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Latent variable models

* Previous lecture: Bag-of-words and n-gram models.
« Useful for many purposes, but don’t capture the hidden
structure language seems to contain.
« This lecture: two common models that do include
hidden structure.
« Hidden Markov model (HMM): sequence model.

« Probabilistic context-free grammar (PCFG): tree-structured
model.



Hidden Markov models

* N-gram model: dependencies between observed
variables.
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- HMM: dependencies only between latent variables
representing different classes or categories.




Example uses for HMMs

* Modeling speech.
 Latent variables represent phonemes.
« Observed variables are real-valued acoustic data.

* Modeling syntax.
 Latent variables represent syntactic categories (parts of
speech).
» Observed variables are words.

» Less accurate model of syntax than PCFG, but often useful
in NLP when full parses aren’t needed.

« Open question: do human learners go through a stage where
they know some syntactic categories, but have no
hierarchical structure?




HMM for part-of-speech tagging

« (Generative model assigns a probability distribution
over sequences of POS tags and words.

P(t,w) = ﬁ P(t [t_)P(w; 1)
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Example

« Assume we know the parameters of the model.

Transitions, P(tjt):

A B #
A 04 {06 |0
B 0.6 |03 [0.1
# 05 |05 (0

Outputs, P(w;lt,):

P(tl0) = (:5)(:6)(:3)(-1)
P(wt,0) = (.7)(.:2)(.8)

a b
A 0.7 |0.3

0.2 (0.8 P(t,w|0) = P(t|0) P(w[t,0)

V)




What can we do now?

- Ambiguity resolution: what's the right POS sequence?

Pro N/V Det N/V
| saw the man

« P(t|w,8) o« P(w,t|8&), so compute P(t,w|d) for each
sequence and choose the best.
- Language modeling: what's the probability of the
sequence of words?
+ Compute P(w|68)=> P(t,w|0)
t




Parameter estimation

« Supervised learning: training data is annotated with
correct POS tags.

« Can use MLE + smoothing or Bayesian methods, similar to
learning n-gram model.

» Unsupervised learning: training data is words only.
« More similar to language acquisition in children.



MLE for HMMs

- Choose params 6 to maximize P(w|68) = > P(t,w|6).
t

« Can do this using Expectation-Maximization (EM):
* Initialize parameters at random.

« E-step: use current estimate of § to compute P(t|w, ) and
expected counts of hidden events, E[C(t;,t;)] and E[C(t;,w;)].
 non-trivial; uses the forward-backward (Baum-Welch) algorithm.
« M-step: use expected counts to update 4 to maximize P(w| 6).

* Iterate E and M: converges to local maximum of likelihood.

For more on HMMs and the forward-backward algorithm, see Manning and Schuetze (1999).




MLE doesn’t work

« True POS transition matrix is sparse, MLE

MLE:
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Can being Bayesian help?

 MLE estimates @ in order to
 Predict next words (language modeling): P(w,,,|6).
* Infer hidden structure (POS tagging): P(t|6,w).

 But actually, what we really want is
 Predict next words (language modeling): P(w,,,|w).
* Infer hidden structure (POS tagging): P(tjw).

- By Integrating out 4, we can compute just that.
P(W,., W) = | PMW,,, |)P(6|wW)do

P(t|w) = [ P(t|6,w)P(0|w)de
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Bayesian HMM

* Notation: assume T distinct tags and W distinct words;
split @ into two parts, (z, w).
o =o"..0'" :the output distributions for each tag

o =l ..o

r =797 :the transition distributions for each tag

) the output distribution from tag t

W =7z :the transition distribution from tag t

o™ : the output distribution of N tag

(N) _ () ()
@ o (a)cat’ a)dog’

= (.012,.004,.00001, ..

a)gi,)
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Bayesian HMM

- Bayesian HMM augments standard HMM with
symmetric Dirichlet priors:

t |t =t,z® ~Multinomial(z®)

w |t =t,0® ~ Multinomial(&®)
0 o ~ Dirichlet(«)

o | B ~ Dirichlet(5)
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Predictive distributions

 If we integrate out parameters, we get

Nt 1) T
I:)(tn+1 | t1 OC) =
Ny +Ta

n +
P(Wn+1 |tn+1’ t’ W, ﬂ) — L IB
N, \+W, S

(tn+1) n+1

« assuming T possible tags and W, possible words with tag t.

« We can use these distributions to find P(t|w) using
Markov Chain Monte Carlo, specifically Gibbs sampling.*

*We could instead use Variational Bayes, which is a generalization of EM and, like EM, uses
the forward-backward algorithm. See Johnson (2007).




Gibbs sampling

» Like EM, a general technique (algorithm family),
specific versions for specific models.

« A randomized algorithm.

« Guaranteed to converge.
 After convergence, each iteration produces a sample from
the posterior distribution of interest (here, P(tjw)).

P(tjw)

For more on Gibbs sampling and parameter integration as applied to NLP problems, see

Resnik and Hardisty (2009).
OTTTRORERERERE



Gibbs sampling

1. Initialize hidden variables (tags) at random:

2. On each iteration, sample a new value for each tag
from its distribution conditioned on the current
values of all other variables (both tags and words).

- Basically, pretend all the other tags are correct, treat them
as training data, and sample a new value for current tag.
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One Iteration

=

N

o

Sample from: Result:

P(t, | t,, t3, W, a, )

3

P(t; | t, t3, W, a, )

P(t; | ty, t, W, a, )



Computing conditional distributions

- By Bayes’ rule, we have

P(t, [, L5, Wy, W,, Wy, &, B)
oc P(w, |t 4,4, W,, Wy, a, B)P(L, |1, 5, W, W,, x, B)
= P(w, [4,5,t,w,, Wy, B)P(L, 1,15, @)

- Now pretend that t; and w; are the last tag/word in the sequence,
and use our formulas from earlier to compute the two factors*:

+ ) .
ﬁ P(tn+1 | t, a) = (T ths1)

P(W |t tW /8): n(tn+11Wn+1)
n+l 1 "n+17 =1 7T ﬁ n(tn)+-|-a

N,y +Wi

*We are only allowed to pretend this because the model is exchangeable: probabilities are the
same for any ordering of the variables, e.g. P(a,b,c) = P(a,c,b).




Bayesian HMM In practice

» Goldwater and Giriffiths (2007) compared BHMM+Gibbs
to standard HMM+MLE (= MLHMM).

« Two scenarios:

« Constrained: provide dictionary listing possible tags for each
word (e.g. ‘run’ is a noun or verb).

53.6% of words have multiple possible tags.
Average number of tags per word = 2.3.

« Unconstrained: any word can have any tag (17 possibilities).

« Train and test on unlabeled corpus (24k words of WSJ).
« Results evaluated against gold standard POS tags.
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Accuracy results (full dictionary)

MLHMM 74.7%
BHMM (a=1, 8= 1) 83.9%
BHMM (best: ¢ =.003, 5=1)  86.8%

State-otthe-__, CRF/CE 90.1%

art system

(Smith and

Eisner, 2005)

 Integrating over parameters is useful in itself, even
with uninformative priors (a = = 1).

- Better priors can help even more, though not quite to
state-of-the-art.
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Syntactic clustering

* No tag dictionary, any word can have any tag.

- Hyperparameters («, f) are inferred automatically
using Metropolis-Hastings sampler.

- Standard accuracy measure requires labeled
classes, so measure using best matching of classes.
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Clustering results

True Tags

BHMM: 63% acc.
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« MLHMM groups instances of the same lexical item together.

« BHMM clusters are more coherent, more variable in size. Errors
are often sensible (e.g. separating common nouns/proper nouns,

confusing determiners/adjectives, prepositions/participles).




Learned distributions

 BHMM transition matrix is sparse, MLHMM is not.
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HMM summary

« Seguence model with latent variables representing
classes, widely used in language (and elsewhere).

» Can be used for language modeling: P(w).

* Normally used for inferring hidden structure: P(tlw), in
POS tagging, speech recognition, etc.

« For unsupervised learning of latent variables,
Bayesian methods work better than MLE.

24



Probabilistic context-free grammars

 Tree-structured latent variable models.

« Capture recursive phrase structure of S
language. //////////A\\\\\\\\\\
S NP VP
NP VP Det N’ v
Det N V the N PP slept
the cat slept cat P NP
| /\
on Det N

the chair




Det

the

Det

the

chair

with

Det

three

|
legs
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Example PCFG

Rule Prob Rule Prob
S —>NPVP 1.0 V — saw 0.5
VP — V NP 0.6 V — slept 0.5
VP —->VPPP 04 N — saw 0.1
NP — Pro 0.3 N — man 0.3
NP —-DetN 0.5 N — glasses 0.6
NP —-> NP PP 0.2 Det — the 1.0
PP —- P NP 1.0 P — with 1.0
Pro — | 1.0

« PX—=Y)=zmeans P(RHSisY |LHS is X) = z.
- Parameters @ are the rule probabilites.
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Probabillity of a parse

- For parse tree t, P(t,w|68) = | | P(rule| 6)

ruleet

Rule Prob Rule Prob S
SSNPVP 1.0 V — saw 0.5 P
VP >VNP 06 V — slept 0.5 NP VP
VP - VPPP 0.4 N — saw 0.1 | N
Pro V NP
NP — Pro 0.3 N — man 0.3 | | P
NP — DetN 0.5 N — glasses 0.6 | saw Det N
NP - NPPP 0.2 Det — the 1.0 | |
the man

PP S>PNP 1.0 P — with 1.0

Pro — | 1.0

P(t,w|9) = (1.0)(0.3)(1.0)(0.6)(0.5)(0.5)(1.0)(0.3)



Language modeling

A string of words may have more than one parse, so

P(W|9):ZP(t,W|¢9)

VP VP
v NP VP PP
| /\
saw /\ /\
NP Pp Vv NP with NP
h/\ /\ saw the man the glasses
the — man it NP
/\




Disambiguation

« Can also compute which parse is more probable:
P(t|w,8) o P(t,w|8)

VP VP
v NP VP PP
| /\
saw /\ /\
NP S5p Vv NP with NP
; /\ saw the man the glasses
the man—ith NP
/\
the glasses

« Assumption: different parses indicate different meanings.




Local ambiguity

* Previous examples showed global ambiguity:

| saw the man with the glasses.
Look at the cat on the chair with three legs.

« Many psycholinguists are interested in how humans
resolve local ambiguity:

The chief ... [problem is...]
[said that...]

The player tossed the ball ... [to her teammate]
[by her teammate stumbled]

« More on this next week.
31




Learning a PCFG

 Like HMMs, PCFGs can be trained from annotated or
unannotated data.
* Methods are generalizations of HMM training procedures.

 MLE again uses EM (inside-outside algorithm), again not
very effective.

« Bayesian training uses sampling, but more involved than
HMM Gibbs sampler. (probably more on this next week).

For more on PCFGs and the inside-outside algorithm, see Manning and Schuetze (1999). For
more on Bayesian PCFGs and PCFG sampling methods, see Johnson et al. (2007).



Issues with PCFGs

» Standard categories don’t encode enough information.

VP -V V — slept The glrl Slept
VP — VNP V — chased The girl slept the dog
VP —- VNP PP V — put The girl slept the book on the table

- Consider using subcategories, e.g., V,r, V1, V|p. But
how many/which subcategories to choose?
« Nonparametric Bayesian models can help with this problem.*

. . 33
*See Liang et al. (2007), Finkel et al. (2007).



Issues with PCFGs

* N-gram models are lexicalized, capturing some
semantic information. PCFGs aren’t — should they be?

The girl walked the dog [??I The girl read the dog
The girl read the book [??I The girl walked the book

* For years, grammars used in NLP have included
partially lexicalized rules.

« More complex lexicalized models have more sparse data and
more complex smoothing methods.

« Nonparametric Bayesian models can help with this too!*

34
*See Cohn et al. (2010).




PCFG summary

 Tree-structured model with latent variables
representing phrase types.

« Like HMM, can be used for language modeling but
normally used for inferring hidden structure.

 In NLP: part of the pipeline for tasks like translation, question
answering, many others.

 In Cog Sci: basis of many human sentence processing
models.

* Recent work using Bayesian methods (esp.

nonparametric) extends PCFGs in interesting and
useful ways.
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