug in the same data left and right and tie left and right filters.
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Training energy models via gating
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@ To train the model on videos, train an energy model on
concatenated frames:

@ Use gating via energy via gating!

Roland Memisevic (Frankfurt, Montreal) Multiview Feature Learning Tutorial at IPAM 2012 107 /163



A covariance encoder trained on movies
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A covariance encoder ned on movies
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A covariance encoder ned on movies
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A covariance encoder ned on movies
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A covariance encoder ned on movies
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“Mean-covariance” encoder on single images

#factors / #covar-hiddens / #mean-hiddens Model Perf (%)
225/225/0 cRBM 63.6
225/225/0 cAE 64.5
900/225/0 cRBM 64.7
900/225/0 cAE 65.4
576 /144 / 81 mcRBM 68.2
576 /144 / 81 mcAE 67.7
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A bag of tricks

Tricks for learning:

@ Contrast filters after each gradient step.
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A bag of tricks

Tricks for learning:

@ Contrast filters after each gradient step.
@ Contrast-normalize input data.
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A bag of tricks

Tricks for learning:

@ Contrast filters after each gradient step.

@ Contrast-normalize input data.

@ Optionally, whiten input data.

@ Connect top-level hiddens locally to the factors.
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A bag of tricks

Tricks for learning:

@ Contrast filters after each gradient step.

@ Contrast-normalize input data.

@ Optionally, whiten input data.

@ Connect top-level hiddens locally to the factors.

@ Probably even better: make them locally overlapping
(“Topographic ICA”).
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A bag of tricks

Tricks for learning:

@ Contrast filters after each gradient step.

@ Contrast-normalize input data.

@ Optionally, whiten input data.

@ Connect top-level hiddens locally to the factors.

@ Probably even better: make them locally overlapping
(“Topographic ICA”).
@ Fast learning: large data-sets essential (use GPU’s...).

Roland Memisevic (Frankfurt, Montreal) Multiview Feature Learning Tutorial at IPAM 2012 110/163



Learning cross-correlation and energy models

Take-home message, factored model

To learn about transformation, let hidden units pool over products of
filter responses.
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0 Applications and extensions
@ Applications and extensions
@ Conclusions
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0 Introduction

9 Learning relational features
e Factorization, eigen-spaces and complex cells

0 Applications and extensions
@ Applications and extensions
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Analogy making

A- A = B:?

@ Infer transformation from source images Tsource, Ysource:

z (Ccsourcea ysource)

© Apply the transformation to targetimage T iareet

’y(Z, mtarget)

Roland Memisevic (Frankfurt, Montreal) Multiview Feature Learning Tutorial at IPAM 2012 114/163



Analogy making
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Filters learned from transforming faces

@ Filters learned from faces:

J& .
i
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Metric learning and analogy making

DG Brvre= a”ﬁ uq-b'!@ﬁ

| ke k=, | -l =
T
4 52 | R RORORS
-SSP ey

@ Learning a gated Boltzmann machine on changing facial
expressions.

@ (Susskind, et al., 2011)
@ Joint density training allows for matching.
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TFD Same ID TFD Same Exp

F-ro—T-r-ma- T

Model/Task | TFD | TFD | PUBFIG AFFINE
ID Exp | ID

cosine 0.848 | 0.663 | 0.649 | 0.721
RBM 0.869 | 0.656 | 0.647 | 0.799
conditional 0.805 | 0.634 | 0.557 | 0.825
bilinear 0.905 | 0.637 | 0.774 | 0.812
3-way 0.932 | 0.705 | 0.771 | 0.930

3-way symm | 0.951 | 0.695 | 0.762 | 0.931

D¢
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Bi-linear classification

z
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@ A special case of a gated Boltzmann machine:
@ Replace the output-image by a one-hot-encoded class-label.
@ This is a classifier, where each label can blend in it's own model.
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Bi-linear classification
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@ Marginalization is tractable in closed form

p(ylz) = Zp y,zle) o Y exp(@iwyz) =Y exp(> | wyirtihi)
z z ik
= H(l—i—exp(Zwyikxi))

k

@ This is a mixture of 2% logistic regressors (Nair, 2008),
(Memisevic, et al.; 2010), (Warrell et al.; 2010)
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Bi-linear classification
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@ Factorization allows classes to share features.

@ The activity of a factor, f, given class 7, is now exactly equal to the
parameter value wgf.

@ Thus the weights can be thought of as the responses of virtual
class-templates. (Zach 2010, pers. comm.)
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Rotated digit classification E ﬂ

@ Data from the “deep learning-challenge” [Larochelle et al., 2007].
@ Learned rotation-invariant filters:
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Bi-linear classification

@ Deep Learning challenge (Larochelle et al., 2008).

SVMs NNet RBM DEEP GSM
dataset/model: SVMRBF SVMPOL NNet DBN1 DBN3 SAA3 GSM (unfact)
rectangles 2.15 2.15 7.16 4.71 2.60 2.41 0.83 (0.56)
rect.-images 24.04 24.05 33.20 23.69 22.50 24.05 22.51 (23.17)
mnistplain 3.03 3.69 4.69 3.94 3.11 3.46 3.70 (3.98)
convexshapes 19.13 19.82 32.25 19.92 18.63 18.41 17.08 (21.03)
mnistbackrand 14.58 16.62 20.04 9.80 6.73 11.28 10.48 (11.89)
mnistbackimg 22.61 24.01 27.41 16.15 16.31 23.00 23.65 (22.07)
mnistrotbackimg 55.18 56.41 62.16 52.21 47.39 51.93 55.82 (55.16)
mnistrot 11.11 15.42 18.11 14.69 10.30 10.30 11.75 (16.15)
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Transparent motion

probability

180 240 300 0 60 120
angle

@ Hidden variables make extracting multiple, simultaneous motions
easy.

@ When they fail, they do so in a similar way as humans:

@ Better disrimination at large angles, averaging at very small
angles, “motion repulsion”.

@ (eg., Treue et al., 2000)
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Depth as a latent variable

@ Learning a dictionary for stereo:
@ Generate left-right camera pairs with known disparities.
@ Predict disparity from the hidden units.

@ This gives rise to a three-layer network, that may be trained with
Hebbian-like learning.
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Hiddens learn to encode disparities

left image right image predicted disparity
e -

@ Can use this to encode 3d-structure implicitly, for example, for
multi-view recognition.
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Norb stereo features

NORB training subset: NORB testset:
RBMmon RBMbin cc cc+bin || RBMbin cc cc+bin
73.65 60.43 34.85 31.48 63.28 38.91 36.80
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Transformations are transformation invariant
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Transformations are transformation invariant
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Transformations are transformation invariant

@ We used across-subspace pooling to remove dependencies on
image content.

@ Each subspace itself is dependent on image content.
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Harnessing the aperture problem
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Harnessing the aperture problem
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Harnessing the aperture problem

pose-independent, content-independent
—

pose-independent, content-dependent
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Learning quadrature features
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Learning quadrature features
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Learning quadrature features
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Rotation ure filters
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Rotation ure filters
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Mixed transformations
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Mixed transformations
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Quadrature features from natural video
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Quadrature features from natural video
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Representing digits using rotation aperture

features

aperture feature similarities image similarities

0 1 2000

e L —O

@ Learn rotation features. Represent digits using aperture features.

@ No video available? Fill video buffer with copies of the same
image: Represent the non-transformation.
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Rotated MNIST error rates
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Video object features

@ Humans do not recognize still images but videos of objects.

@ The way in which an object changes can convey useful
information about the object, including 3-D structure.

@ — Learn features from videos not still images. See eg. (Lee
and Soatto, 2011).
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The “norbjects” video dataset
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3-D rotation subspaces
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3-D rotation subspaces
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3-D rotation subspaces
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3-D rotation subspaces
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3-D rotation subspaces
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3-D rotation subspaces
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Classification with aperture features

+—+ ASC Features

Aperture Features
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Topographic representations emerge from local
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0 Introduction

9 Learning relational features
e Factorization, eigen-spaces and complex cells

0 Applications and extensions

@ Conclusions
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Lessons

1) We can learn relations by letting hidden variables compute
sums over products of filter responses.

2) Each hidden has to pool across multiple 2-d subspaces.

3) Learning requires contrast normalization + keeping the scales
of filters roughly the same.

4) We can replace products with squares and vice versa.

5) Complex cell models approximately jointly diagonalize a set of
commuting matrices.

6) Complex cells support selectivity not just invariance.

7) Energy model features can only represent the repeated appli-
cation of the same transformation.

8) Transformations are transformation-invariant.
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Conclusions

@ Learningis a way to support simplicity and homogeneity of
complex, intelligent systems.

@ Feature learning even more so.
@ Relational feature learning even more:

@ Learning “verbs”, not just “nouns”, can help address more tasks
with a single kind of model.

@ This seems like a good reason to have complex cells.

@ One reason, why looking for correspondences — across frames,
across views, across modalities, etc. — is a common operation, is
that mappings between modalities are often one-to-many.

@ The theory provides a strong inductive bias for products and/or
squaring non-linearities when building deep learning models.
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Thank you

http://www.cs.toronto.edu/~rfm/
multiview-feature-learning-cvpr/index.html
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