
Noah D. Goodman
Stanford University

ngoodman@
stanford.edu

Languages for probability

IPAM graduate summer school
July 6, 2011

mailto:ndg@mit.edu
mailto:ndg@mit.edu
mailto:ndg@mit.edu
mailto:ndg@mit.edu


Motivation

How should we represent knowledge?

That is useful for drawing conclusions.

In an uncertain world.
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Logic
• Fix a set of atomic propositions (variables).

• A truth-table describes possible worlds.

cough sneeze flu TB Possible?

t t t t y

t t f f n

... ... ... ... ...

f f f f y



Logic
• Do inference by crossing out rows.

• What is true in
remaining worlds?

• Problems:

• Size of truth table
is exponential.

• Inference becomes
impractical.
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Logic
• Do inference by crossing out rows.

• What is true in
remaining worlds?

• Problems:

• Size of truth table
is exponential.

• Inference becomes
impractical.

cough flu TB Possible?

t t t y

t t f y

t f t y

t f f n

f t t n

f t f n

f f t n

f f f y

If cough=t, flu=f, TB? TB=t.



Propositional logic
• Solution: use a formal language to 

describe possible worlds more compactly.

• Operators defined by conditional truth 
tables:

• Describe possible worlds by composing 
operators.

A B (A or B)

t t t

t f t

f t t

f f f



Example

cough flu TB Possible?

t t t y

t t f y

t f t y

t f f y

f t t n

f t f n

f f t n

f f f y

=      (cough if (flu or TB)



Propositional logic

• Propositional language:

• Key idea: compositionality of CTTs.

• Representation is (sometimes) compact.

• New inference methods (proof rules). 

• More intuitive specification.

• Mental representation?
(See: G. Boole, 1854, “The laws of thought”.)



Languages for logic

• Purposes of a language:

• Makes writing down knowledge easier.

• Makes reasoning about knowledge clearer.

• Supports efficient inference.

• Gives ideas about mental representation.



Higher logics
• Propositional logic is not compositional 

enough: 

• must fix the set of variables in advance, 

• misses much compactness.

• Key idea: compositionality can still work 
if not all the pieces are truth functions 
by themselves.

• Boolean operators: from truth to truth.

• Predicates: from objects to truth.

• Higher-order functions...



Predicate logic
• First order logic:

• Predicates are functions from objects to 
truth values.

• Quantifiers assign object variables to objects. 

• FoL can compress much more...

• Each predicate+objects could be an atomic 
proposition.

• FoL rules apply to many such combinations.

• Rules of chess: 1 page in FoL, 1000 in 
propositional (according to Stuart Russell).

∀x∃y(R(x, y) ∧ S(x))



Functional logic

• By allowing functions of higher type 
(such as functions on functions) we can 
compress yet more.

• λ-calculus: only function creation and 
application, but it is computationally 
universal!

• More later....



Probability
• Instead of possibility of worlds represent 

degree of belief in each world -- a 
distribution.

• A number on each possible world

• Sum over all worlds is 1.

cough sneeze flu TB Prob

t t t t 0.1

t t f f 0.02

... ... ... ...

f f f f 0.3
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Computing conditionals
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t t f f 0.02
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Computing conditionals
cough sneeze flu TB Prob

t t t t 0.1

t t f f 0.02

... ... ... ...

f f f f 0.3

P (A = a|B = b) =
P (A = a,B = b)

P (B = b)

P (B = b) =
�

a�

P (A = a�, B = b)

P(flu | cough)=?
Cross out rows where                 
          and renormalize.B �= b



Probability
• Probability is (arguably) the right way to 

reason under uncertainty.

• Many appealing effects: non-monotonic 
reasoning, occam’s razor, learning-to-
learn, etc.

• Problems? Same as for logic: the table 
grows exponentially in the number of 
variables.

• Compositional languages for probability?



Languages for probability

• Purposes of a language:

• Makes writing down models easier.

• Makes reasoning about models clearer.

• Supports efficient inference.

• Gives ideas about mental representation.

means of XYZ 
thing?



Distributions
• We begin with a fixed set of random 

variables,             .

• We want to represent a joint 
distribution                 more compactly 
and intuitively than a table of       
numbers.

x1, ..., xn

P (x1, ..., xn)

cough sneeze flu TB Prob

t t t t 0.1

t t f f 0.02

... ... ... ...

f f f f 0.3

2n − 1



Factoring
• Recall: 

• Thus we can factor the joint distribution 
into a product of conditional distributions: 

• This is different but not more compact.

P (A|B) =
P (A,B)

P (B)

P (x1, ..., xn) = P (x1)P (x2|x1)...P (xn|x1, ..., xn−1)

TB = t

0.1 TB flu cough sneeze = t

t t t 0.8

t t f 0.8

... ... ...

f f f 0.2

TB flu = t

t 0.2

f 0.2

TB flu cough = t

t t 0.9

t f 0.8

f t 0.75

f f 0.1



Independence
• Variable     is independent of     if

                       (i.e. same for all values 
of    ).

• If the distribution has independence (and 
we choose the right order for the conditionals) 
we can get away with fewer numbers...

x2 x1

P (x2|x1) = P (x2)

x1

TB = t

0.1

flu = t

0.2

TB flu cough = t

t t 0.9

t f 0.8

f t 0.75

f f 0.1

flu sneeze = t

t 0.8

f 0.2



Bayes nets

• A way to specify a distribution: give the 
(in)dependence structure, then the 
conditional probability tables (CPTs).

• A Bayes net or directed graphical model:

• A set of variables V.

• A directed acyclic graph on V.

• A CPT for each variable in V given it’s parents in 
the graph.

See Pearl, 1988
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Example

TB = t

0.1

flu sneeze = t

t 0.8

f 0.2

flu = t

0.2

TB flu cough = t

t t 0.9

t f 0.8

f t 0.75

f f 0.1

TB flu
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Example

TB = t

0.1

flu sneeze = t

t 0.8

f 0.2

flu = t

0.2

TB flu cough = t

t t 0.9

t f 0.8

f t 0.75

f f 0.1

TB flu

cough sneeze

Note: names and graph are redundant 
(arrows as “binding”).



Aside

• A Bayes net is a representation for a 
distribution.

• Bayesian statistics describes rules for 
inference given a model.

• Bayes rule is a useful pattern common when 
doing inference from observation to 
hypothesized causes.



Computing conditionals
• Using the independence structure 

can simplify computing conditionals. x3 x4

x1 x2

P (x2, x3, x4|x1=1) =
P (x2, x3, x4, x1=1)

P (x1=1)

P (x1=1) =
�

x2,x3,x4

P (x2, x3, x4, x1=1)

=
�

x2,x3,x4

P (x3)P (x4)P (x1=1|x3, x4)P (x2|x4)

=
�

x2,x3,x4

P (x3)P (x4)P (x1=1|x3, x4)

=
�

x3

P (x3)
�

x4

P (x4)P (x1=1|x3, x4)



Computing conditionals
• Using the independence structure 

can simplify computing conditionals. x3 x4

x1 x2

P (x2, x3, x4|x1=1) =
P (x2, x3, x4, x1=1)

P (x1=1)

P (x1=1) =
�

x2,x3,x4

P (x2, x3, x4, x1=1)

=
�

x2,x3,x4

P (x3)P (x4)P (x1=1|x3, x4)P (x2|x4)

=
�

x2,x3,x4

P (x3)P (x4)P (x1=1|x3, x4)

=
�

x3

P (x3)
�

x4

P (x4)P (x1=1|x3, x4)

sum over 8 values



Computing conditionals
• Using the independence structure 

can simplify computing conditionals. x3 x4

x1 x2

P (x2, x3, x4|x1=1) =
P (x2, x3, x4, x1=1)

P (x1=1)

P (x1=1) =
�

x2,x3,x4

P (x2, x3, x4, x1=1)

=
�

x2,x3,x4

P (x3)P (x4)P (x1=1|x3, x4)P (x2|x4)

=
�

x2,x3,x4

P (x3)P (x4)P (x1=1|x3, x4)

=
�

x3

P (x3)
�

x4

P (x4)P (x1=1|x3, x4)

sum over 8 values

sum over 4 values



Computing conditionals
• Using the independence structure 

can simplify computing conditionals. x3 x4

x1 x2

P (x2, x3, x4|x1=1) =
P (x2, x3, x4, x1=1)

P (x1=1)

P (x1=1) =
�

x2,x3,x4

P (x2, x3, x4, x1=1)

=
�

x2,x3,x4

P (x3)P (x4)P (x1=1|x3, x4)P (x2|x4)

=
�

x2,x3,x4

P (x3)P (x4)P (x1=1|x3, x4)

=
�

x3

P (x3)
�

x4

P (x4)P (x1=1|x3, x4)

sum over 8 values

sum over 4 values

sum over 2 then 2 values



Computing conditionals
• Using the independence structure 

can simplify computing conditionals.

• Sum/product variable 
elimination algorithm.

• Dynamic programming. (Stuhlmueller)

• Message passing.

• Variational. (Salakhutdinov)

• Monte Carlo. (Murray)

x3 x4

x1 x2

bigger examples = 
bigger gains



• Nothing changes when using variables 
with many values... 

• except CPTs become harder (or impossible) 
to write!

• Statistician’s notation is often used 
instead:                   , which means   is a 
sample from the distribution             .              

Non-boolean variables

x ∼ D(Pa(x)) x

D(Pa(x))



Example

flu = t

0.2

temp.

weight

flu

diet diet ∼ Gauss(10.0, 1.0)

weight ∼ Gauss(diet, 10.0)

temp ∼ Gauss(δflu,weight)

Gauss(µ, ν) ∝ e−
(x−µ)2

2ν



Non-boolean variables

• In                  , the   is a stochastic 
function mapping parent assignments to 
distributions.

• A graphical model describes a composition 
of stochastic functions. 

• (But what language are the functions in?)

x ∼ D(Pa(x)) D



Causality

• Directed graphical models also capture a 
key intuition: probabilistic models 
describe causal processes.

• The sequence of choices that must be made 
to construct a world.

• This is not the flow of time, but of 
dependence (a partial order).

• Important for expressing knowledge of how 
the world works.



Two kinds of dependence
• Causal dependence: A must be sampled 

in order to sample B. 
(Cf. causality via intervention. Pearl, 2000.)

• Causal dependence can be read immediately 
from directed graphical model.

• Statistical dependence: learning 
something about A provides information 
about B.

• Statistical dependence can be reasoned 
about from the graphical model.



Conditional dependence
• Graphical model structure simplifies 

reasoning about models -- “where does 
information flow?”.
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f f 0.1

TB flu

cough sneeze

• TB and flu are marginally (and causally) independent.

• TB and flu conditionally dependent given cough.
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Example: explaining away
TB = t

0.1

flu sneeze = t

t 0.8

f 0.2

flu = t

0.2

TB flu cough = t

t t 0.9

t f 0.8

f t 0.75

f f 0.1

TB flu

cough sneezecough
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P (TB) = 0.1

P (TB|cough) = 0.293

• TB and flu are marginally (and causally) independent.

• TB and flu conditionally dependent given cough.

P (TB|flu) = 0.1



Example: explaining away
TB = t

0.1

flu sneeze = t

t 0.8

f 0.2

flu = t

0.2

TB flu cough = t

t t 0.9

t f 0.8

f t 0.75

f f 0.1

TB flu

cough sneezecough

flu

P (TB) = 0.1

P (TB|cough) = 0.293

P (TB|cough, flu) = 0.128

• TB and flu are marginally (and causally) independent.

• TB and flu conditionally dependent given cough.

P (TB|flu) = 0.1



Directed graphical models

• Compact representation for 
distributions.

• Captures causal process intuition.

• Supports efficient inference.

• Eases reasoning about models.

For more on graphical models see, e.g., 
Koller & Friedman (2009).



Undirected models
• There is often another way to factor a 

distribution: write it as an un-normalized 
product of factor functions.

• Factor graph: variable nodes separated 
by factor nodes, each factor node has a 
factor function.

• Convenient for expressing 
non-causal constraints.
“Bob goes iff Alice does.”

x1

x2

f1

x3

x4
f2

P (x1, x2, x3, x4) ∝ f1(x1, x2)f2(x2, x3, x4)



• A pairwise connected factor graph with 
simple factors:

Ising model

x1

x2

f

x3

x4

f

f

f

f(x, y) = exp(cδx=y)



Languages for probability

• Purposes of a language:

• Makes writing down models easier.

• Makes reasoning about models clearer.

• Supports efficient inference.

• Gives ideas about mental representation.



Toward finer languages

• Bayes nets are probabilistic propositional 
logic... isn’t that enough? 

• No:

• Fixed set of variables. 

• Structure within variables?

• Structure in the factors (CPTs, stochastic fns)?

• Abstraction: there is no way in the language to 
make a new stochastic fn.



Objects

• Bob having TB doesn’t 
mean Alice does.

• Plates: make a copy of 
what’s inside the square 
for every element 
of the set.

• A simple form of 
universal quantifier.

• What if you don’t know 
the set ahead of time?

TBx=B

coughx=B coughx=A

TBx=A ...

...

TB

cough

TBx

coughx
people x



Dynamic BNs

• TB now causes 
coughing later.

• In a DBN two time steps are 
understood to stand for all time.

• Much like a plate, but not.

• Why can’t we have common notation?

TBt=1

cought=1 cought=2

TBt=2...

...

...

...

TB

cough



PCFG

• A grammar generates structures of 
unbounded size and complexity. 
(More on this later.)

• What does the graphical model look 
like???



Context-specific indep.

• When A=t, 
D is independent 
of B and C.

• This independence
is hidden in the 
factor (CPT).

• Must the functions we
compose be black boxes?

A B C D = t

t t t 0.8

t t f 0.8

t f t 0.8

t f f 0.8

f t t 0.5

f t f 0.7

f f t 0.2

f f f 0.1

See Boutilier, Friedman, Goldszmidt, Koller (1996).



Infinite domains
• When the domain of variables is infinite, 

CPTs aren’t an option.

• We are building a 
language for describing 
distributions...

• Can’t we use it to 
describe the stochastic 
functions we need 
compositionally?

Heider and Simmel, 1944

Intuitive psychology

Beliefs (B) Desires (D)

Actions (A)

Pr(A|B,D)



Break



Languages for probability

• Purposes of a language:

• Makes writing down models easier.

• Makes reasoning about models clearer.

• Supports efficient inference.

• Gives ideas about mental representation.
“graphical models” is more 
than just graphs...
pictures, math, and words... 
into the same language?



Higher-order probability
• How can we create a language for 

probabilities more fine-grained than 
Bayes nets?

• Undirected methods: weights on predicate 
logic clauses. (See Domingos saturday!)

• Directed methods: exploit the control flow 
of a higher-order logic -- a programming  
language. (Programs are causal instructions.)

• Imperative: familiar, but logical basis, and causality 
obscure.

• Functional: initially hard, but brings many powerful 
representation ideas.



λ calculus
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λ calculus
• Notation:

• Function have parentheses on the wrong side:

• Operators always go at the beginning:

(sin x)

(+ x y)

(define double
  (λ (x) (+ x x))) (double 3) 

(define repeat 
  (λ (f) (λ (x) (f (f x)))))

((repeat double) 3)

=> 6

=> 12

(define 2nd-derivative (repeat derivative))

• λ makes functions, define binds values to symbols:



λ calculus
• More formally, the set of Lambda 

expressions L is defined by:

• Each variable symbol x∈L.

• If x is a variable and M∈L, then (λ (x) M)∈L.
• If M,N∈L, then (M N)∈L.

• Evaluation is defined by the reductions:

• α-conversion: change the name of a bound variable.
• β-reduction: ((λ (x) M) N) becomes Mx:=N.

• η-conversion: ((λ (x) M) x) is M.

• We assume applicative order: arguments are always 
reduced before functions.



ψλ-calculus
• How can we use these ideas to describe 

probabilities?

•ψλ-calculus: a stochastic variant.

• We introduce a random primitive flip, such 
that (flip) reduces to a random sample t/f.

• The usual evaluation rules now result in 
sampled values. This induces distributions.

• This calculus, plus primitive operators and 
data types, gives the probabilistic 
programming language Church.



Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:

Goodman, Mansinghka, Roy, 
Bonawitz, Tenenabum (2008)
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Church

(define a (flip 0.3))
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Theorem:  Any computable distribution can 
be represented by a Church expression. 
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• Compositionality is more straightforward 
with the sampling semantics than the 
distribution semantics.
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Church
• How can we define query?

• First de-sugar into a query thunk:

• Now define as a recursive function -- 
rejection sampling. 

• Just like “crossing out 
rows”...

• Can also define directly 
as a conditional prob.

(query 
  ..defines.. 
  ..question..
  ..condition..)    

(query 
  (λ ()
   ..defines.. 
   (list ..question..
         ..condition..)))    

(define (query proc)
 ((λ (qv)
   (if (second qv)
       (first qv)
       (query proc))
  (proc)))



Inference

• Rejection is slow, 

• But there are other options,

• See later lectures.



Inference

• Rejection is slow, 

• But there are other options,

• See later lectures.

a haiku



Inference
• Universal inference: an algorithm that 

does inference for any Church query. 
(And hopefully is efficient for a wide class.)

• As a modeler, save implementation time: 
rapid prototyping.

• For cognitive science, shows that the mind 
could be a universal inference engine.

• Rejection is universal but slooow. But there 
are other options. See lectures by: 
Stuhlmueller, Milch, Domingos, me.
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 (define flu (flip 0.2))
 (define TB  (flip 0.01))
 (define cough 
  (if (or flu TB) 
      (flip 0.8) (flip 0.1)))
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cough
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 given observed cough.”
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(query
 (define flu (flip 0.2))
 (define TB  (flip 0.01))
 (define cough 
  (if (or flu TB) 
      (flip 0.8) (flip 0.1)))
 flu
 cough)

Example: BN
Flu
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“Infer the chance of flu, 
 given observed cough.”

=> true 66% 



(query
 (define flu (flip 0.2))
 (define TB  (flip 0.01))
 (define cough 
  (if (or flu TB) 
      (flip 0.8) (flip 0.1)))
 flu
 (and cough TB))

Example: BN
Flu

cough

TB
“Infer the chance of flu, 
 given observed cough.”

=> true 66% 



(query
 (define flu (flip 0.2))
 (define TB  (flip 0.01))
 (define cough 
  (if (or flu TB) 
      (flip 0.8) (flip 0.1)))
 flu
 (and cough TB))

Example: BN
Flu

cough

TB
“Infer the chance of flu, 
 given observed cough.”

=> true 20%



• To apply to different objects, variables become 
functions in their own right.

• Dependence happens by function calls.

• The object symbols need not be specified in 
the model.

• Cf. plates...

Example: objects

(define flu (λ (x) (flip 0.2)))
(define TB (λ (x) (flip 0.01)))
(define cough 
 (λ (x)
 (if (or (flu x) (TB x)) 
     (flip 0.8) (flip 0.1))))

(cough ‘bob)



• But if we ask whether bob is coughing twice 
(in the same “world”) we get different answers.

• Solution: mem, transforms a procedure into 
one that is sampled only the first time it is 
evaluated.

Example: objects

(define flu (mem (λ (x) (flip 0.2))))
(define TB (mem (λ (x) (flip 0.01))))
(define cough 
 (mem (λ (x)
      (if (or (flu x) (TB x)) 
          (flip 0.8) (flip 0.1))))

(cough ‘bob)

(and (cough ‘bob) (cough ‘bob)) => true 26%



Aside
• Church is defined with a random 

evaluation semantics: unless specifically 
memoized functions are sampled each 
time.

• This makes anonymous randomness easy and 
long range dependence more explicit.

• We could have chosen to make all 
procedures memoized by default. This is 
called random world semantics.

• Some definitions and reasoning are easier 
with r.w.s. (See BLOG.)
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(define lazy (lambda (person) (flip 0.1)))
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                             (strength person)))
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(define lazy (lambda (person) (flip 0.1)))
(define (pulling person) (if (lazy person)
                             (/ (strength person) 2)
                             (strength person)))
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Complex reasoning

(define strength (mem (lambda (person) (gaussian 10 3))))
(define lazy (lambda (person) (flip 0.1)))
(define (pulling person) (if (lazy person)
                             (/ (strength person) 2)
                             (strength person)))
(define (total-pulling team) (sum (map pulling team)))
(define (winner team1 team2)
 (if (> (total-pulling team1) (total-pulling team2)) 
     team1 
     team2))

strength

laziness

pulling

team

winner

(magnitude)

Gerstenberg and Goodman (in prep)



Complex reasoning

(query 
 (define strength (mem (lambda (person) (gaussian 10 3))))
 (define (lazy person) (flip 0.1))
 (define (pulling person) (if (lazy person)
                              (/ (strength person) 2) 

                  (strength person)))
 (define (total-pulling team) (sum (map pulling team)))
 (define (winner team1 team2)
  (if (> (total-pulling team1) (total-pulling team2)) 
      team1 
      team2))
 (strength ‘bob)
 (and (equal? ‘(bob mary) (winner ‘(bob mary) ‘(tom sue)))
      (equal? ‘(bob bev) (winner ‘(bob bev) ‘(jane jim)))))  
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Complex reasoning

• 20 conditions: 8 
single player 
tournaments, 12 
doubles. (Within 
subjects design.)

• 30 participants. 
(Via MTurk.)



Complex reasoning

• 20 conditions: 8 
single player 
tournaments, 12 
doubles. (Within 
subjects design.)

• 30 participants. 
(Via MTurk.)



Complex reasoning

Correlation of individual 
participant’s judgements 
to model predictions:



Complex reasoning

(query 
 (define strength (mem (lambda (person) (gaussian 1 0.2))))
 (define (lazy person) (flip 0.3))
 (define (pulling person) (if (lazy person)
                              (/ (strength person) 2) 

                   (strength person)))
 (define (total-pulling team) (sum (map pulling team)))
 (define (winner team1 team2)
  (if (> (total-pulling team1) (total-pulling team2)) 
      team1 
      team2))
 (strength bob)
 (equal? ‘(bob mary) (winner ‘(bob mary) ‘(tom sue)))))



Complex reasoning

(query 
 (define strength (mem (lambda (person) (gaussian 1 0.2))))
 (define (lazy person) (flip 0.3))
 (define (pulling person) (if (lazy person)
                              (/ (strength person) 2) 

                   (strength person)))
 (define (total-pulling team) (sum (map pulling team)))
 (define (winner team1 team2)
  (if (> (total-pulling team1) (total-pulling team2)) 
      team1 
      team2))
 (strength bob)
 (and (equal? ‘(bob mary) (winner ‘(bob mary) ‘(tom sue)))
      (> (strength tom) (strength bob)))))  



Complex reasoning

(query 
 (define strength (mem (lambda (person) (gaussian 1 0.2))))
 (define (lazy person) (flip 0.3))
 (define (pulling person) (if (lazy person)
                              (/ (strength person) 2) 

                   (strength person)))
 (define (total-pulling team) (sum (map pulling team)))
 (define (winner team1 team2)
  (if (> (total-pulling team1) (total-pulling team2)) 
      team1 
      team2))
 (or (lazy bob) (> (strength mary) (strength sue)))
 (and (equal? ‘(bob mary) (winner ‘(bob mary) ‘(tom sue)))
      (> (strength tom) (strength bob)))))  
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Alice believes jumping causes luck. 
Alice wants to be lucky at the game.
 

Alice will jump before the game.
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• Stochastic functions compose 
productively and support graded 
probabilistic inference.

Alice believes jumping causes luck. 
Alice wants to be lucky at the game.
 

Alice will jump before the game.

John said “some of the plants sprouted.” 
These plants almost always sprout.
John could not see all of the plants.
 

All of the plants sprouted.



Complex reasoning

• A small set of concepts leads to a huge set 
of potential inferences....

• Stochastic functions compose 
productively and support graded 
probabilistic inference.

Alice believes jumping causes luck. 
Alice wants to be lucky at the game.
 

Alice will jump before the game.

John said “some of the plants sprouted.” 
These plants almost always sprout.
John could not see all of the plants.
 

All of the plants sprouted.
See my lecture next Thursday.



Abstraction

• Vision as inverse graphics.

• The render function is a large 
deterministic function, but comes “for 
free” because it is a program.

• Of course, inference is hard. 
(Wingate, Stuhmueller, Siskind, and Goodman; under review)

(query
 (define face (sample-triangulation))
 (define image (render face))
 face
 (equal? observed (noisy image))) Credit: D. Wingate
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• Vision as inverse graphics.

• The render function is a large 
deterministic function, but comes “for 
free” because it is a program.

• Of course, inference is hard. 
(Wingate, Stuhmueller, Siskind, and Goodman; under review)

(query
 (define face (sample-triangulation))
 (define image (render face))
 face
 (equal? observed (noisy image))) Credit: D. Wingate



Abstraction
• We can define new stochastic functions 

using λ, and use them within the model 
(they are “first class”).

(define my-logic 
  (if (flip)

 (λ (x y) (or x y (flip 0.2)))
 (λ (x y) (and x y (flip 0.1)))))

(define A (flip))
(define B (flip))
(define C (my-logic A B))
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using λ, and use them within the model 
(they are “first class”).

(query
 (define my-logic 
   (if (flip)

  (λ (x y) (or x y (flip 0.2)))
  (λ (x y) (and x y (flip 0.1)))))

 (define A (flip))
 (define B (flip))
 (define C (my-logic A B))
 my-logic
 (and A (not C))



Abstraction
• We can define new stochastic functions 

using λ, and use them within the model 
(they are “first class”).

(query
 (define my-logic 
   (if (flip)

  (λ (x y) (or x y (flip 0.2)))
  (λ (x y) (and x y (flip 0.1)))))

 (define A (flip))
 (define B (flip))
 (define C (my-logic A B))
 my-logic
 (and A (not C))

Rule learning by inference.
See my lecture next Friday.



Example: decision making

Rational action as inference:

(define (decide state causal-model goal?)
 (query
   (define action (action-prior))
   action
   (goal?
     (causal-model state action))))))

Goodman, et al 2009; Baker, et al 2009.
See:  Lecture next thursday.

Heider and Simmel, 1944

Intuitive psychology

Beliefs (B) Desires (D)

Actions (A)

Pr(A|B,D)



Stochastic recursion
• Stochastic recursion is a powerful way 

to generate worlds of unknown size.

(define (geom) 
 (if (flip)
     0
     (+ 1 (geom))))
(repeat 1000 geom)

=> 



Example: PCFG
• In language there is no “longest 

sentence”... But sentences are highly 
structured.

• PCFG: use stochastic recursion to 
structure an unbound generation.

(define (S) 
 (if (flip 0.3)
     (list (S) (S))
     (T)))
(define (T)
 (if (flip 0.6)
     ‘math
     ‘mind))
(repeat 10 S)

=> ((math mind)
    (math mind)
    math
    mind
    (math (mind math))   
    math
    ...)



Graphical models redux

• A control flow analysis of a probabilistic 
program is a graph representing the 
dependence (for evaluation) of one 
expression on another.

• This can never capture all 
independencies for all programs.

• E.g. recursive calls may be merged into a 
single node (with a loop).



Conclusion 1
• Creating languages for 

probability distributions:

• Makes writing down 
models easier 
(taming the Bayesian 
zoo).

• Makes reasoning 
about models clearer.

• Supports efficient 
inference.

• Gives ideas about mental representation.

Deterministic Stochastic

Tabular Truth tables
Probability 

tables

Compose 
truth functions

Propositional 
logic

Bayes nets
(factor graphs)

Compose 
predicates and 

objects

First-order 
logic

Markov logic

Compose 
arbitrary 
functions

λ-calculus
(LISP)

ψλ-calc
(Church)



Conclusion 11

• The probabilistic language of 
thought hypothesis: mental 
representations can be thought of as 
expressions in ψλ-calculus.

• See my remaining lectures!

• Also see tutorial at:
http://projects.csail.mit.edu/church/

wrap up with ipam 
context --
gonna see more 
“standard” graphical 
models for the next few 
days.

it’s good to know they 
can be unified... and 
we’ll mention it some in 
Q&A.

http://projects.csail.mit.edu/church/wiki/Church
http://projects.csail.mit.edu/church/wiki/Church

