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Latent variable models 

• Previous lecture: Bag-of-words and n-gram models. 

• Useful for many purposes, but don’t capture the hidden 

structure language seems to contain. 

• This lecture: two common models that do include 

hidden structure. 

• Hidden Markov model (HMM): sequence model. 

• Probabilistic context-free grammar (PCFG): tree-structured 

model. 
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Hidden Markov models 

• N-gram model: dependencies between observed 

variables. 

 

 

 

• HMM: dependencies only between latent variables 

representing different classes or categories. 
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Example uses for HMMs 

• Modeling speech. 

• Latent variables represent phonemes. 

• Observed variables are real-valued acoustic data. 

• Modeling syntax. 

• Latent variables represent syntactic categories (parts of 

speech). 

• Observed variables are words. 

• Less accurate model of syntax than PCFG, but often useful 

in NLP when full parses aren’t needed. 

• Open question: do human learners go through a stage where 

they know some syntactic categories, but have no 

hierarchical structure? 
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• Generative model assigns a probability distribution 

over sequences of POS tags and words. 

HMM for part-of-speech tagging 
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Example 

A B # 

A 0.4 0.6 0 

B 0.6 0.3 0.1 

# 0.5 0.5 0 
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a b 

A 0.7 0.3 

B 0.2 0.8 

Transitions, P(ti|tj): 

Outputs, P(wi|ti): 

# A 

a 

B 

a 

B 

b 

# 

‘End of 

sentence’ 

P(t|θ) = (.5)(.6)(.3)(.1) 

P(w|t,θ) = (.7)(.2)(.8) 

P(t,w|θ) = P(t|θ) P(w|t,θ) 

• Assume we know the parameters of the model. 



• Ambiguity resolution: what’s the right POS sequence? 

 

 

 

•                , so compute P(t,w|θ) for each 

sequence and choose the best. 

• Language modeling: what’s the probability of the 

sequence of words? 

•  Compute 

What can we do now? 

Pro N/V Det N/V 

   I     saw   the   man 

)|,(),|(  twwt PP 
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Parameter estimation 

• Supervised learning: training data is annotated with 

correct POS tags. 

• Can use MLE + smoothing or Bayesian methods, similar to 

learning n-gram model. 

• Unsupervised learning: training data is words only. 

• More similar to language acquisition in children. 
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MLE for HMMs 

• Choose params θ to maximize                                 . 

 

• Can do this using Expectation-Maximization (EM): 

• Initialize parameters at random. 

• E-step: use current estimate of θ to compute P(t|w, θ) and 

expected counts of hidden events, E[C(ti,tj)] and E[C(ti,wi)]. 

• non-trivial; uses the forward-backward (Baum-Welch) algorithm. 

• M-step: use expected counts to update θ to maximize P(w| θ). 

• Iterate E and M: converges to local maximum of likelihood. 


t

|wt|w ),()(  PP

For more on HMMs and the forward-backward algorithm, see Manning and Schuetze (1999). 



MLE doesn’t work 

• True POS transition matrix is sparse, MLE matrix isn’t. 
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True: MLE: 



Can being Bayesian help? 

• MLE estimates θ in order to  

• Predict next words (language modeling): P(wn+1|θ). 

• Infer hidden structure (POS tagging): P(t|θ,w). 
 

• But actually, what we really want is 

• Predict next words (language modeling): P(wn+1|w). 

• Infer hidden structure (POS tagging): P(t|w). 
 

• By integrating out θ, we can compute just that. 
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Bayesian HMM 

• Notation: assume T distinct tags and W distinct words; 

split θ into two parts, (τ, ω). 
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Bayesian HMM 

• Bayesian HMM augments standard HMM with 

symmetric Dirichlet priors: 
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Predictive distributions 

• If we integrate out parameters, we get 

 

 

 

 

 

• assuming T possible tags and Wt possible words with tag t. 

• We can use these distributions to find P(t|w) using 

Markov Chain Monte Carlo, specifically Gibbs sampling.*  
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*We could instead use Variational Bayes, which is a generalization of EM and, like EM, uses 

the forward-backward algorithm. See Johnson (2007). 



Gibbs sampling 

• Like EM, a general technique (algorithm family), 

specific versions for specific models. 

• A randomized algorithm. 

• Guaranteed to converge. 

• After convergence, each iteration produces a sample from 

the posterior distribution of interest (here, P(t|w)). 

P(t|w) 

t 

For more on Gibbs sampling and parameter integration as applied to NLP problems, see 

Resnik and Hardisty (2009). 



Gibbs sampling 

1. Initialize hidden variables (tags) at random: 

 

 

 

 

2. On each iteration, sample a new value for each tag 

from its distribution conditioned on the current 

values of all other variables (both tags and words). 

• Basically, pretend all the other tags are correct, treat them 

as training data, and sample a new value for current tag. 

 

t1 t2 

w1 w2 

t3 

w3 
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One iteration 

P(t1 | t2, t3, w, α, β) 

 

 

 

P(t2 | t1, t3, w, α, β) 

 

 

 

P(t3 | t1, t2, w, α, β) 

t1 t2 

w1 w2 

t3 

w3 

 Sample from: 

t1 t2 

w1 w2 

t3 
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2.   

 

 

 

3.   

Result: 



Computing conditional distributions 

• By Bayes’ rule, we have 

 

 

 

 

 

• Now pretend that ti and wi are the last tag/word in the sequence, 

and use our formulas from earlier to compute the two factors*: 
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*We are only allowed to pretend this because the model is exchangeable: probabilities are the 

same for any ordering of the variables, e.g. P(a,b,c) = P(a,c,b).   
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Bayesian HMM in practice 

• Goldwater and Griffiths (2007) compared BHMM+Gibbs 

to standard HMM+MLE (= MLHMM). 

• Two scenarios: 

• Constrained: provide dictionary listing possible tags for each 

word (e.g. ‘run’ is a noun or verb). 

 

 

 

• Unconstrained: any word can have any tag (17 possibilities). 

• Train and test on unlabeled corpus (24k words of WSJ). 

• Results evaluated against gold standard POS tags. 

53.6% of words have multiple possible tags. 

Average number of tags per word = 2.3. 
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Accuracy results (full dictionary) 

 

 

 

 

 

 

 

• Integrating over parameters is useful in itself, even 

with uninformative priors (α = β = 1). 

• Better priors can help even more, though not quite to 

state-of-the-art. 

 

MLHMM 74.7% 

BHMM (α = 1, β = 1) 83.9% 

BHMM (best: α = .003, β = 1) 86.8% 

CRF/CE 90.1% State-of-the-

art system 

(Smith and 

Eisner, 2005) 
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Syntactic clustering 

• No tag dictionary, any word can have any tag. 

• Hyperparameters (α, β) are inferred automatically 

using Metropolis-Hastings sampler. 

• Standard accuracy measure requires labeled 

classes, so measure using best matching of classes. 
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Clustering results 

 

 

 

 

 

 

 
 

 

• MLHMM groups instances of the same lexical item together. 

• BHMM clusters are more coherent, more variable in size.  Errors 
are often sensible (e.g. separating common nouns/proper nouns, 
confusing determiners/adjectives, prepositions/participles). 

BHMM: 63% acc. MLHMM: 35% acc. 



Learned distributions 

• BHMM transition matrix is sparse, MLHMM is not. 

 MLHMM BHMM 
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HMM summary 

• Sequence model with latent variables representing 

classes, widely used in language (and elsewhere). 

• Can be used for language modeling: P(w). 

• Normally used for inferring hidden structure: P(t|w), in 

POS tagging, speech recognition, etc. 

• For unsupervised learning of latent variables, 

Bayesian methods work better than MLE. 
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Probabilistic context-free grammars 

• Tree-structured latent variable models. 

• Capture recursive phrase structure of 

language. 
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• P(X → Y) = z means P(RHS is Y | LHS is X) = z. 

• Parameters θ are the rule probabilites. 

Example PCFG 

Rule Prob Rule Prob 

S → NP VP 1.0 V → saw 0.5 

VP → V NP  0.6 V → slept 0.5 

VP → VP PP 0.4 N → saw 0.1 

NP → Pro 0.3 N → man 0.3 

NP → Det N 0.5 N → glasses 0.6 

NP → NP PP 0.2 Det → the 1.0 

PP → P NP 1.0 P → with 1.0 

Pro → I 1.0 
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Probability of a parse 

• For parse tree t,  

Rule Prob Rule Prob 

S → NP VP 1.0 V → saw 0.5 

VP → V NP  0.6 V → slept 0.5 

VP → VP PP 0.4 N → saw 0.1 

NP → Pro 0.3 N → man 0.3 

NP → Det N 0.5 N → glasses 0.6 

NP → NP PP 0.2 Det → the 1.0 

PP → P NP 1.0 P → with 1.0 

Pro → I 1.0 





trule

rulePtP )|()|,( w

P(t,w|θ) = (1.0)(0.3)(1.0)(0.6)(0.5)(0.5)(1.0)(0.3) 



Language modeling 

• A string of words may have more than one parse, so 
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Disambiguation 

• Can also compute which parse is more probable: 

 

 

 

 

 

 

 

 

 

• Assumption: different parses indicate different meanings. 
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Local ambiguity 

• Previous examples showed global ambiguity: 

 

 

 

• Many psycholinguists are interested in how humans 

resolve local ambiguity: 

 

 

 

 

 

• More on this next week. 
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I saw the man with the glasses. 

Look at the cat on the chair with three legs. 

The chief … [problem is…] 

                     [said that…] 

 

The player tossed the ball … [to her teammate] 

           [by her teammate stumbled] 



Learning a PCFG 

• Like HMMs, PCFGs can be trained from annotated or 

unannotated data. 

• Methods are generalizations of HMM training procedures. 

• MLE again uses EM (inside-outside algorithm), again not 

very effective. 

• Bayesian training uses sampling, but more involved than 

HMM Gibbs sampler. (probably more on this next week). 

For more on PCFGs and the inside-outside algorithm, see Manning and Schuetze (1999).  For 

more on Bayesian PCFGs and PCFG sampling methods, see Johnson et al. (2007). 



Issues with PCFGs 

• Standard categories don’t encode enough information. 

 

 

 

 

 

• Consider using subcategories, e.g., VIT, VT, VIP. But 

how many/which subcategories to choose? 

• Nonparametric Bayesian models can help with this problem.* 
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VP → V  V → slept 

VP → V NP  V → chased 

VP → V NP PP V → put 

The girl slept 

The girl slept the dog 

The girl slept the book on the table 

*See Liang et al. (2007), Finkel et al. (2007). 



Issues with PCFGs 

• N-gram models are lexicalized, capturing some 

semantic information.  PCFGs aren’t – should they be? 

 

 

 

• For years, grammars used in NLP have included 

partially lexicalized rules.   

• More complex lexicalized models have more sparse data and 

more complex smoothing methods. 

• Nonparametric Bayesian models can help with this too!* 
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The girl walked the dog 

The girl read the book 

[??] The girl read the dog 
[??] The girl walked the book  

*See Cohn et al. (2010). 



PCFG summary 

• Tree-structured model with latent variables 

representing phrase types. 

• Like HMM, can be used for language modeling but 

normally used for inferring hidden structure. 

• In NLP: part of the pipeline for tasks like translation, question 

answering, many others. 

• In Cog Sci: basis of many human sentence processing 

models. 

• Recent work using Bayesian methods (esp. 

nonparametric) extends PCFGs in interesting and 

useful ways. 
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