Deep learning in the visual cortex

Thomas Serre Brown University

- I. Fundamentals of primate vision
- II. <u>Computational mechanisms of rapid</u> recognition and feedforward processing
- III. <u>Beyond feedforward processing:</u> <u>Attentional mechanisms and cortical</u> <u>feedback</u>

Computer vision successes

Face detection

Computer vision successes

Face detection

F

.

Mobileye system

Already available on volvo S60 and soon on most car manufacturers

Machine: Millions of labeled examples for real-world applications

e.g., Mobileye pedestrian detection system

What's wrong with this picture?

What's wrong with this picture?

Source: Tenenbaum

Humans: learning from very few examples

By age 6, a child knows 10-30K categories

- Subjects get the gist of the scene at 7 images/s from unpredictable random sequence of images
 - No time for eye movements
 - No top-down / expectations

movie courtesy of Jim DiCarlo

- Subjects get the gist of the scene at 7 images/s from unpredictable random sequence of images
 - No time for eye movements
 - No top-down / expectations

movie courtesy of Jim DiCarlo

- Subjects get the gist of the scene at 7 images/s from unpredictable random sequence of images
 - No time for eye movements
 - No top-down / expectations

- Subjects get the gist of the scene at 7 images/s from unpredictable random sequence of images
 - No time for eye movements
 - No top-down / expectations

- Subjects get the gist of the scene at 7 images/s from unpredictable random sequence of images
 - No time for eye movements
 - No top-down / expectations
- Coarse initial base representation
- Enables rapid object detection/recognition ('what is there?')
- Insufficient for object localization
- Sensitive to presence of clutter

Two classes of models

Two classes of models

Marr '82;

Two classes of models

Two classes of models

Two classes of models

Streams of processing

Source: unknown

Fig. 13. Tangential section through the human fovea. Larger cones (arrows) are blue cones. From Ahnelt et al. 1987.

Modified from http://thalamus.wustl.edu/course/eyeret.html

Normalization via pool

of neighboring units

Hubel & Wiesel

Simple cell

Simple cell

Hubel & Wiesel

Hubel & Wiesel

Complex cell

Complex cell

Hubel & Wiesel

Hubel & Wiesel

Hierarchical architecture: Anatomy

Rockland & Pandya '79; Maunsell & Van Essen '83; Felleman & Van Essen '91

Hierarchical architecture: Anatomy

Rockland & Pandya '79; Maunsell & Van Essen '83; Felleman & Van Essen '91

source: Thorpe & Fabre-Thorpe '01

Hierarchical architecture: Latencies

Nowak & Bullier '97 Schmolesky et al '98

gradual increase in complexity of preferred stimulus

Hierarchical architecture: Function

source: Kobatake & Tanaka '94; Freiwald & Tsao '10 see also Oram & Perrett 1993; Sheinberg & Logothetis '96; Gallant et al '96; Riesenhuber & Poggio '99

gradual increase in complexity of preferred stimulus

Hierarchical architecture: Function

up down angle

-90" - 90"

180 -90

180

-90 0 90 180 left right angle

180

0 90

picture plane angle

-90 0 90 180 left right angle

left right angle

-180° - 180°

picture plane anol

-180" - 180"

180

90 180

Cell 4

0 90

picture plane and

-90 0

left right angle

90 180

180 -90

Cell 3

-180 -90 0 90

-180 -90 0

picture plane angle

left right angle

source: Kobatake & Tanaka '94; Freiwald & Tsao '10 see also Oram & Perrett 1993; Sheinberg & Logothetis '96; Gallant et al '96; Riesenhuber & Poggio '99

Parallel increase in invariance properties (position and scale) of neurons

Hierarchical architecture: Function

source: Kobatake & Tanaka 1994 see also Oram & Perrett 1993; Sheinberg & Logothetis 1996; Gallant et al 1996; Riesenhuber & Poggio 1999

Columnar organization

≤0.16

0.26 0.43 0.70 1.13 1.84 27

Tanaka et al.

Tsunoda et al.

Dictionary of visual features of intermediate visual areas (V4/PIT)

Columnar organization

Kobatake & Tanaka 1994 see also Oram & Perrett 1993; Sheinberg & Logothetis 1996; Gallant et al 1996; Riesenhuber & Poggio 1999

Invariant object category information can be decoded from small populations of cells in IT

Invariant image representation in the IT

77 unique stimuli

8 object category

Invariant representation in IT

Hung et al '05

77 unique stimuli

8 object category

Decoding possible from around 100 ms

Invariant representation in IT

Hung et al '05

Button release and touch screen on targets

- Head-free monkeys
- Multiple electrodes implanted along ventral stream (V4+PIT)

Feedforward processing

Data collected by Maxime Cauchoix and Denis Fize (CNRS, France)

Feedforward processing

Data collected by Maxime Cauchoix and Denis Fize (CNRS, France)

• We know very little (i.e., STDP) about the learning rules at work in the visual cortex

Very fast learning in IT

Learning and plasticity Li & DiCarlo '08

Motor command

Summary

Two modes of processing: Bottom-up vs. recurrent

Summary

Two modes of processing: Bottom-up vs. recurrent Deep learning in the visual cortex

Thomas Serre Brown University

- I. Fundamentals of primate vision
- II. <u>Computational mechanisms of rapid</u> recognition and feedforward processing
- III. <u>Beyond feedforward processing:</u> <u>Attentional mechanisms and cortical</u> <u>feedback</u>

Vision is complex but the solution might be simple...

Cavanagh '95

