
Noah D. Goodman
Stanford University

ngoodman@
stanford.edu

Languages for probability

IPAM graduate summer school
July 6, 2011

mailto:ndg@mit.edu
mailto:ndg@mit.edu
mailto:ndg@mit.edu
mailto:ndg@mit.edu

Motivation

How should we represent knowledge?

That is useful for drawing conclusions.

In an uncertain world.

Motivation

That is useful for drawing conclusions.

In an uncertain world.

Motivation

In an uncertain world.

Motivation

Logic
• Fix a set of atomic propositions (variables).

• A truth-table describes possible worlds.

cough sneeze flu TB Possible?

t t t t y

t t f f n

...

f f f f y

Logic
• Do inference by crossing out rows.

• What is true in
remaining worlds?

• Problems:

• Size of truth table
is exponential.

• Inference becomes
impractical.

cough flu TB Possible?

t t t y

t t f y

t f t y

t f f n

f t t n

f t f n

f f t n

f f f y

Logic
• Do inference by crossing out rows.

• What is true in
remaining worlds?

• Problems:

• Size of truth table
is exponential.

• Inference becomes
impractical.

cough flu TB Possible?

t t t y

t t f y

t f t y

t f f n

f t t n

f t f n

f f t n

f f f y

If cough=t, flu=f, TB?

Logic
• Do inference by crossing out rows.

• What is true in
remaining worlds?

• Problems:

• Size of truth table
is exponential.

• Inference becomes
impractical.

cough flu TB Possible?

t t t y

t t f y

t f t y

t f f n

f t t n

f t f n

f f t n

f f f y

If cough=t, flu=f, TB?

Logic
• Do inference by crossing out rows.

• What is true in
remaining worlds?

• Problems:

• Size of truth table
is exponential.

• Inference becomes
impractical.

cough flu TB Possible?

t t t y

t t f y

t f t y

t f f n

f t t n

f t f n

f f t n

f f f y

If cough=t, flu=f, TB?

Logic
• Do inference by crossing out rows.

• What is true in
remaining worlds?

• Problems:

• Size of truth table
is exponential.

• Inference becomes
impractical.

cough flu TB Possible?

t t t y

t t f y

t f t y

t f f n

f t t n

f t f n

f f t n

f f f y

If cough=t, flu=f, TB?

Logic
• Do inference by crossing out rows.

• What is true in
remaining worlds?

• Problems:

• Size of truth table
is exponential.

• Inference becomes
impractical.

cough flu TB Possible?

t t t y

t t f y

t f t y

t f f n

f t t n

f t f n

f f t n

f f f y

If cough=t, flu=f, TB? TB=t.

Propositional logic
• Solution: use a formal language to

describe possible worlds more compactly.

• Operators defined by conditional truth
tables:

• Describe possible worlds by composing
operators.

A B (A or B)

t t t

t f t

f t t

f f f

Example

cough flu TB Possible?

t t t y

t t f y

t f t y

t f f y

f t t n

f t f n

f f t n

f f f y

= (cough if (flu or TB)

Propositional logic

• Propositional language:

• Key idea: compositionality of CTTs.

• Representation is (sometimes) compact.

• New inference methods (proof rules).

• More intuitive specification.

• Mental representation?
(See: G. Boole, 1854, “The laws of thought”.)

Languages for logic

• Purposes of a language:

• Makes writing down knowledge easier.

• Makes reasoning about knowledge clearer.

• Supports efficient inference.

• Gives ideas about mental representation.

Higher logics
• Propositional logic is not compositional

enough:

• must fix the set of variables in advance,

• misses much compactness.

• Key idea: compositionality can still work
if not all the pieces are truth functions
by themselves.

• Boolean operators: from truth to truth.

• Predicates: from objects to truth.

• Higher-order functions...

Predicate logic
• First order logic:

• Predicates are functions from objects to
truth values.

• Quantifiers assign object variables to objects.

• FoL can compress much more...

• Each predicate+objects could be an atomic
proposition.

• FoL rules apply to many such combinations.

• Rules of chess: 1 page in FoL, 1000 in
propositional (according to Stuart Russell).

∀x∃y(R(x, y) ∧ S(x))

Functional logic

• By allowing functions of higher type
(such as functions on functions) we can
compress yet more.

• λ-calculus: only function creation and
application, but it is computationally
universal!

• More later....

Probability
• Instead of possibility of worlds represent

degree of belief in each world -- a
distribution.

• A number on each possible world

• Sum over all worlds is 1.

cough sneeze flu TB Prob

t t t t 0.1

t t f f 0.02

...

f f f f 0.3

Computing conditionals
cough sneeze flu TB Prob

t t t t 0.1

t t f f 0.02

...

f f f f 0.3

Computing conditionals
cough sneeze flu TB Prob

t t t t 0.1

t t f f 0.02

...

f f f f 0.3

P(flu | cough)=?

Computing conditionals
cough sneeze flu TB Prob

t t t t 0.1

t t f f 0.02

...

f f f f 0.3

P(flu | cough)=?
Cross out rows where
 and renormalize.B �= b

Computing conditionals
cough sneeze flu TB Prob

t t t t 0.1

t t f f 0.02

...

f f f f 0.3

P (A = a|B = b) =
P (A = a,B = b)

P (B = b)

P(flu | cough)=?
Cross out rows where
 and renormalize.B �= b

Computing conditionals
cough sneeze flu TB Prob

t t t t 0.1

t t f f 0.02

...

f f f f 0.3

P (A = a|B = b) =
P (A = a,B = b)

P (B = b)

P (B = b) =
�

a�

P (A = a�, B = b)

P(flu | cough)=?
Cross out rows where
 and renormalize.B �= b

Probability
• Probability is (arguably) the right way to

reason under uncertainty.

• Many appealing effects: non-monotonic
reasoning, occam’s razor, learning-to-
learn, etc.

• Problems? Same as for logic: the table
grows exponentially in the number of
variables.

• Compositional languages for probability?

Languages for probability

• Purposes of a language:

• Makes writing down models easier.

• Makes reasoning about models clearer.

• Supports efficient inference.

• Gives ideas about mental representation.

means of XYZ
thing?

Distributions
• We begin with a fixed set of random

variables, .

• We want to represent a joint
distribution more compactly
and intuitively than a table of
numbers.

x1, ..., xn

P (x1, ..., xn)

cough sneeze flu TB Prob

t t t t 0.1

t t f f 0.02

...

f f f f 0.3

2n − 1

Factoring
• Recall:

• Thus we can factor the joint distribution
into a product of conditional distributions:

• This is different but not more compact.

P (A|B) =
P (A,B)

P (B)

P (x1, ..., xn) = P (x1)P (x2|x1)...P (xn|x1, ..., xn−1)

TB = t

0.1 TB flu cough sneeze = t

t t t 0.8

t t f 0.8

...

f f f 0.2

TB flu = t

t 0.2

f 0.2

TB flu cough = t

t t 0.9

t f 0.8

f t 0.75

f f 0.1

Independence
• Variable is independent of if

 (i.e. same for all values
of).

• If the distribution has independence (and
we choose the right order for the conditionals)
we can get away with fewer numbers...

x2 x1

P (x2|x1) = P (x2)

x1

TB = t

0.1

flu = t

0.2

TB flu cough = t

t t 0.9

t f 0.8

f t 0.75

f f 0.1

flu sneeze = t

t 0.8

f 0.2

Bayes nets

• A way to specify a distribution: give the
(in)dependence structure, then the
conditional probability tables (CPTs).

• A Bayes net or directed graphical model:

• A set of variables V.

• A directed acyclic graph on V.

• A CPT for each variable in V given it’s parents in
the graph.

See Pearl, 1988

Example

TB flu

cough sneeze

Example

TB flu

cough sneeze

Example

TB = t

0.1

flu sneeze = t

t 0.8

f 0.2

flu = t

0.2

TB flu cough = t

t t 0.9

t f 0.8

f t 0.75

f f 0.1

TB flu

cough sneeze

Example

TB = t

0.1

flu sneeze = t

t 0.8

f 0.2

flu = t

0.2

TB flu cough = t

t t 0.9

t f 0.8

f t 0.75

f f 0.1

TB flu

cough sneeze

Note: names and graph are redundant
(arrows as “binding”).

Aside

• A Bayes net is a representation for a
distribution.

• Bayesian statistics describes rules for
inference given a model.

• Bayes rule is a useful pattern common when
doing inference from observation to
hypothesized causes.

Computing conditionals
• Using the independence structure

can simplify computing conditionals. x3 x4

x1 x2

P (x2, x3, x4|x1=1) =
P (x2, x3, x4, x1=1)

P (x1=1)

P (x1=1) =
�

x2,x3,x4

P (x2, x3, x4, x1=1)

=
�

x2,x3,x4

P (x3)P (x4)P (x1=1|x3, x4)P (x2|x4)

=
�

x2,x3,x4

P (x3)P (x4)P (x1=1|x3, x4)

=
�

x3

P (x3)
�

x4

P (x4)P (x1=1|x3, x4)

Computing conditionals
• Using the independence structure

can simplify computing conditionals. x3 x4

x1 x2

P (x2, x3, x4|x1=1) =
P (x2, x3, x4, x1=1)

P (x1=1)

P (x1=1) =
�

x2,x3,x4

P (x2, x3, x4, x1=1)

=
�

x2,x3,x4

P (x3)P (x4)P (x1=1|x3, x4)P (x2|x4)

=
�

x2,x3,x4

P (x3)P (x4)P (x1=1|x3, x4)

=
�

x3

P (x3)
�

x4

P (x4)P (x1=1|x3, x4)

sum over 8 values

Computing conditionals
• Using the independence structure

can simplify computing conditionals. x3 x4

x1 x2

P (x2, x3, x4|x1=1) =
P (x2, x3, x4, x1=1)

P (x1=1)

P (x1=1) =
�

x2,x3,x4

P (x2, x3, x4, x1=1)

=
�

x2,x3,x4

P (x3)P (x4)P (x1=1|x3, x4)P (x2|x4)

=
�

x2,x3,x4

P (x3)P (x4)P (x1=1|x3, x4)

=
�

x3

P (x3)
�

x4

P (x4)P (x1=1|x3, x4)

sum over 8 values

sum over 4 values

Computing conditionals
• Using the independence structure

can simplify computing conditionals. x3 x4

x1 x2

P (x2, x3, x4|x1=1) =
P (x2, x3, x4, x1=1)

P (x1=1)

P (x1=1) =
�

x2,x3,x4

P (x2, x3, x4, x1=1)

=
�

x2,x3,x4

P (x3)P (x4)P (x1=1|x3, x4)P (x2|x4)

=
�

x2,x3,x4

P (x3)P (x4)P (x1=1|x3, x4)

=
�

x3

P (x3)
�

x4

P (x4)P (x1=1|x3, x4)

sum over 8 values

sum over 4 values

sum over 2 then 2 values

Computing conditionals
• Using the independence structure

can simplify computing conditionals.

• Sum/product variable
elimination algorithm.

• Dynamic programming. (Stuhlmueller)

• Message passing.

• Variational. (Salakhutdinov)

• Monte Carlo. (Murray)

x3 x4

x1 x2

bigger examples =
bigger gains

• Nothing changes when using variables
with many values...

• except CPTs become harder (or impossible)
to write!

• Statistician’s notation is often used
instead: , which means is a
sample from the distribution .

Non-boolean variables

x ∼ D(Pa(x)) x

D(Pa(x))

Example

flu = t

0.2

temp.

weight

flu

diet diet ∼ Gauss(10.0, 1.0)

weight ∼ Gauss(diet, 10.0)

temp ∼ Gauss(δflu,weight)

Gauss(µ, ν) ∝ e−
(x−µ)2

2ν

Non-boolean variables

• In , the is a stochastic
function mapping parent assignments to
distributions.

• A graphical model describes a composition
of stochastic functions.

• (But what language are the functions in?)

x ∼ D(Pa(x)) D

Causality

• Directed graphical models also capture a
key intuition: probabilistic models
describe causal processes.

• The sequence of choices that must be made
to construct a world.

• This is not the flow of time, but of
dependence (a partial order).

• Important for expressing knowledge of how
the world works.

Two kinds of dependence
• Causal dependence: A must be sampled

in order to sample B.
(Cf. causality via intervention. Pearl, 2000.)

• Causal dependence can be read immediately
from directed graphical model.

• Statistical dependence: learning
something about A provides information
about B.

• Statistical dependence can be reasoned
about from the graphical model.

Conditional dependence
• Graphical model structure simplifies

reasoning about models -- “where does
information flow?”.

Example: explaining away
TB = t

0.1

flu sneeze = t

t 0.8

f 0.2

flu = t

0.2

TB flu cough = t

t t 0.9

t f 0.8

f t 0.75

f f 0.1

TB flu

cough sneeze

• TB and flu are marginally (and causally) independent.

• TB and flu conditionally dependent given cough.

Example: explaining away
TB = t

0.1

flu sneeze = t

t 0.8

f 0.2

flu = t

0.2

TB flu cough = t

t t 0.9

t f 0.8

f t 0.75

f f 0.1

TB flu

cough sneeze

P (TB) = 0.1

• TB and flu are marginally (and causally) independent.

• TB and flu conditionally dependent given cough.

Example: explaining away
TB = t

0.1

flu sneeze = t

t 0.8

f 0.2

flu = t

0.2

TB flu cough = t

t t 0.9

t f 0.8

f t 0.75

f f 0.1

TB flu

cough sneeze

P (TB) = 0.1

• TB and flu are marginally (and causally) independent.

• TB and flu conditionally dependent given cough.

flu

Example: explaining away
TB = t

0.1

flu sneeze = t

t 0.8

f 0.2

flu = t

0.2

TB flu cough = t

t t 0.9

t f 0.8

f t 0.75

f f 0.1

TB flu

cough sneeze

P (TB) = 0.1

• TB and flu are marginally (and causally) independent.

• TB and flu conditionally dependent given cough.

P (TB|flu) = 0.1

flu

Example: explaining away
TB = t

0.1

flu sneeze = t

t 0.8

f 0.2

flu = t

0.2

TB flu cough = t

t t 0.9

t f 0.8

f t 0.75

f f 0.1

TB flu

cough sneezecough

P (TB) = 0.1

• TB and flu are marginally (and causally) independent.

• TB and flu conditionally dependent given cough.

P (TB|flu) = 0.1

Example: explaining away
TB = t

0.1

flu sneeze = t

t 0.8

f 0.2

flu = t

0.2

TB flu cough = t

t t 0.9

t f 0.8

f t 0.75

f f 0.1

TB flu

cough sneezecough

P (TB) = 0.1

P (TB|cough) = 0.293

• TB and flu are marginally (and causally) independent.

• TB and flu conditionally dependent given cough.

P (TB|flu) = 0.1

Example: explaining away
TB = t

0.1

flu sneeze = t

t 0.8

f 0.2

flu = t

0.2

TB flu cough = t

t t 0.9

t f 0.8

f t 0.75

f f 0.1

TB flu

cough sneezecough

flu

P (TB) = 0.1

P (TB|cough) = 0.293

• TB and flu are marginally (and causally) independent.

• TB and flu conditionally dependent given cough.

P (TB|flu) = 0.1

Example: explaining away
TB = t

0.1

flu sneeze = t

t 0.8

f 0.2

flu = t

0.2

TB flu cough = t

t t 0.9

t f 0.8

f t 0.75

f f 0.1

TB flu

cough sneezecough

flu

P (TB) = 0.1

P (TB|cough) = 0.293

P (TB|cough, flu) = 0.128

• TB and flu are marginally (and causally) independent.

• TB and flu conditionally dependent given cough.

P (TB|flu) = 0.1

Directed graphical models

• Compact representation for
distributions.

• Captures causal process intuition.

• Supports efficient inference.

• Eases reasoning about models.

For more on graphical models see, e.g.,
Koller & Friedman (2009).

Undirected models
• There is often another way to factor a

distribution: write it as an un-normalized
product of factor functions.

• Factor graph: variable nodes separated
by factor nodes, each factor node has a
factor function.

• Convenient for expressing
non-causal constraints.
“Bob goes iff Alice does.”

x1

x2

f1

x3

x4
f2

P (x1, x2, x3, x4) ∝ f1(x1, x2)f2(x2, x3, x4)

• A pairwise connected factor graph with
simple factors:

Ising model

x1

x2

f

x3

x4

f

f

f

f(x, y) = exp(cδx=y)

Languages for probability

• Purposes of a language:

• Makes writing down models easier.

• Makes reasoning about models clearer.

• Supports efficient inference.

• Gives ideas about mental representation.

Toward finer languages

• Bayes nets are probabilistic propositional
logic... isn’t that enough?

• No:

• Fixed set of variables.

• Structure within variables?

• Structure in the factors (CPTs, stochastic fns)?

• Abstraction: there is no way in the language to
make a new stochastic fn.

Objects

• Bob having TB doesn’t
mean Alice does.

• Plates: make a copy of
what’s inside the square
for every element
of the set.

• A simple form of
universal quantifier.

• What if you don’t know
the set ahead of time?

TBx=B

coughx=B coughx=A

TBx=A ...

...

TB

cough

TBx

coughx
people x

Dynamic BNs

• TB now causes
coughing later.

• In a DBN two time steps are
understood to stand for all time.

• Much like a plate, but not.

• Why can’t we have common notation?

TBt=1

cought=1 cought=2

TBt=2...

...

...

...

TB

cough

PCFG

• A grammar generates structures of
unbounded size and complexity.
(More on this later.)

• What does the graphical model look
like???

Context-specific indep.

• When A=t,
D is independent
of B and C.

• This independence
is hidden in the
factor (CPT).

• Must the functions we
compose be black boxes?

A B C D = t

t t t 0.8

t t f 0.8

t f t 0.8

t f f 0.8

f t t 0.5

f t f 0.7

f f t 0.2

f f f 0.1

See Boutilier, Friedman, Goldszmidt, Koller (1996).

Infinite domains
• When the domain of variables is infinite,

CPTs aren’t an option.

• We are building a
language for describing
distributions...

• Can’t we use it to
describe the stochastic
functions we need
compositionally?

Heider and Simmel, 1944

Intuitive psychology

Beliefs (B) Desires (D)

Actions (A)

Pr(A|B,D)

Break

Languages for probability

• Purposes of a language:

• Makes writing down models easier.

• Makes reasoning about models clearer.

• Supports efficient inference.

• Gives ideas about mental representation.
“graphical models” is more
than just graphs...
pictures, math, and words...
into the same language?

Higher-order probability
• How can we create a language for

probabilities more fine-grained than
Bayes nets?

• Undirected methods: weights on predicate
logic clauses. (See Domingos saturday!)

• Directed methods: exploit the control flow
of a higher-order logic -- a programming
language. (Programs are causal instructions.)

• Imperative: familiar, but logical basis, and causality
obscure.

• Functional: initially hard, but brings many powerful
representation ideas.

λ calculus

λ calculus
• Notation:

• Function have parentheses on the wrong side:

• Operators always go at the beginning:

(sin x)

(+ x y)

λ calculus
• Notation:

• Function have parentheses on the wrong side:

• Operators always go at the beginning:

(sin x)

(+ x y)

(define double
 (λ (x) (+ x x)))

• λ makes functions, define binds values to symbols:

λ calculus
• Notation:

• Function have parentheses on the wrong side:

• Operators always go at the beginning:

(sin x)

(+ x y)

(define double
 (λ (x) (+ x x))) (double 3) => 6

• λ makes functions, define binds values to symbols:

λ calculus
• Notation:

• Function have parentheses on the wrong side:

• Operators always go at the beginning:

(sin x)

(+ x y)

(define double
 (λ (x) (+ x x))) (double 3)

(define repeat
 (λ (f) (λ (x) (f (f x)))))

=> 6

• λ makes functions, define binds values to symbols:

λ calculus
• Notation:

• Function have parentheses on the wrong side:

• Operators always go at the beginning:

(sin x)

(+ x y)

(define double
 (λ (x) (+ x x))) (double 3)

(define repeat
 (λ (f) (λ (x) (f (f x)))))

((repeat double) 3)

=> 6

=> 12

• λ makes functions, define binds values to symbols:

λ calculus
• Notation:

• Function have parentheses on the wrong side:

• Operators always go at the beginning:

(sin x)

(+ x y)

(define double
 (λ (x) (+ x x))) (double 3)

(define repeat
 (λ (f) (λ (x) (f (f x)))))

((repeat double) 3)

=> 6

=> 12

(define 2nd-derivative (repeat derivative))

• λ makes functions, define binds values to symbols:

λ calculus
• More formally, the set of Lambda

expressions L is defined by:

• Each variable symbol x∈L.

• If x is a variable and M∈L, then (λ (x) M)∈L.
• If M,N∈L, then (M N)∈L.

• Evaluation is defined by the reductions:

• α-conversion: change the name of a bound variable.
• β-reduction: ((λ (x) M) N) becomes Mx:=N.

• η-conversion: ((λ (x) M) x) is M.

• We assume applicative order: arguments are always
reduced before functions.

ψλ-calculus
• How can we use these ideas to describe

probabilities?

•ψλ-calculus: a stochastic variant.

• We introduce a random primitive flip, such
that (flip) reduces to a random sample t/f.

• The usual evaluation rules now result in
sampled values. This induces distributions.

• This calculus, plus primitive operators and
data types, gives the probabilistic
programming language Church.

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1
=> 0

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1
=> 0
=> 1

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1
=> 0
=> 1
=> 2

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1
=> 0
=> 1
=> 2

0
0
0
0

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1
=> 0
=> 1
=> 2

0
0
0
0

0
0
1
1

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1
=> 0
=> 1
=> 2

0
0
0
0

0
0
1
1..

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1
=> 0
=> 1
=> 2

0
0
0
0

0
0
1
1

0 1 2 3

pr
ob

ab
ili

ty
 /

fr
eq

ue
nc

y

..

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1
=> 0
=> 1
=> 2

0
0
0
0

0
0
1
1

0 1 2 3

pr
ob

ab
ili

ty
 /

fr
eq

ue
nc

y

..

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Theorem: Any computable distribution can
be represented by a Church expression.

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1
=> 0
=> 1
=> 2

0
0
0
0

0
0
1
1

0 1 2 3

pr
ob

ab
ili

ty
 /

fr
eq

ue
nc

y

..

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

• Compositionality is more straightforward
with the sampling semantics than the
distribution semantics.

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1
=> 0
=> 1
=> 2

0
0
0
0

0
0
1
1

0 1 2 3

pr
ob

ab
ili

ty
 /

fr
eq

ue
nc

y

..

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

(query
 (define a (flip 0.3))
 (define b (flip 0.3))
 (define c (flip 0.3))
 (+ a b c)
 (= (+ a b) 1))

Random primitives:

Conditioning (inference):

=> 1
=> 0
=> 1
=> 2

0
0
0
0

0
0
1
1

0 1 2 3

pr
ob

ab
ili

ty
 /

fr
eq

ue
nc

y

..

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

(query
 (define a (flip 0.3))
 (define b (flip 0.3))
 (define c (flip 0.3))
 (+ a b c)
 (= (+ a b) 1))

Random primitives:

Conditioning (inference):

=> 1
=> 0
=> 1
=> 2

0
0
0
0

0
0
1
1

0 1 2 3

pr
ob

ab
ili

ty
 /

fr
eq

ue
nc

y

..

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Query

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

(query
 (define a (flip 0.3))
 (define b (flip 0.3))
 (define c (flip 0.3))
 (+ a b c)
 (= (+ a b) 1))

Random primitives:

Conditioning (inference):

=> 1
=> 0
=> 1
=> 2

0
0
0
0

0
0
1
1

0 1 2 3

pr
ob

ab
ili

ty
 /

fr
eq

ue
nc

y

..

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Query
Condition,

must be true

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

(query
 (define a (flip 0.3))
 (define b (flip 0.3))
 (define c (flip 0.3))
 (+ a b c)
 (= (+ a b) 1))

=>

Random primitives:

Conditioning (inference):

=> 1
=> 0
=> 1
=> 2

0
0
0
0

0
0
1
1

0 1 2 3

pr
ob

ab
ili

ty
 /

fr
eq

ue
nc

y

..

0 1 2 3
pr

ob
ab

ili
ty

 /
fr

eq
ue

nc
y

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Query
Condition,

must be true

Church
• How can we define query?

• First de-sugar into a query thunk:

• Now define as a recursive function --
rejection sampling.

• Just like “crossing out
rows”...

• Can also define directly
as a conditional prob.

(query
 ..defines..
 ..question..
 ..condition..)

(query
 (λ ()
 ..defines..
 (list ..question..
 ..condition..)))

(define (query proc)
 ((λ (qv)
 (if (second qv)
 (first qv)
 (query proc))
 (proc)))

Inference

• Rejection is slow,

• But there are other options,

• See later lectures.

Inference

• Rejection is slow,

• But there are other options,

• See later lectures.

a haiku

Inference
• Universal inference: an algorithm that

does inference for any Church query.
(And hopefully is efficient for a wide class.)

• As a modeler, save implementation time:
rapid prototyping.

• For cognitive science, shows that the mind
could be a universal inference engine.

• Rejection is universal but slooow. But there
are other options. See lectures by:
Stuhlmueller, Milch, Domingos, me.

Example: BN
Flu

cough

TB

Example: BN

 (define flu (flip 0.2))
 (define TB (flip 0.01))
 (define cough
 (if (or flu TB)
 (flip 0.8) (flip 0.1)))

Flu

cough

TB

Example: BN

 (define flu (flip 0.2))
 (define TB (flip 0.01))
 (define cough
 (if (or flu TB)
 (flip 0.8) (flip 0.1)))

Flu

cough

TB
“Infer the chance of flu,
 given observed cough.”

(query
 (define flu (flip 0.2))
 (define TB (flip 0.01))
 (define cough
 (if (or flu TB)
 (flip 0.8) (flip 0.1)))
 flu
 cough)

Example: BN
Flu

cough

TB
“Infer the chance of flu,
 given observed cough.”

(query
 (define flu (flip 0.2))
 (define TB (flip 0.01))
 (define cough
 (if (or flu TB)
 (flip 0.8) (flip 0.1)))
 flu
 cough)

Example: BN
Flu

cough

TB
“Infer the chance of flu,
 given observed cough.”

=> true 66%

(query
 (define flu (flip 0.2))
 (define TB (flip 0.01))
 (define cough
 (if (or flu TB)
 (flip 0.8) (flip 0.1)))
 flu
 (and cough TB))

Example: BN
Flu

cough

TB
“Infer the chance of flu,
 given observed cough.”

=> true 66%

(query
 (define flu (flip 0.2))
 (define TB (flip 0.01))
 (define cough
 (if (or flu TB)
 (flip 0.8) (flip 0.1)))
 flu
 (and cough TB))

Example: BN
Flu

cough

TB
“Infer the chance of flu,
 given observed cough.”

=> true 20%

• To apply to different objects, variables become
functions in their own right.

• Dependence happens by function calls.

• The object symbols need not be specified in
the model.

• Cf. plates...

Example: objects

(define flu (λ (x) (flip 0.2)))
(define TB (λ (x) (flip 0.01)))
(define cough
 (λ (x)
 (if (or (flu x) (TB x))
 (flip 0.8) (flip 0.1))))

(cough ‘bob)

• But if we ask whether bob is coughing twice
(in the same “world”) we get different answers.

• Solution: mem, transforms a procedure into
one that is sampled only the first time it is
evaluated.

Example: objects

(define flu (mem (λ (x) (flip 0.2))))
(define TB (mem (λ (x) (flip 0.01))))
(define cough
 (mem (λ (x)
 (if (or (flu x) (TB x))
 (flip 0.8) (flip 0.1))))

(cough ‘bob)

(and (cough ‘bob) (cough ‘bob)) => true 26%

Aside
• Church is defined with a random

evaluation semantics: unless specifically
memoized functions are sampled each
time.

• This makes anonymous randomness easy and
long range dependence more explicit.

• We could have chosen to make all
procedures memoized by default. This is
called random world semantics.

• Some definitions and reasoning are easier
with r.w.s. (See BLOG.)

Complex reasoning

Gerstenberg and Goodman (in prep)

Complex reasoning
strength

Gerstenberg and Goodman (in prep)

Complex reasoning
strength (magnitude)

Gerstenberg and Goodman (in prep)

Complex reasoning
strength

laziness

(magnitude)

Gerstenberg and Goodman (in prep)

Complex reasoning
strength

laziness

pulling

(magnitude)

Gerstenberg and Goodman (in prep)

Complex reasoning
strength

laziness

pulling

team

(magnitude)

Gerstenberg and Goodman (in prep)

Complex reasoning
strength

laziness

pulling

team

winner

(magnitude)

Gerstenberg and Goodman (in prep)

Complex reasoning

(define strength (mem (lambda (person) (gaussian 10 3))))

strength

laziness

pulling

team

winner

(magnitude)

Gerstenberg and Goodman (in prep)

Complex reasoning

(define strength (mem (lambda (person) (gaussian 10 3))))
(define lazy (lambda (person) (flip 0.1)))

strength

laziness

pulling

team

winner

(magnitude)

Gerstenberg and Goodman (in prep)

Complex reasoning

(define strength (mem (lambda (person) (gaussian 10 3))))
(define lazy (lambda (person) (flip 0.1)))
(define (pulling person) (if (lazy person)
 (/ (strength person) 2)
 (strength person)))

strength

laziness

pulling

team

winner

(magnitude)

Gerstenberg and Goodman (in prep)

Complex reasoning

(define strength (mem (lambda (person) (gaussian 10 3))))
(define lazy (lambda (person) (flip 0.1)))
(define (pulling person) (if (lazy person)
 (/ (strength person) 2)
 (strength person)))
(define (total-pulling team) (sum (map pulling team)))

strength

laziness

pulling

team

winner

(magnitude)

Gerstenberg and Goodman (in prep)

Complex reasoning

(define strength (mem (lambda (person) (gaussian 10 3))))
(define lazy (lambda (person) (flip 0.1)))
(define (pulling person) (if (lazy person)
 (/ (strength person) 2)
 (strength person)))
(define (total-pulling team) (sum (map pulling team)))
(define (winner team1 team2)
 (if (> (total-pulling team1) (total-pulling team2))
 team1
 team2))

strength

laziness

pulling

team

winner

(magnitude)

Gerstenberg and Goodman (in prep)

Complex reasoning

(query
 (define strength (mem (lambda (person) (gaussian 10 3))))
 (define (lazy person) (flip 0.1))
 (define (pulling person) (if (lazy person)
 (/ (strength person) 2)

 (strength person)))
 (define (total-pulling team) (sum (map pulling team)))
 (define (winner team1 team2)
 (if (> (total-pulling team1) (total-pulling team2))
 team1
 team2))
 (strength ‘bob)
 (and (equal? ‘(bob mary) (winner ‘(bob mary) ‘(tom sue)))
 (equal? ‘(bob bev) (winner ‘(bob bev) ‘(jane jim)))))

Complex reasoning

Complex reasoning

Complex reasoning

Complex reasoning

• 20 conditions: 8
single player
tournaments, 12
doubles. (Within
subjects design.)

• 30 participants.
(Via MTurk.)

Complex reasoning

• 20 conditions: 8
single player
tournaments, 12
doubles. (Within
subjects design.)

• 30 participants.
(Via MTurk.)

Complex reasoning

Correlation of individual
participant’s judgements
to model predictions:

Complex reasoning

(query
 (define strength (mem (lambda (person) (gaussian 1 0.2))))
 (define (lazy person) (flip 0.3))
 (define (pulling person) (if (lazy person)
 (/ (strength person) 2)

 (strength person)))
 (define (total-pulling team) (sum (map pulling team)))
 (define (winner team1 team2)
 (if (> (total-pulling team1) (total-pulling team2))
 team1
 team2))
 (strength bob)
 (equal? ‘(bob mary) (winner ‘(bob mary) ‘(tom sue)))))

Complex reasoning

(query
 (define strength (mem (lambda (person) (gaussian 1 0.2))))
 (define (lazy person) (flip 0.3))
 (define (pulling person) (if (lazy person)
 (/ (strength person) 2)

 (strength person)))
 (define (total-pulling team) (sum (map pulling team)))
 (define (winner team1 team2)
 (if (> (total-pulling team1) (total-pulling team2))
 team1
 team2))
 (strength bob)
 (and (equal? ‘(bob mary) (winner ‘(bob mary) ‘(tom sue)))
 (> (strength tom) (strength bob)))))

Complex reasoning

(query
 (define strength (mem (lambda (person) (gaussian 1 0.2))))
 (define (lazy person) (flip 0.3))
 (define (pulling person) (if (lazy person)
 (/ (strength person) 2)

 (strength person)))
 (define (total-pulling team) (sum (map pulling team)))
 (define (winner team1 team2)
 (if (> (total-pulling team1) (total-pulling team2))
 team1
 team2))
 (or (lazy bob) (> (strength mary) (strength sue)))
 (and (equal? ‘(bob mary) (winner ‘(bob mary) ‘(tom sue)))
 (> (strength tom) (strength bob)))))

Complex reasoning

Complex reasoning

• A small set of concepts leads to a huge set
of potential inferences....

Complex reasoning

• A small set of concepts leads to a huge set
of potential inferences....

• Stochastic functions compose
productively and support graded
probabilistic inference.

Complex reasoning

• A small set of concepts leads to a huge set
of potential inferences....

• Stochastic functions compose
productively and support graded
probabilistic inference.

Alice believes jumping causes luck.
Alice wants to be lucky at the game.

Alice will jump before the game.

Complex reasoning

• A small set of concepts leads to a huge set
of potential inferences....

• Stochastic functions compose
productively and support graded
probabilistic inference.

Alice believes jumping causes luck.
Alice wants to be lucky at the game.

Alice will jump before the game.

John said “some of the plants sprouted.”
These plants almost always sprout.
John could not see all of the plants.

All of the plants sprouted.

Complex reasoning

• A small set of concepts leads to a huge set
of potential inferences....

• Stochastic functions compose
productively and support graded
probabilistic inference.

Alice believes jumping causes luck.
Alice wants to be lucky at the game.

Alice will jump before the game.

John said “some of the plants sprouted.”
These plants almost always sprout.
John could not see all of the plants.

All of the plants sprouted.
See my lecture next Thursday.

Abstraction

• Vision as inverse graphics.

• The render function is a large
deterministic function, but comes “for
free” because it is a program.

• Of course, inference is hard.
(Wingate, Stuhmueller, Siskind, and Goodman; under review)

(query
 (define face (sample-triangulation))
 (define image (render face))
 face
 (equal? observed (noisy image))) Credit: D. Wingate

Abstraction

• Vision as inverse graphics.

• The render function is a large
deterministic function, but comes “for
free” because it is a program.

• Of course, inference is hard.
(Wingate, Stuhmueller, Siskind, and Goodman; under review)

(query
 (define face (sample-triangulation))
 (define image (render face))
 face
 (equal? observed (noisy image))) Credit: D. Wingate

Abstraction
• We can define new stochastic functions

using λ, and use them within the model
(they are “first class”).

(define my-logic
 (if (flip)

 (λ (x y) (or x y (flip 0.2)))
 (λ (x y) (and x y (flip 0.1)))))

(define A (flip))
(define B (flip))
(define C (my-logic A B))

Abstraction
• We can define new stochastic functions

using λ, and use them within the model
(they are “first class”).

(query
 (define my-logic
 (if (flip)

 (λ (x y) (or x y (flip 0.2)))
 (λ (x y) (and x y (flip 0.1)))))

 (define A (flip))
 (define B (flip))
 (define C (my-logic A B))
 my-logic
 (and A (not C))

Abstraction
• We can define new stochastic functions

using λ, and use them within the model
(they are “first class”).

(query
 (define my-logic
 (if (flip)

 (λ (x y) (or x y (flip 0.2)))
 (λ (x y) (and x y (flip 0.1)))))

 (define A (flip))
 (define B (flip))
 (define C (my-logic A B))
 my-logic
 (and A (not C))

Rule learning by inference.
See my lecture next Friday.

Example: decision making

Rational action as inference:

(define (decide state causal-model goal?)
 (query
 (define action (action-prior))
 action
 (goal?
 (causal-model state action))))))

Goodman, et al 2009; Baker, et al 2009.
See: Lecture next thursday.

Heider and Simmel, 1944

Intuitive psychology

Beliefs (B) Desires (D)

Actions (A)

Pr(A|B,D)

Stochastic recursion
• Stochastic recursion is a powerful way

to generate worlds of unknown size.

(define (geom)
 (if (flip)
 0
 (+ 1 (geom))))
(repeat 1000 geom)

=>

Example: PCFG
• In language there is no “longest

sentence”... But sentences are highly
structured.

• PCFG: use stochastic recursion to
structure an unbound generation.

(define (S)
 (if (flip 0.3)
 (list (S) (S))
 (T)))
(define (T)
 (if (flip 0.6)
 ‘math
 ‘mind))
(repeat 10 S)

=> ((math mind)
 (math mind)
 math
 mind
 (math (mind math))
 math
 ...)

Graphical models redux

• A control flow analysis of a probabilistic
program is a graph representing the
dependence (for evaluation) of one
expression on another.

• This can never capture all
independencies for all programs.

• E.g. recursive calls may be merged into a
single node (with a loop).

Conclusion 1
• Creating languages for

probability distributions:

• Makes writing down
models easier
(taming the Bayesian
zoo).

• Makes reasoning
about models clearer.

• Supports efficient
inference.

• Gives ideas about mental representation.

Deterministic Stochastic

Tabular Truth tables
Probability

tables

Compose
truth functions

Propositional
logic

Bayes nets
(factor graphs)

Compose
predicates and

objects

First-order
logic

Markov logic

Compose
arbitrary
functions

λ-calculus
(LISP)

ψλ-calc
(Church)

Conclusion 11

• The probabilistic language of
thought hypothesis: mental
representations can be thought of as
expressions in ψλ-calculus.

• See my remaining lectures!

• Also see tutorial at:
http://projects.csail.mit.edu/church/

wrap up with ipam
context --
gonna see more
“standard” graphical
models for the next few
days.

it’s good to know they
can be unified... and
we’ll mention it some in
Q&A.

http://projects.csail.mit.edu/church/wiki/Church
http://projects.csail.mit.edu/church/wiki/Church

