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Invariant recognition 
in natural images
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Computer vision 
successes Face detection
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Computer vision 
successes Face detection
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Mobileye system
Already available on volvo S60 
and soon on most car 
manufacturers 
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Machine: Millions of labeled 
examples for real-world applications e.g., Mobileye pedestrian detection system
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What’s wrong with this 
picture?
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What’s wrong with this 
picture?

• ~30,000 object categories 
(Biederman, 1987)

• Approach unlikely to scale up ... 
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Humans: learning from 
very few examples

By age 6, a child knows 10-30K 
categories

bcs news

Source: Tenenbaum
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• Subjects get the gist of the scene at 7 
images/s from unpredictable random 
sequence of images

- No time for eye movements
- No top-down / expectations

Invariant recognition 
in natural images

Potter 1971, 1975; see also Biederman 1972; Thorpe 1996

movie courtesy of Jim DiCarlo
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• Subjects get the gist of the scene at 7 
images/s from unpredictable random 
sequence of images

- No time for eye movements
- No top-down / expectations

Invariant recognition 
in natural images

• Coarse initial base representation

- Enables rapid object detection/recognition 
(‘what is there?’)

- Insufficient for object localization
- Sensitive to presence of clutter

9 Potter 1971, 1975; see also Biederman 1972; Thorpe 1996



Two classes of 
models

Marr ‘82; 
Biederman ’87 

10



Two classes of 
models

Marr ‘82; 
Biederman ’87 

10



Two classes of 
models

Marr ‘82; 
Biederman ’87 11

I. Fundamentals of primate vision



Two classes of 
models

Marr ‘82; 
Biederman ’87 

II.
 R

ap
id

 re
co

gn
iti

on
 a

nd
 

fe
ed

fo
rw

ar
d 

pr
oc

es
si

ng

11

I. Fundamentals of primate vision



Two classes of 
models

Marr ‘82; 
Biederman ’87 

II.
 R

ap
id

 re
co

gn
iti

on
 a

nd
 

fe
ed

fo
rw

ar
d 

pr
oc

es
si

ng
III. Attentional mechanisms 

and cortical feedback

11

I. Fundamentals of primate vision



Streams of processing
12

Ventral visual stream

Dorsal visual stream



Simple eye vs. 
camera

Source: unknown13



Simple eye vs. 
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Simple eye vs. 
camera

• ~100M photoreceptors

- ~5M cones
- ~90M rods

• ~10M pixels

Source: unknown13



Eye stimulated by stuff in the world

Source: webvision
14



Eye stimulated by stuff in the world

photoreceptors

Retinal output 
(ganglion cells)

Modified from http://thalamus.wustl.edu/course/eyeret.html
15
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Eye stimulated by stuff in the world

photoreceptors

Retinal output 
(ganglion cells)

Increase in firing 
rate driven by 

external stimulus

Modified from http://thalamus.wustl.edu/course/eyeret.html
15

http://thalamus.wustl.edu/course/eyeret.html
http://thalamus.wustl.edu/course/eyeret.html


Eye stimulated by stuff in the world

photoreceptors

Retinal output 
(ganglion cells)

+- -

x1 x2 x3

y

w1 w2 w3

y = f

⇣X
wixi

⌘

Modified from http://thalamus.wustl.edu/course/eyeret.html
16

source: webvision

http://thalamus.wustl.edu/course/eyeret.html
http://thalamus.wustl.edu/course/eyeret.html


Eye stimulated by stuff in the world

photoreceptors

Retinal output 
(ganglion cells)

+- -

x1 x2 x3

y

w1 w2 w3

Afferent activity 
from neuron i

y = f

⇣X
wixi

⌘

Modified from http://thalamus.wustl.edu/course/eyeret.html
16

source: webvision

http://thalamus.wustl.edu/course/eyeret.html
http://thalamus.wustl.edu/course/eyeret.html


Eye stimulated by stuff in the world

photoreceptors

Retinal output 
(ganglion cells)

+- -

x1 x2 x3

y

w1 w2 w3

Afferent activity 
from neuron i

Synaptic 
efficacies

y = f

⇣X
wixi

⌘

Modified from http://thalamus.wustl.edu/course/eyeret.html
16

source: webvision

http://thalamus.wustl.edu/course/eyeret.html
http://thalamus.wustl.edu/course/eyeret.html


Eye stimulated by stuff in the world

photoreceptors

Retinal output 
(ganglion cells)

+- -

x1 x2 x3

y

w1 w2 w3

Afferent activity 
from neuron i

Synaptic 
efficacies

Summation at 
the soma

y = f

⇣X
wixi

⌘

Modified from http://thalamus.wustl.edu/course/eyeret.html
16

source: webvision

http://thalamus.wustl.edu/course/eyeret.html
http://thalamus.wustl.edu/course/eyeret.html


Eye stimulated by stuff in the world

photoreceptors

Retinal output 
(ganglion cells)

+- -

x1 x2 x3

y

w1 w2 w3

Afferent activity 
from neuron i

Synaptic 
efficacies

Summation at 
the soma

y = f

⇣X
wixi

⌘

Modified from http://thalamus.wustl.edu/course/eyeret.html
16

source: webvision

http://thalamus.wustl.edu/course/eyeret.html
http://thalamus.wustl.edu/course/eyeret.html


Eye stimulated by stuff in the world

x1 x2 x3

y

w1 w2 w3

y = f

⇣X
wixi

⌘
/ (pool)

pool

photoreceptors

Retinal output 
(ganglion cells)

+- -

17

source: webvision



Eye stimulated by stuff in the world
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different orientations)
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RF organization in V1

Hubel & Wiesel ’59 ’62 ’68

Hubel & Wiesel

Simple cell
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RF organization in V1
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Hierarchical architecture: 
Anatomy Rockland & Pandya ’79; 

Maunsell & Van Essen ‘83; 
Felleman & Van Essen ’91 23
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Hierarchical architecture:
Latencies

Nowak & Bullier ’97
Schmolesky et al ’98

source: Thorpe & Fabre-Thorpe ‘01
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Hierarchical architecture: 
Function

source: Kobatake & Tanaka ’94; Freiwald & Tsao ’10 
see also Oram & Perrett 1993; Sheinberg & 
Logothetis ‘96; Gallant et al ‘96;  Riesenhuber & 
Poggio ’99

gradual increase in complexity 
of preferred stimulus

25



Hierarchical architecture: 
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Parallel increase in invariance 
properties (position and scale) 

of neurons

Hierarchical architecture: 
Function

source: Kobatake & Tanaka 1994 
see also Oram & Perrett 1993; Sheinberg & 
Logothetis 1996; Gallant et al 1996;  
Riesenhuber & Poggio 1999
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Columnar organization

Columnar organization in V1

Source: unknown
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Columnar organization
Kobatake & Tanaka 1994 
see also Oram & Perrett 1993; Sheinberg & 
Logothetis 1996; Gallant et al 1996;  
Riesenhuber & Poggio 1999

Dictionary of visual features of 
intermediate visual areas (V4/PIT)
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Columnar organization in V1



Invariant image 
representation in the IT

Invariant object category 
information can be decoded from 

small populations of cells in IT

29



Invariant representation in IT Hung et al ’05
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spikes over a short time interval (100- to 300-
ms interval divided into bins of 50 ms in this
case) (11, 23, 24, 28). This is notable consid-
ering the high trial-to-trial variability of cortical
neurons (27). The IT population performance
is also robust to biological noise sources such
as neuronal death and failures in neurotrans-
mitter release Efig. S1, (35)^. Although Fig. 1
(and most other decoding studies) assumes
precise knowledge about stimulus onset time,
this is not a limitation because we could also
accurately read out stimulus onset time from
the same IT population Efig. S5, (28)^.

A key computational difficulty of object
recognition is that it requires both selectivity
(different responses to distinct objects such
as one face versus another face) and in-
variance to image transformations (similar
responses to, e.g., rotations or translations of
the same face) (8, 12, 17). The main achieve-
ment of mammalian vision, and one reason
why it is still so much better than computer
vision algorithms, is the combination of high
selectivity and robust invariance. The results
in Fig. 1 demonstrate selectivity; the IT
population can also support generalization
over objects within predefined categories,
suggesting that neuronal responses within a
category are similar (36). We also explored
the ability of the IT population to generalize
recognition over changes in position and scale
by testing 71 additional sites with the original
77 images and four transformations in posi-
tion or scale. We could reliably classify (with
less than 10% reduction in performance) the
objects across these transformations even
though the classifier only Bsaw[ each object
at one particular scale and position during
training (Fig. 2). The Bidentification[ per-
formance also robustly generalized across
position and scale (28). Neurons also showed
scale and position invariance for novel objects
not seen before (fig. S6). The IT population

representation is thus both selective and
invariant in a highly nontrivial manner. That
is, although neuronal population selectivity for
objects could be obtained from areas like V1,
this selectivity would not generalize over
changes in, e.g., position (Supporting Online
Material).

We studied the temporal resolution of the
code by examining how classification per-

formance depended on the spike count bin
size in the interval from 100 to 300 ms after
stimulus onset (Supporting Online Material).
We observed that bin sizes ranging from 12.5
through 50 ms yielded better performance than
larger bin sizes (Fig. 3A). This does not imply
that downstream neurons are simply inte-
grating over 50-ms intervals or that no useful
object information is contained in smaller time

Fig. 1. Accurate readout
of object category and
identity from IT popula-
tion activity. (A) Exam-
ple of multi-unit spiking
responses of 3 indepen-
dently recorded sites to
5 of the 77 objects. Ras-
ters show spikes in the
200 ms after stimulus
onset for 10 repetitions

1 4 16 64 256
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(black bars indicate object presentation). (B) Performance of a linear classifier over the entire
object set on test data (not used for training) as a function of the number of sites for
reading out object category (red, chance 0 12.5%) or identity (blue, chance 0 1.3%). The
input from each site was the spike count in consecutive 50-ms bins from 100 to 300 ms
after stimulus onset (28). Sequentially recorded sites were combined by assuming independence (Supporting Online
Material). In this and subsequent figures, error bars show the SD for 20 random choices of the sites used for training;
the dashed lines show chance levels, and the bars next to the dashed lines show the range of performances using the
200 ms before stimulus onset (control). (C) Categorization performance (n 0 64 sites, mean T SEM) for different
data sources used as input to the classifier: multi-unit activity (MUA) as shown in (B), single-unit activity (SUA), and
local field potentials (LFP, Supporting Online Material). (D) This confusion matrix describes the pattern of mistakes
made by the classifier (n 0 256 sites). Each row indicates the actual category presented to the monkey (29), and
each column indicates the classifier predictions (in color code).

Fig. 2. Invariance to
scale and position
changes. Classification
performance (categori-
zation, n 0 64 sites,
chance 0 12.5%) when
the classifier was trained
on the responses to the
77 objects at a single
scale and position (de-
picted for one object by
‘‘TRAIN’’) and perform-
ance was evaluated with
spatially shifted or scaled
versions of those ob-
jects (depicted for one
object by ‘‘TEST’’). The
classifier never ‘‘saw’’
the shifted/scaled ver-
sions during training.
Time interval 0 100 to
300 ms after stimulus
onset, bin size 0 50 ms.
The left-most column
shows the performance
for training and testing
on separate repetitions
of the objects at the
same standard position
and scale (as in Fig. 1).
The second bar shows
the performance after
training on the stan-
dard position and scale
(scale 0 3.4-, center of
gaze) and testing on
the shifted and scaled images of the 77 objects. Subsequent columns use different image scales
and positions for training and testing.
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Decoding possible from around 100 ms 
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Humans animalness
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MIT undergrads :-)

Feedforward processing Data collected by Maxime Cauchoix 
and Denis Fize (CNRS, France)

Button release and touch 
screen on targets 

- Head-free monkeys
- Multiple electrodes implanted 
along ventral stream (V4+PIT)
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Feedforward processing Data collected by Maxime Cauchoix 
and Denis Fize (CNRS, France)
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Learning and plasticity Li & DiCarlo ’08
33

• We know very little (i.e., STDP) about 
the learning rules at work in the visual 
cortex Plasticity

Very fast learning in IT



in activity during the sample and/or the
delay interval to cats versus dogs. Similar
numbers of neurons preferred cats (sample

interval, 35/65; delay interval, 21/44) and
dogs (sample, 30/65; delay, 23/44).

Figure 3B shows an example of a single

neuron that exhibited greater activity in re-
sponse to dogs than to cats and responded
similarly to samples from the same category,
regardless of their degree of dogness or catness.
Its activity was different in response to stimuli
near the category boundary, the cat-like dogs
(60:40 dog:cat) versus the dog-like cats (60:40
cat:dog) (22), but there was no difference in
activity elicited by these stimuli and by their
respective prototypes (the 100% cats or dogs)
(23). The inset in Fig. 3B shows the neuron’s
activity in response to each of the 54 samples. It
exhibited overall greater activity in response to
dogs than to cats, but there were small differ-
ences within categories. Just a few stimuli elic-
ited activity that was similar to that from the
other category. These stimuli were not consis-
tent across different neurons, however. Across
the population of neurons, category activity ap-
peared at the start of neural responses to the
sample, about 100 ms after sample onset (24).

We examined all stimulus-selective neurons,
irrespective of whether they were category-se-
lective per se (25). For each neuron, we com-
puted the difference in activity between pairs of
samples at different positions along each be-
tween-category morph line (Fig. 1A). In Fig. 4,
A and B, each neuron’s average difference in
response to pairs of samples from the same
category (within-category difference, WCD) is
plotted against its difference in response to sam-
ples from different categories (between-catego-
ry difference, BCD). If neurons were not sensi-

Fig. 2. Task design and behavior. (A) A sample was followed by a delay and
a test stimulus. If the sample and test stimulus were the same category (a
match), monkeys were required to release a lever before the test disap-
peared. If they were not, there was another delay followed by a match. Equal numbers of match and
nonmatch trials were randomly interleaved. (B) Average performance of both monkeys. Red and blue
bars indicate percentages of samples classified as “dog” and “cat,” respectively.

Fig. 3. Recording loca-
tions and single neu-
ron example. (A) Re-
cording locations in
both monkeys. A, an-
terior; P, posterior; D,
dorsal; V, ventral.
There was no obvious
topography to task-
related neurons. (B)
The average activity
of a single neuron in
response to stimuli at
the six morph blends.
The vertical lines cor-
respond (from left to
right) to sample onset,
offset, and test stimu-
lus onset. The inset
shows the neuron’s
delay activity in re-
sponse to stimuli
along each of the nine
between-class morph
lines (see Fig. 1). The
prototypes (C1, C2,
C3, D1, D2, and D3)
are represented in the
outermost columns;
each appears in three
morph lines. A color
scale indicates the ac-
tivity level.
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in activity during the sample and/or the
delay interval to cats versus dogs. Similar
numbers of neurons preferred cats (sample

interval, 35/65; delay interval, 21/44) and
dogs (sample, 30/65; delay, 23/44).

Figure 3B shows an example of a single

neuron that exhibited greater activity in re-
sponse to dogs than to cats and responded
similarly to samples from the same category,
regardless of their degree of dogness or catness.
Its activity was different in response to stimuli
near the category boundary, the cat-like dogs
(60:40 dog:cat) versus the dog-like cats (60:40
cat:dog) (22), but there was no difference in
activity elicited by these stimuli and by their
respective prototypes (the 100% cats or dogs)
(23). The inset in Fig. 3B shows the neuron’s
activity in response to each of the 54 samples. It
exhibited overall greater activity in response to
dogs than to cats, but there were small differ-
ences within categories. Just a few stimuli elic-
ited activity that was similar to that from the
other category. These stimuli were not consis-
tent across different neurons, however. Across
the population of neurons, category activity ap-
peared at the start of neural responses to the
sample, about 100 ms after sample onset (24).

We examined all stimulus-selective neurons,
irrespective of whether they were category-se-
lective per se (25). For each neuron, we com-
puted the difference in activity between pairs of
samples at different positions along each be-
tween-category morph line (Fig. 1A). In Fig. 4,
A and B, each neuron’s average difference in
response to pairs of samples from the same
category (within-category difference, WCD) is
plotted against its difference in response to sam-
ples from different categories (between-catego-
ry difference, BCD). If neurons were not sensi-

Fig. 2. Task design and behavior. (A) A sample was followed by a delay and
a test stimulus. If the sample and test stimulus were the same category (a
match), monkeys were required to release a lever before the test disap-
peared. If they were not, there was another delay followed by a match. Equal numbers of match and
nonmatch trials were randomly interleaved. (B) Average performance of both monkeys. Red and blue
bars indicate percentages of samples classified as “dog” and “cat,” respectively.

Fig. 3. Recording loca-
tions and single neu-
ron example. (A) Re-
cording locations in
both monkeys. A, an-
terior; P, posterior; D,
dorsal; V, ventral.
There was no obvious
topography to task-
related neurons. (B)
The average activity
of a single neuron in
response to stimuli at
the six morph blends.
The vertical lines cor-
respond (from left to
right) to sample onset,
offset, and test stimu-
lus onset. The inset
shows the neuron’s
delay activity in re-
sponse to stimuli
along each of the nine
between-class morph
lines (see Fig. 1). The
prototypes (C1, C2,
C3, D1, D2, and D3)
are represented in the
outermost columns;
each appears in three
morph lines. A color
scale indicates the ac-
tivity level.
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Matching object representations 
in man and monkey Kriegeskorte et al ’08

performed a fixation task in a rapid event-related fMRI experi-
ment. Each stimulus was presented once in each run in random
order and repeated across runs within a given session. The
amplitudes of the overlapping single-image responses were esti-
mated by fitting a linear model. The task required discrimination
of fixation-cross color changes occurring during image presen-
tation. We measured brain activity with high-resolution blood-
oxygen-level-dependent fMRI (3-Tesla, voxels: 1.95 3 1.95 3
2 mm3, SENSE acquisition; Prüssmann, 2004; Kriegeskorte
and Bandettini, 2007; Bodurka et al., 2007) within a 5 cm thick
slab including all of inferior temporal and early visual cortex
bilaterally. Voxels within an anatomically defined IT-cortex
mask were selected according to their visual responsiveness
to the images in an independent set of experimental runs.

Representational Dissimilarity Matrices: The Same
Categorical Structure May Be Inherent to IT in Both
Species
What stimulus distinctions are emphasized by IT in each
species? Figure 1 shows the RDMs for monkey and human IT.
Each cell of a given RDM compares the response patterns
elicited by two stimuli. The dissimilarity between two response
patterns is measured by correlation distance, i.e., 1! r (Pearson
correlation), where the correlation is computed across the
population of neurons or voxels (Haxby et al., 2001; Kiani et al.,

2007). An RDM is symmetric about a diagonal of zeros here,
because we use a single set of response-pattern estimates.

The RDMs allow us to compare the representations between
the species, although there may not be a precise correspon-
dency of the representational features between monkey IT and
human IT and although we used radically different measurement
modalities (single-cell recordings and fMRI) in the two species.
Our approach of representational similarity analysis requires
comparisons only between response patterns within the same
individual animal, obviating the need for a monkey-to-human
correspondency mapping within IT.

Several important results (to be quantified in subsequent anal-
yses) are apparent by visual inspection of the RDMs (Figure 1).
First, there is a striking match between the RDMs of monkey
and human IT. Two stimuli tend to be dissimilar in the human-
IT representation to the extent that they are dissimilar in the
monkey-IT representation, and vice versa. This is unexpected
because the behaviorally relevant stimulus distinctions might
be very different between the species. Moreover, single-cell
recording and fMRI sample brain activity in fundamentally
different ways, and it is not well understood to what extent
they similarly reflect distributed representations. Second, the
dissimilarity tends to be large when one of the depicted objects
is animate and the other inanimate and smaller when the objects
are either both animate or both inanimate. Third, dissimilarities

Figure 1. Representational Dissimilarity Matrices for Monkey and Human IT
For each pair of stimuli, each RDM (monkey, human) color codes the dissimilarity of the two response patterns elicited by the stimuli in IT. The dissimilarity

measure is 1 ! r (Pearson correlation across space). The color code reflects percentiles (see color bar) computed separately for each RDM (for 1 ! r values

and their histograms, see Figure 3A). The two RDMs are the product of completely separate experiments and analysis pipelines (data not selected to match).

Human data are from 316 bilateral inferior temporal voxels (1.95 3 1.95 3 2 mm3) with the greatest visual-object response in an independent data set. For control

analyses using different definitions of the IT region of interest (size, laterality, exclusion of category-sensitive regions), see Figures S9–S11. RDMs were averaged

across two sessions for each of four subjects. Monkey data are from 674 IT single cells isolated in two monkeys (left IT in one monkey, right in the other; Kiani et al.,

2007).

Neuron

Matching Object Representations in Man and Monkey

1128 Neuron 60, 1126–1141, December 26, 2008 ª2008 Elsevier Inc.
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Summary
source: Felleman & VanEssen ’90

Hierarchies are ubiquitous:
Anatomy, function & latencies

36

Ve
nt

ra
l v

is
ua

l s
tre

am



Ventral visual stream

Summary Two modes of processing: 
Bottom-up vs. recurrent
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Deep learning in the 
visual cortex

I.  Fundamentals of primate vision

II. Computational mechanisms of rapid 
recognition and feedforward processing

III. Beyond feedforward processing: 
Attentional mechanisms and cortical 
feedback

Thomas Serre
Brown University
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Vision is complex but the solution might be simple...

Cavanagh ’95
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What we think 
we see

What we really 
see


