Outline

Introduction

- Feature Learning
- Correspondence in Computer Vision
- Multiview feature learning
- 2 Learning relational features
 - Encoding relations
 - Learning

Factorization, eigen-spaces and complex cells

- Factorization
- Eigen-spaces, energy models, complex cells

4 Applications and extensions

- Applications and extensions
- Conclusions

4 E b

Outline

Introduction

- Feature Learning
- Correspondence in Computer Vision
- Multiview feature learning

Learning relational features

- Encoding relations
- Learning

3 Factorization, eigen-spaces and complex cells

- Factorization
- Eigen-spaces, energy models, complex cells

Applications and extensions

- Applications and extensions
- Conclusions

4 E b

- The number of parameters is about $n \times n \times n$ (!)
- More, if we want sparse, overcomplete hiddens.
- There is a simple, yet far-reaching, way to reduce that number.

Factorization

$$w_{ijk} = \sum_{ijk} \sum_{f} w_{if}^x w_{jf}^y w_{kf}^z$$

Roland Memisevic (Frankfurt, Montreal)

Tutorial at IPAM 2012 59 / 163

æ.

<ロ> <回> <回> <回> < 回</p>

Factorization is filter matching

Inference with factorization

$$z_k = \sum_{ij} w_{ijk} x_i y_j = \sum_{ij} \left(\sum_f w_{if}^x w_{jf}^y w_{kf}^z \right) x_i y_j$$
$$= \sum_f w_{jf}^y \cdot \left(\sum_i w_{if}^x x_i \right) \cdot \left(\sum_j w_{kf}^y y_j \right)$$

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Factorization is filter matching

RBM energy

$$E = \sum_{ijk} (\sum_{f} w_{if}^{x} w_{jf}^{y} w_{kf}^{z}) x_{i} y_{j} z_{k} = \sum_{f} (\sum_{i} w_{if}^{x} x_{i}) (\sum_{j} w_{jf}^{y} y_{j}) (\sum_{k} w_{kf}^{z} z_{k})$$

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Factorized models

Factored Gated Boltzmann machines

- Exponentiate and normalize energy (just like RBM).
- Learning and inference exactly like before.
- (Taylor, 2009), (Memisevic, Hinton; 2009)

Factorized models

Factored Relational Autoencoders

- Everything like before. Back-propagate through the filters.
- Conditional learning trivial as before.
- Joint learning by adding two asymmetric objectives.

Multiview Feature Learning

63 / 163

< A >

- Toy examples:
- There is no structure in these images.
- Only in how they change.

Learned filters w_{if}^x

Roland Memisevic (Frankfurt, Montreal)

Tutorial at IPAM 2012 65

65 / 163

Learned filters w_{jf}^{y}

Roland Memisevic (Frankfurt, Montreal)

Tutorial at IPAM 2012 66 / 163

-

Frequency/orientation histograms

combined (freq, orient) usage of all filters by channel (left/right)

Tutorial at IPAM 2012 67 / 163

-

< 17 ▶

Frequency/orientation histograms

Roland Memisevic (Frankfurt, Montreal)

Tutorial at IPAM 2012 68 / 163

Velocity tuning of mapping units

Filters learned from split-screen shifts

Tutorial at IPAM 2012 70 / 163

"Filtering"-filters

Roland Memisevic (Frankfurt, Montreal)

Tutorial at IPAM 2012

71 / 163

Rotation filters

0

Tutorial at IPAM 2012 72 / 163

Tutorial at IPAM 2012 73 / 163

-

Roland Memisevic (Frankfurt, Montreal)

Tutorial at IPAM 2012 74 / 163

Filters learned by watching TV

Filters learned by watching TV

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012 76 / 163

More filters learned by watching TV

Roland Memisevic (Frankfurt, Montreal)

→ Ξ →

< A >

More filters learned by watching TV

Roland Memisevic (Frankfurt, Montreal)

< A >

- ₹ ₹ →

Action recognition

(Hollywood 2)

• Convolutional GBM (Taylor et al., 2010)

38 N

Outline

Introduction

- Feature Learning
- Correspondence in Computer Vision
- Multiview feature learning

Learning relational features

- Encoding relations
- Learning

Factorization, eigen-spaces and complex cells

- Factorization
- Eigen-spaces, energy models, complex cells

Applications and extensions

- Applications and extensions
- Conclusions

4 E b

• Consider a linear transformation in pixel space ("warp"):

$$oldsymbol{y} = Loldsymbol{x}$$

• Task:

Given two images (x, y) what is the warp that relates them?

• This is exactly the problem that mapping units should be able to solve.

- - E - b-

• We restrict our attention to orthogonal warps:

$$L^{\mathrm{T}}L = I$$

- Includes all permutations ("shuffling pixels").
- Orthogonal warps are the only transformations we can see anyway, if all our images are white:

$$I = C_y = LC_x L^T = LL^T$$

• (Bethge, 2007)

- **B** - **b** - **4**

Properties of orthogonal image warps

(I) Orthogonal transformations decompose into 2-D rotations

 An orthogonal matrix is similar to a matrix that performs axis-aligned two-dimensional rotations:

$$V^{\mathrm{T}}LV = \begin{bmatrix} R_1 & & \\ & \ddots & \\ & & R_k \end{bmatrix} \qquad R_i = \begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i) \end{bmatrix}$$

This follows from the fact that the eigen-decomposition

$$L = V D V^{\mathrm{T}}$$

has complex eigenvalues of length 1.

• The eigenspaces are also known as invariant subspaces.

Example: Translation and the Fourier spectrum

- **Translation** is an example of an orthogonal warp.
- 1-D translation matrices are *circulants*, which have ones along an off-diagonal, like so:

$$L = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

• Eigenspaces are spanned by sine-/cosine-pairs (Fourier features).

- **-** - **-** - **-**

Properties of orthogonal image warps

Quadrature pairs

• The invariant subspaces warps are two-dimensional, so eigenvectors come in pairs:

 $ig(oldsymbol{v}_R,oldsymbol{v}_Iig)$

- In the case of translation, v_I is a sine and v_R is a cosine feature.
- Waves with 90 degrees phase difference are known as "quadrature pair".
- But the concept is more general and applies to all orthogonal matrices.
- The eigenvector pairs of orthogonal transformations have been referred to as "generalized quadrature pairs" (Bethge et al., 2007).

< ロ > < 同 > < 三 > < 三

(II) Commuting transformations share an eigen-basis

- Any two transformations that commute share a single eigen-basis.
- They differ only in their eigenvalues.
- "Proof": Consider A and B with AB = BA and the eigenvector v of B with λ an eigenvalue with multiplicity one. We have

$$BAv = ABv = \lambda Av.$$

So Av is also an eigenvector of B with the same eigenvalue. And therefore, v must be an eigenvector of A, too.

A B > < B</p>

Translation Example continued

• All circulants share the Fourier basis as eigen-basis.

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012 87 / 163

Any two **orthogonal, commuting** transformations differ only with respect to the **rotation angles in the eigenpaces**.

 So to apply a transformation you can equivalently perform a set of independent two-D rotations.

Any two **orthogonal, commuting** transformations differ only with respect to the **rotation angles in the eigenpaces**.

 So to apply a transformation you can equivalently perform a set of independent two-D rotations.

• To *infer* the transformation, given two images x and y: Project x and y onto the eigenvectors, then compute the rotation angles!

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Any two **orthogonal, commuting** transformations differ only with respect to the **rotation angles in the eigenpaces**.

 So to apply a transformation you can equivalently perform a set of independent two-D rotations.

• To *infer* the transformation, given two images *x* and *y*: Project *x* and *y* onto the eigenvectors, then compute the rotation angles!

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Extracting subspace rotations, naive approach

- In each subspace:
- Normalize the 2-D projections to unit norm, then read off the angle between them.

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012 89 / 163

- In each subspace:
- Normalize the 2-D projections to unit norm, then read off the angle between them.

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012 89 / 163

- In each subspace:
- Normalize the 2-D projections to unit norm, then read off the angle between them.

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012 89 / 163

- In each subspace:
- Normalize the 2-D projections to unit norm, then read off the angle between them.

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012 89 / 163

Extracting rotations by computing angles

- To read off the angle, compute the inner product:
- Compute the sum over products of filter responses.

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012

89 / 163

Extracting rotations by computing angles

- To read off the angle, compute the inner product:
- Compute the sum over products of filter responses.

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012

- A - B - M

Image: A math

"cos(angle) == inner product" is the trigonometric identity:

$$\cos(\phi_y - \phi_x)$$

= $\cos \phi_y \cos \phi_x + \sin \phi_y \sin \phi_x$
= $(V_{\cdot 1}^{\mathrm{T}} \boldsymbol{y})(V_{\cdot 1}^{\mathrm{T}} \boldsymbol{x}) + (V_{\cdot 2}^{\mathrm{T}} \boldsymbol{y})(V_{\cdot 2}^{\mathrm{T}} \boldsymbol{x})$

Extracting rotations by computing angles

- To read off the angle, compute the inner product:
- Compute the sum over products of filter responses.

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012 90 / 163

• Not all images are represented equally well in each subspace.

The aperture problem

• Not all images are represented equally well in each subspace.

The aperture problem

• Not all images are represented equally well in each subspace.

The aperture problem

• Not all images are represented equally well in each subspace.

The aperture problem

• Not all images are represented equally well in each subspace.

The aperture problem

• Not all images are represented equally well in each subspace.

The aperture problem

• Not all images are represented equally well in each subspace.

How can we get a code that encodes both the presence and our uncertainty about subspace rotations given two images?

Idea: Absorb rotations into eigenvectors.
 This allows us to turn hiddens into rotation determined

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

How can we get a code that encodes both the presence and our uncertainty about subspace rotations given two images?

• Idea: Absorb rotations into eigenvectors.

• This allows us to turn hiddens into rotation detectors:

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012 93 / 163

< ∃ >

- ∃ →

< A >

• Inner product is large, when the image transformation matches the absorbed eigenvalue.

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012 93 / 163

 Idea: For each subspace, use a panel of mapping units, each tuned to some angle, θ_i.

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012 93 / 163

- Transformations encoded in a population code.
- A mapping unit is *conservative*: It fires only if a transform is present *and* if it is visible in the image pair.

Subspace rotation detector graphical model

- Most transformations affect multiple subspaces.
- Hiddens should be independent of image content.

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012 96 / 163

-∃=->

Tutorial at IPAM 2012 99 / 163

< ∃ >

Subspace rotation detector graphical model

- Most transformations affect multiple subspaces.
- Hiddens should be independent of image content.

Subspace rotation detector graphical model

- ullet \rightarrow Let hiddens pool within *and* pool across subspaces.
- This is exactly the factored bilinear model.

Energy models

Square pooling:

- Another way to learn matched filters is square pooling (on concatenation):
 - ASSOM (Kohonen, 1996)
 - ISA (Hyvarinen, 2000)
 - Product of T-distributions (Osindero et al., 2006)
 - (Karklin, Lewicki; 2008)
 - cRBM (Ranzato et al., 2009)
- Often, W^z is constrained so each hidden sees only a few squared inputs. That way hiddens can be thought of as encoding subspace norms.

・ 同 ト ・ ヨ ト ・ ヨ

Square pooling:

- Why is square pooling the same?
- The activity that a hidden unit gets is: $\sum_{f} w_{kf}^{z} \left(W_{\cdot f}^{x \,\mathrm{T}} \boldsymbol{x} + W_{\cdot f}^{y \,\mathrm{T}} \boldsymbol{y} \right)^{2}$ $= \sum_{f} w_{kf}^{z} \left(2(W_{\cdot f}^{x \,\mathrm{T}} \boldsymbol{x})(W^{y \,\mathrm{T}}_{\cdot f} \boldsymbol{y}) + (W_{\cdot f}^{x \,\mathrm{T}} \boldsymbol{x})^{2} + (W_{\cdot f}^{y \,\mathrm{T}} \boldsymbol{y})^{2} \right)$
- Inference just adds square terms.
- This may make the rotation detectors more conservative. Otherwise inference is the same!

Square pooling:

- Why is square pooling the same?
- The activity that a hidden unit gets is: $\sum_{f} w_{kf}^{z} \left(W_{\cdot f}^{x \,\mathrm{T}} \boldsymbol{x} + W_{\cdot f}^{y \,\mathrm{T}} \boldsymbol{y} \right)^{2}$ $= \sum_{f} w_{kf}^{z} \left(2(W_{\cdot f}^{x \,\mathrm{T}} \boldsymbol{x})(W_{\cdot f}^{y \,\mathrm{T}} \boldsymbol{y}) + (W_{\cdot f}^{x \,\mathrm{T}} \boldsymbol{x})^{2} + (W_{\cdot f}^{y \,\mathrm{T}} \boldsymbol{y})^{2} \right)$
- Inference just adds square terms.
- This may make the rotation detectors more conservative. Otherwise inference is the same!

Square pooling:

- Learning typically more difficult than with factored gated feature learning.
- Example ISA: Gradient-based, while enforcing $W^{xy^{T}}W^{xy} = I$ after every gradient step (eigen-decomposition).

Energy models

The energy model

- (Adelson and Bergen, 1985): Motion
- (Ozhawa, DeAngelis, Freeman; 1990): Disparity
- Equivalence to cross-correlation: See, for example, (Fleet et al.; 1994).

Learning energy models on movies

- What happens when we train energy models on movies?
- Hiddens receive all pairs of products, so they detect the **repeated application of the same eigenvalue**:

$$\left(\sum_{s} oldsymbol{v}^{s \, \mathrm{T}} oldsymbol{x}_{s}
ight)^{2} = \sum_{s} \left(oldsymbol{v}^{s \, \mathrm{T}} oldsymbol{x}_{s}
ight)^{2} + \sum_{st} \left(oldsymbol{v}^{s \, \mathrm{T}} oldsymbol{x}_{s}
ight) \cdot \left(oldsymbol{v}^{t \, \mathrm{T}} oldsymbol{x}_{t}
ight)$$

Learning energy models on movies

- What happens when we train energy models on movies?
- Hiddens receive all pairs of products, so they detect the **repeated application of the same eigenvalue**:

$$\left(\sum_{s} oldsymbol{v}^{s\mathrm{T}} oldsymbol{x}_{s}
ight)^{2} = \sum_{s} \left(oldsymbol{v}^{s\mathrm{T}} oldsymbol{x}_{s}
ight)^{2} + \sum_{st} \left(oldsymbol{v}^{s\mathrm{T}} oldsymbol{x}_{s}
ight) \cdot \left(oldsymbol{v}^{t\mathrm{T}} oldsymbol{x}_{t}
ight)$$

Action recognition

(Hollywood 2)

- Convolutional GBM (Taylor et al., 2010)
- hierarchical ISA (Le, et al., 2011)

Training energy models via gating

- We can use square pooling to simulate gating.
- But we can also use gating to simulate squaring:
- Plug in the same data left and right and tie left and right filters.

Training energy models via gating

- To train the model on videos, train an energy model on concatenated frames:
- Use gating via energy via gating!

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

"Mean-covariance" encoder on single images

#factors / #covar-hiddens / #mean-hiddens	Model	Perf (%)
225 / 225 / 0	cRBM	63.6
225 / 225 / 0	cAE	64.5
900 / 225 / 0	cRBM	64.7
900 / 225 / 0	cAE	65.4
576 / 144 / 81	mcRBM	68.2
576 / 144 / 81	mcAE	67.7

< < >> < <</>

• Contrast filters after each gradient step.

- Contrast-normalize input data.
- Optionally, whiten input data.
- Connect top-level hiddens *locally* to the factors.
- Probably even better: make them *locally overlapping* ("Topographic ICA").
- Fast learning: large data-sets essential (use GPU's...).

- Contrast filters after each gradient step.
- Contrast-normalize input data.
- Optionally, whiten input data.
- Connect top-level hiddens *locally* to the factors.
- Probably even better: make them *locally overlapping* ("Topographic ICA").
- Fast learning: large data-sets essential (use GPU's...).

- Contrast filters after each gradient step.
- Contrast-normalize input data.
- Optionally, whiten input data.
- Connect top-level hiddens *locally* to the factors.
- Probably even better: make them *locally overlapping* ("Topographic ICA").
- Fast learning: large data-sets essential (use GPU's...).

- Contrast filters after each gradient step.
- Contrast-normalize input data.
- Optionally, whiten input data.
- Connect top-level hiddens *locally* to the factors.
- Probably even better: make them *locally overlapping* ("Topographic ICA").
- Fast learning: large data-sets essential (use GPU's...).

- Contrast filters after each gradient step.
- Contrast-normalize input data.
- Optionally, whiten input data.
- Connect top-level hiddens locally to the factors.
- Probably even better: make them *locally overlapping* ("Topographic ICA").
- Fast learning: large data-sets essential (use GPU's...).

- Contrast filters after each gradient step.
- Contrast-normalize input data.
- Optionally, whiten input data.
- Connect top-level hiddens *locally* to the factors.
- Probably even better: make them *locally overlapping* ("Topographic ICA").
- Fast learning: large data-sets essential (use GPU's...).

- E b

Take-home message, factored model

To learn about transformation, let hidden units pool over products of filter responses.

Outline

Introduction

- Feature Learning
- Correspondence in Computer Vision
- Multiview feature learning
- 2 Learning relational features
 - Encoding relations
 - Learning

3 Factorization, eigen-spaces and complex cells

- Factorization
- Eigen-spaces, energy models, complex cells

Applications and extensions

- Applications and extensions
- Conclusions

4 E b

Outline

Introduction

- Feature Learning
- Correspondence in Computer Vision
- Multiview feature learning

Learning relational features

- Encoding relations
- Learning

Factorization, eigen-spaces and complex cells

- Factorization
- Eigen-spaces, energy models, complex cells

Applications and extensions

- Applications and extensions
- Conclusions

- H - M

$A:A' \quad :: \quad B:?$

Analogy making

• Infer transformation from *source* images $x_{\text{source}}, y_{\text{source}}$:

 $oldsymbol{z}(oldsymbol{x_{source}},oldsymbol{y_{source}})$

2 Apply the transformation to *target* image x_{target} : $y(z, x_{target})$

Roland Memisevic (Frankfurt, Montreal)

Tutorial at IPAM 2012 1

< 同 > < 回 > < 回 > -

Filters learned from transforming faces

• Filters learned from faces:

Metric learning and analogy making

- Learning a gated Boltzmann machine on changing facial expressions.
- (Susskind, et al., 2011)
- Joint density training allows for matching.

Model/Task	TFD	TFD	PUBFIG	AFFINE
	ID	Exp	ID	
cosine	0.848	0.663	0.649	0.721
RBM	0.869	0.656	0.647	0.799
conditional	0.805	0.634	0.557	0.825
bilinear	0.905	0.637	0.774	0.812
3-way	0.932	0.705	0.771	0.930
3-way symm	0.951	0.695	0.762	0.931

Ð.

Bi-linear classification

- A special case of a gated Boltzmann machine:
- Replace the output-image by a one-hot-encoded class-label.
- This is a classifier, where each label can blend in it's own model.

Bi-linear classification

Marginalization is tractable in closed form

$$p(y|\boldsymbol{x}) = \sum_{\boldsymbol{z}} p(y, \boldsymbol{z}|\boldsymbol{x}) \quad \propto \quad \sum_{\boldsymbol{z}} \exp(\boldsymbol{x}^{\mathrm{t}} w_{y} \boldsymbol{z}) = \sum_{\boldsymbol{z}} \exp(\sum_{ik} w_{yik} x_{i} h_{k})$$
$$= \quad \prod_{k} (1 + \exp(\sum_{i} w_{yik} x_{i}))$$

 This is a mixture of 2^K logistic regressors (Nair, 2008), (Memisevic, et al.; 2010), (Warrell et al.; 2010)

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Bi-linear classification

- Factorization allows classes to share features.
- The activity of a factor, *f*, given class *j*, is now exactly equal to the parameter value w_{jf}^{y} .
- Thus the weights can be thought of as the responses of virtual class-templates. (Zach 2010, pers. comm.)

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Rotated digit classification 0 🖄 🖊 ۶ 🗲 ۹

- Data from the "deep learning-challenge" [Larochelle et al., 2007].
- Learned rotation-invariant filters:

• Deep Learning challenge (Larochelle et al., 2008).

	SV	Ms	NNet	RBM	DE	EP	G	SM
dataset/model:	SVMRBF	SVMPOL	NNet	DBN1	DBN3	SAA3	GSM	(unfact)
rectangles	2.15	2.15	7.16	4.71	2.60	2.41	0.83	(0.56)
rectimages	24.04	24.05	33.20	23.69	22.50	24.05	22.51	(23.17)
mnistplain	3.03	3.69	4.69	3.94	3.11	3.46	3.70	(3.98)
convexshapes	19.13	19.82	32.25	19.92	18.63	18.41	17.08	(21.03)
mnistbackrand	14.58	16.62	20.04	9.80	6.73	11.28	10.48	(11.89)
mnistbackimg	22.61	24.01	27.41	16.15	16.31	23.00	23.65	(22.07)
mnistrotbackimg	55.18	56.41	62.16	52.21	47.39	51.93	55.82	(55.16)
mnistrot	11.11	15.42	18.11	14.69	10.30	10.30	11.75	(16.15)

Transparent motion

- Hidden variables make extracting multiple, simultaneous motions easy.
- When they fail, they do so in a similar way as humans:
- Better disrimination at large angles, averaging at very small angles, "motion repulsion".
- (eg., Treue et al., 2000)

- Learning a dictionary for stereo:
- Generate left-right camera pairs with known disparities.
- Predict disparity from the hidden units.
- This gives rise to a three-layer network, that may be trained with Hebbian-like learning.

Hiddens learn to encode disparities

 Can use this to encode 3d-structure implicitly, for example, for multi-view recognition.

▲ ● ▲ ● ▲ ● ▲ ●
■
Tutorial at IPAM 2012

Norb stereo features

	NORB training subset:			NO	RB tests	et:
RBMmon	RBMbin	CC	cc+bin	RBMbin	CC	cc+bin
73.65	60.43	34.85	31.48	63.28	38.91	36.80

< A >

æ

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012 12

Tutorial at IPAM 2012 129 / 163

Tutorial at IPAM 2012 130 / 163

Tutorial at IPAM 2012 131 / 163

Tutorial at IPAM 2012 132

Tutorial at IPAM 2012 133 / 163

Multiview Feature Learning

Tutorial at IPAM 2012 134 / 163

Multiview Feature Learning

Tutorial at IPAM 2012 1

- We used across-subspace pooling to remove dependencies on image content.
- Each subspace itself is dependent on image content.

Roland Memisevic (Frankfurt, Montreal)

Tutorial at IPAM 2012

Roland Memisevic (Frankfurt, Montreal)

Tutorial at IPAM 2012

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012

A MERICAL STREET

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012

A 100 A 100 A 100 A

Rotation quadrature filters

Roland Memisevic (Frankfurt, Montreal)

Tutorial at IPAM 2012 1

Rotation quadrature filters

Roland Memisevic (Frankfurt, Montreal)

Tutorial at IPAM 2012

< A

Mixed transformations

Roland Memisevic (Frankfurt, Montreal)

Tutorial at IPAM 2012 144

Mixed transformations

Roland Memisevic (Frankfurt, Montreal)

Tutorial at IPAM 2012 145 / 163

Quadrature features from natural video

Roland Memisevic (Frankfurt, Montreal)

Multiview Feature Learning

Tutorial at IPAM 2012 1

Quadrature features from natural video

Roland Memisevic (Frankfurt, Montreal)

Tutorial at IPAM 2012

Representing digits using rotation aperture features

- Learn rotation features. Represent digits using aperture features.
- No video available? Fill video buffer with copies of the same image: Represent the non-transformation.

< ロ > < 同 > < 回 > < 回 >

Rotated MNIST error rates

Tutorial at IPAM 2012

- Humans do not recognize still images but videos of objects.
- The way in which an object changes can convey useful information about the object, including 3-D structure.
- → Learn features from videos not still images. See eg. (Lee and Soatto, 2011).

The "norbjects" video dataset

日日日日日的過過過都能放在手 就就放出上面面 000 TI T 102 102 102 X T a 40 60 00000000000 I a so in in in in it the we sho sho sho A Section 53 A SA R R A P B B B 2 5 5 5 5 5 S. S. Har 100 N & & 444000 000011111 X 68 68 68

4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4

э.

S	3	Ŧ	Ħ	44	1	10	*	U	3	N.	66	-,2	~	•	•	4		S.	2
彩		()		1	Ť	189		-	0	4	1	No.	The second	N.	-		4	9	(8)
-	1	Ű	0	and the	-	No.	State of	- 73	T.	K.	Q.	No.	1	S.c.	12	4	\$	3	Ľ
Q	Q.	44	影	(0)	20	*	4	樂	3		APE -	\$	-		0	*	\hat{k}_{i}	-	ą.
-	14	with	1	-	4	0		۲	•	ų		\$	÷	R	2	\$	\$	٠	0
\$	1	2	6	\$	\$	10	44	1	3	9	-	4月1	-	42	4	9	9	CT-	1
*	*	*	64 (53	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 C	と学	4	3 4	() ()	\$ \$	4 2	* *	* *	4 %	6 *		× (0)	-	1 で
* \$ 3	* () *	(č) 😵 🛠	* 5 (?)	10 C	13 16 C	2 44 (2)	14 C E	3 8 %	の参加	$\overset{\circ}{\sim}$ $\overset{\circ}{\circ}$	* * *	医毒素	17 - 17 - 17 19 19	4 ※	5 × 0	े सं	Ø ☆ Q		10 10
\$ \$ \$	((() () () () () () () () ()	 (i) (i)		202×	\$ 10 m \$	2 4 5 3	金田田		の参加	$\phi \approx \phi \phi$	9 9 8 8 8 8	ほなま	金 李 李 李	4 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	の本の影	े स स र	専 重 索 を	(c) 🗦 🖛 😳	ê le a 🏚

Roland Memisevic (Frankfurt, Montreal)

Tutorial at IPAM 2012

152 / 163

э

9	E'	Ŧ	*	1	13	100	-74-	\mathcal{T}	3	3	116	34	-3		•		0	*	Q.
		2	10	1	*		(E))	9	9	4.2	ý	No.	No.	4	ų	-	1	0	
	19	0		N.S.	-		New York	15	14	N.	Ŷ	Ŷ.	8	称	-0	4	÷	Ś	
-	9	42	-	60	(0)	H.	-	樂	2	1	the second	0	-	3		*#	1	ŝ	4
-	1	474	÷	Q.	4		*		2	16			Ş	A.	1	\$	3	٠	0
*	-	\$	-	0	V	4	2	130	3	٠	14	二年	4	-	¢.		Q	家	1
\$ Y	* 9	*	84 (0)	3	S	结合	2 2	ु 😵	3 2	1 1 1 1 1 1	a a	* *	4 2	* *	*	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* 0	*	寺 袋
* 3) 3	10 (A	() ()	10 2 4		§ (€ <	う 林 安	223	ي چ چ	のなる		\$ \$ \$	14 14 14 14 14	* * *	** *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S 12	Q * Q	~ * *	きゅう
* * * *	€ \$ \$ \$	S (0 0 5	* (0) *		s & & <	5 4 6 3	3 3 3 3		のや恋父	きから	3 4 4 2	1 2 2 V	い ち む ひ	* * * *	の米の参	\$ \$ \$ \$	豪 @ 朱 @	(C) 🚔 👐 (C)	6 6 4 W

S.	S.	1	\$	2	S		×	3	3	3	((6	1	-				۲	-	Q.
彩	A.C.	Q.	(3)	*	*	8	6	Ð	0	\$	Ś	-	業		36	1	4		(1)
1	14 14 14	0	8	14		A State	NAME OF	The second	2	N.	3	-		推	425	4	4	1	S.
63	9	2	S.	6	0	*	Ŷ		9	10	14	0	and the	13	9	**	4-2	13	-
S.	#	and the second s	1	3	4	•	*	9	2	(3)	9	S	-	A.	2	-	69	٠	0
*	gi.	**	٠	8	ŝ	1	1	100	3	-	-	ist.	"ant	2	2	8	ŝ	and and	5 C
(1)	٢	0	6	-	16	10	-	4	-	-	٠	÷3	\$	*	*	*	$J_{f_{1}}^{T}$	#	4
30	-	1	(())	6	6	1	101	25	7. S	*	÷	-	- Contraction of the contraction		(b)	10	())		0
1	89	9	10	t	à	2	2	-	44	*		3	3	-	**	100	44	6	(2)
100	100	ater.	1.13	ante	dia	1884 C	deri		Sime	State.	(Salar	38.	. Then	(aller	SPR.	35.36	- COPP.	34	3854

Roland Memisevic (Frankfurt, Montreal)

ৰ ঞা ২ ব হা ২ ব হা ২ ব Tutorial at IPAM 2012

	S.	1	1	4	Ser.		施	2	S.	¥	((6	1	8		9			44	-
耕	Sec.	2	(Č)	*	*	S)	3		•	1	Ś	藻	The second	2	\$	-	1		(1)
1	徽)	ð	1	S.	and the second	淡	No.	2	-	S.	£	3	13	-	44	8	1	1
9	9	ŝ,		6	1	¥	×()		(Ť	$\frac{1}{2}$	and an	Ċ	(f)	3	9	16-16	**	-	3
\$	1	1	44	3	0	6	*	9	2	10	())	Solution	Se la	*	*	3	0		0
8	spin.	**	٤	Ð	Ş	3	1	8	0	-	124	100	alest.	2	\$	-	0	-	3
N.	0	0	6		No.	1	9	\mathcal{Q}	e	1	-	3	ça	$\frac{1}{4}$	No.	1	-	*	4
201	-	Ŷ	1	0	3		10	1. 15	2.5	1		Sh	ŝ,	(ili)	(je)	4	9	16/14	0
	No.	(Q)	1.47	1	à	2	-	44	\$4	-	and the	1	0	Sec.	3.8		「「	0	(9)
	and the second second	1000				and the second s	1000			1.10		-		~	and the second		-		

Roland Memisevic (Frankfurt, Montreal)

up.	Y.	t	1	4	\$4		- Note	1	1	1	((e	1	1			•	۲	4	-
彩	No.	(0)	(Q)	t	1	(<u>1</u>)	-	4	0	4	Ø	The state	が	2	-	-	1	٢	(B)
1	徽	Ì	1	Se al	X	淡	激	No.	P	-	Ð	-	Q.	称	12		8	2	S.
9	\$	10	1	6	10	$\hat{\mathbf{x}}$	¥.			鏬	4	(d)	S.		1	*	**	10	50
\$	2	1	10	8	3	6	*		•	ŝ(C	0	1	J	*	A.	3	\$	٠	0
0	4	2		3	3	2	**	100	3		0	1		Ť	ł.		0	R	Ø
3	0	0	6	9	M.	10	\$	畚	<i>\$</i> 2	1		3	3	*	*	-	-	*	1
14	-	9	$\overline{\mathcal{G}}$	U	0		-	265	115	*	4	S	2		all.	<u>.</u>	No	1234	13
-3	1	104	198	t	à	No.	-	24	\$	-		3	4	彩	-	-	凝	3	()

Roland Memisevic (Frankfurt, Montreal)

< 伊 → イミト イミト ヨ Tutorial at IPAM 2012

157 / 163

э

Classification with aperture features

Tutorial at IPAM 2012 1

Topographic representations emerge from *local* gating

Outline

Introduction

- Feature Learning
- Correspondence in Computer Vision
- Multiview feature learning

Learning relational features

- Encoding relations
- Learning

Factorization, eigen-spaces and complex cells

- Factorization
- Eigen-spaces, energy models, complex cells

Applications and extensions

- Applications and extensions
- Conclusions

4 E b

1) We can learn relations by letting hidden variables compute
sums over products of filter responses.
2) Each hidden has to pool across multiple 2-d subspaces.
3) Learning requires contrast normalization + keeping the scales
of filters roughly the same.
4) We can replace products with squares and vice versa.
5) Complex cell models approximately jointly diagonalize a set of
commuting matrices.
6) Complex cells support selectivity not just invariance.
7) Energy model features can only represent the repeated appli-
cation of the same transformation.
8) Transformations are transformation-invariant.

ъ.

<ロ> <同> <同> <同> < 同> < 同>

Conclusions

- Learning is a way to support simplicity and homogeneity of complex, intelligent systems.
- Feature learning even more so.
- Relational feature learning even more:
- Learning "verbs", not just "nouns", can help address more tasks with a single kind of model.
- This seems like a good reason to have complex cells.
- One reason, why looking for *correspondences* across frames, across views, across modalities, etc. – is a common operation, is that mappings between modalities are often *one-to-many*.
- The theory provides a strong inductive bias for products and/or squaring non-linearities when building deep learning models.

- A - B - M-

http://www.cs.toronto.edu/~rfm/ multiview-feature-learning-cvpr/index.html

→ Ξ →

< 🗇 🕨