Phonetic Category Acquisition Modeling[^]Phonology

Naomi Feldman University of Maryland

IPAM: Probabilistic Models of Cognition University of California, Los Angeles July 14, 2011

Hindi:

В

Α

Х

Hindi:

Answer: A

Х

dental vs. retroflex contrast (A=dental, B=retroflex)

Salish:

В

Α

Х

Salish:

A B

Х

Answer: A

velar vs. uvular contrast (A=velar, B=uvular)

Learning Sound Categories

Learning Sound Categories

Learning Sound Categories

How are sound categories learned?

An Inference Problem

Learner recovering linguistic structure

Hypotheses: possible linguistic analyses Data: corpus (language input)

 $p(h \mid d) \propto p(d \mid h)p(h)$

An Inference Problem

Learner recovering linguistic structure

Hypotheses: possible linguistic analyses Data: corpus (language input)

$p(h \mid d) \propto p(d \mid h)p(h)$

What types of hypotheses should learners consider?

Outline

- Distributional learning
- Lexical-distributional learning
- Learning English vowels
- Dealing with systematic variability

(Joint work with Tom Griffiths, James Morgan, Sharon Goldwater)

Outline

- Distributional learning
- Lexical-distributional learning
- Learning English vowels
- Dealing with systematic variability

(Joint work with Tom Griffiths, James Morgan, Sharon Goldwater)

Dimension 1

Dimension 2

Dimension 1

Dimension 2

Bimodal group: good discrimination between endpoints Unimodal group: poor discrimination between endpoints

(Maye, Werker, & Gerken, 2002)

To create a corpus

Phonetic Categories

To create a corpus

1. Generate a phonetic category inventory

Phonetic Categories

To create a corpus

- 1. Generate a phonetic category inventory
 - Sample a mean, covariance, and frequency of occurrence for each Gaussian category

Phonetic Categories

Corpus

To create a corpus

- 1. Generate a phonetic category inventory
 - Sample a mean, covariance, and frequency of occurrence for each Gaussian category
- 2. Generate a corpus

Phonetic Categories

Corpus

To create a corpus

- 1. Generate a phonetic category inventory
 - Sample a mean, covariance, and frequency of occurrence for each Gaussian category
- 2. Generate a corpus
 - For each sound, sample a phonetic category according to its frequency

Phonetic Categories

Corpus

To create a corpus

- 1. Generate a phonetic category inventory
 - Sample a mean, covariance, and frequency of occurrence for each Gaussian category
- 2. Generate a corpus
 - For each sound, sample a phonetic category according to its frequency
 - Generate an acoustic value from the Gaussian distribution associated with that category

Phonetic Categories

Dimension 2

Dimension 1

Dimension 2

- μ_c, Σ_c : parameters of category *c* z_i : category of sound *i*
- x_i : acoustics of sound *i*

 μ_c, Σ_c : parameters of category *c* z_i : category of sound *i* x_i : acoustics of sound *i*

Need to infer hidden variables:

- Parameters for each category
- Category label for each point

Can use Expectation Maximization, Gibbs sampling, online gradient descent, etc.

(Toscano & McMurray, 2008; McMurray, Aslin, & Toscano, 2009)

Vowel Categories (Single Speakers)

(Vallabha, McClelland, Pons, Werker, & Amano, 2007)

Overlapping Categories

Dimension 1

Dimension 2

Overlapping Categories

Dimension 1

Dimension 2

A Difficult Problem

(Hillenbrand, Getty, Clark, & Wheeler, 1995)

A Difficult Problem

(Hillenbrand, Getty, Clark, & Wheeler, 1995)

A Fancier Generative Model

 μ_c, Σ_c : parameters of category c z_i : category of sound i x_i : acoustics of sound i

 α : concentration parameter

Training Corpus

Corpus of 6,409 vowel tokens generated from Gaussian categories from Hillenbrand et al. (1995); frequencies match corpus frequencies

A Generative Model

To create a corpus

- 1. Generate a phonetic category inventory
 - Sample a mean, covariance, and frequency of occurrence for each Gaussian category
- 2. Generate a corpus
 - For each sound, sample a phonetic category according to its frequency
 - Generate an acoustic value from the Gaussian distribution associated with that category

Phonetic Categories

Outline

- Distributional learning
- Lexical-distributional learning
- Learning English vowels
- Dealing with systematic variability

(Joint work with Tom Griffiths, James Morgan, Sharon Goldwater)

Word Segmentation Task

Familiarization:

Test:

familiar

unfamiliar

"Success": Difference in looking times between familiar and unfamiliar words in fluent speech

Word Learning

Word Categorization

bike

bike

bike

BIKE

Phonetic Category Learning

Phonetic Category Learning

Phonetic Category Learning

A Generative Model

To create a corpus

- 1. Generate a phonetic category inventory
 - Sample a mean, covariance, and frequency of occurrence for each Gaussian category
- 2. Generate a corpus
 - For each sound, sample a phonetic category according to its frequency
 - Generate an acoustic value from the Gaussian distribution associated with that category

Phonetic Categories

To create a corpus

1. Generate a phonetic category inventory

- 1. Generate a phonetic category inventory
 - Sample a mean, covariance, and frequency of occurrence for each Gaussian category

- 1. Generate a phonetic category inventory
 - Sample a mean, covariance, and frequency of occurrence for each Gaussian category
- 2. Generate a lexicon

- 1. Generate a phonetic category inventory
 - Sample a mean, covariance, and frequency of occurrence for each Gaussian category
- 2. Generate a lexicon
 - Sample a length and frequency of occurrence for each lexical item

- 1. Generate a phonetic category inventory
 - Sample a mean, covariance, and frequency of occurrence for each Gaussian category
- 2. Generate a lexicon
 - Sample a length and frequency of occurrence for each lexical item
 - For each phoneme slot, sample a phonetic category from the phonetic category inventory

- 1. Generate a phonetic category inventory
 - Sample a mean, covariance, and frequency of occurrence for each Gaussian category
- 2. Generate a lexicon
 - Sample a length and frequency of occurrence for each lexical item
 - For each phoneme slot, sample a phonetic category from the phonetic category inventory
- 3. Generate a corpus

- 1. Generate a phonetic category inventory
 - Sample a mean, covariance, and frequency of occurrence for each Gaussian category
- 2. Generate a lexicon
 - Sample a length and frequency of occurrence for each lexical item
 - For each phoneme slot, sample a phonetic category from the phonetic category inventory
- 3. Generate a corpus
 - For each word, sample a lexical item according to its frequency

- 1. Generate a phonetic category inventory
 - Sample a mean, covariance, and frequency of occurrence for each Gaussian category
- 2. Generate a lexicon
 - Sample a length and frequency of occurrence for each lexical item
 - For each phoneme slot, sample a phonetic category from the phonetic category inventory
- 3. Generate a corpus
 - For each word, sample a lexical item according to its frequency
 - Generate an acoustic value each phonetic category contained in that lexical item

 $\mu_{c}, \Sigma_{c} : \text{ parameters of category } c$ $l_{k}: \text{ form of lexical item } k$ $z_{i}: \text{ category of word } i$ $w_{i}: \text{ acoustics of word } i$ $\alpha_{c}: \text{ phonetic concentration parameter}$ $\alpha_{L}: \text{ lexical concentration parameter}$

Models of Category Learning

Models of Category Learning

Distributional

Lexical-Distributional

- Assume sounds are generated independently of their neighbors
- Infer category parameters
- Phonetic categories characterize the types of variability found among sounds in the corpus

- Assume sounds are generated as parts of words
- Infer category parameters and forms of lexical items
- Phonetic categories are overhypotheses about the types of variability seen in lexical items

Qualitative Behavior

Compare lexical-distributional model's behavior on two lexicons

- Informative lexicon: 'add', 'ebb'
- Minimal pair lexicon: 'add, 'Ed', 'ab', 'ebb'

Qualitative Behavior

Compare lexical-distributional model's behavior on two lexicons

- Informative lexicon: 'add', 'ebb'
- Minimal pair lexicon: 'add, 'Ed', 'ab', 'ebb'

Distributional Model

Distributional Model

Distributional Model

Lexical-Distributional Model

Lexical-Distributional Model

Lexical-Distributional Model

• If the lexicon contains disambiguating information, the learner should use this information to disambiguate overlapping categories

- If the lexicon contains disambiguating information, the learner should use this information to disambiguate overlapping categories
- Learner uses each level of structure to constrain the other:

- If the lexicon contains disambiguating information, the learner should use this information to disambiguate overlapping categories
- Learner uses each level of structure to constrain the other:
 - Distributional information helps determine which words are tokens of the same lexical item

- If the lexicon contains disambiguating information, the learner should use this information to disambiguate overlapping categories
- Learner uses each level of structure to constrain the other:
 - Distributional information helps determine which words are tokens of the same lexical item
 - Lexical information helps determine which sounds are part of the same phonetic category.

Evidence from 15-month-olds in "switch" task (Stager & Werker, 1997)

Evidence from 15-month-olds in "switch" task (Stager & Werker, 1997)

Habituation:

Evidence from 15-month-olds in "switch" task (Stager & Werker, 1997)

Habituation:

Switch trial:

"taw"

Evidence from 15-month-olds in "switch" task (Stager & Werker, 1997)

Habituation:

Switch trial:

"taw"

Evidence from 15-month-olds in "switch" task (Stager & Werker, 1997)

Switch trial:

"taw"

"taw"

Evidence from 15-month-olds in "switch" task (Stager & Werker, 1997)

Switch trial:

Evidence from 15-month-olds in "switch" task (Stager & Werker, 1997)

Switch trial:

Evidence from 15-month-olds in "switch" task (Stager & Werker, 1997)

Switch trial:

Empirical Evidence

• 15-month-olds show better discrimination when lexicon provides disambiguating information (Thiessen, 2007)

 Adults show similar behavior in a non-referential task when learning about vowel categories (Feldman, Myers, White, Griffiths, & Morgan, 2011)

Outline

- Distributional learning
- Lexical-distributional learning
- Learning English vowels
- Dealing with systematic variability

(Joint work with Tom Griffiths, James Morgan, Sharon Goldwater)

Simulations

Simulations

- Lexicon from CHILDES Parental Corpus (Li & Shirai, 2000)
 - Orthographic forms phonematized using Carnegie Mellon
 Pronouncing Dictionary
 - Lexical items sampled according to corpus frequency
- Corpus of 5000 word tokens, comprising 6,409 vowel tokens and 8,917 consonant tokens
- Acoustic values for vowels sampled based on Hillenbrand et al. (1995) data
 - Means, covariance matrices computed from speakers' productions
 - Speech sounds generated from Gaussians

Distributional Model

Lexical-Distributional Model

Lexical-Distributional Model

Benefit of Using Words

F-Score

Distributional	Lexical- Distributional (α _L =10)	Lexical- Distributional (α _L =10,000)		
0.45	0.76	0.74		

Lexical-Distributional Model						Distributional
						Model

	Lexical-Distributional Model						Distributional
α_{c}							Model
0.1							
1							
10							

		Distributional				
α_{c}	α_L =1	α_L =10	α _L =100	α _L =1,000	α _L =10,000	Model
0.1						
1						
10						

		Lexical-Distributional Model					
α _c	α _L =1	α _L =10	α _ =100	α _L =1,000	α _L =10,000	Model	
0.1						6	
1						6	
10						7	

Number of Phonetic Categories (gold standard = 12)

		Distributional				
α_{C}	α _L =1	α _L =10	α _L =100	α _L =1,000	α _L =10,000	Model
0.1	14	13	13	12	12	6
1	14	14	13	12	12	6
10	14	13	13	12	12	7

Number of Phonetic Categories (gold standard = 12)

		Distributional				
α _c	α _L =1	α _L =10	α _L =100	α _L =1,000	α _L =10,000	Model
0.1	14	13	13	12	12	6
1	14	14	13	12	12	6
10	14	13	13	12	12	7

Number of Phonetic Categories (gold standard = 12) Number of Lexical Items (gold standard = 1019)

		Lexical-	Distribution	al Model		Distributional
α _C	$\alpha_L=1$	α _L =10	α _L =100	α _L =1,000	α _L =10,000	Model
0.1	14	13	13	12	12	6
0.1	900	916	969	1145	1601	6
	14	14	13	12	12	6
1	899	912	968	1138	1605	6
40	14	13	13	12	12	7
10	900	926	958	1164	1602	/

Number of Phonetic Categories (gold standard = 12) Number of Lexical Items (gold standard = 1019)

Lexical-Distributional Model

Extra category includes:

- find, found
- think, thank
- will, we'll, well
- give, gave
- made, mad, mid
- big, bag
- way, we

as well as lexical items that were not minimal pairs

Minimal Pairs

- Phonologists use minimal pairs to identify contrastive categories
- Minimal pairs make it *more* difficult to distinguish between phonemes if no meanings are known: items in the pair could be the same word
- Model can overcome minimal pair problem with certain parameter values, but children may use other strategies

More Interactions in Learning?

- Phonotactics
 - Sensitivity to phonotactics at 9 months could make a learner more willing to accept multiple lexical items with a common consonant frame (Jusczyk et al., 1994)
- Semantics
 - Semantic information may help pull apart minimal pairs (Yeung & Werker, 2009; but see Thiessen, 2007)
 - Semantic information may help a learner recognize redundant lexical items

Simulations

- Lexicon generated from the model
 - Words composed only of vowels
 - Structure of the lexicon matches the learner's expectations
- Corpus of 5000 word tokens, comprising 22,397 vowel tokens
- Acoustic values sampled based on Hillenbrand et al. (1995) data
 - Means, covariance matrices computed from speakers' productions
 - Speech sounds generated from Gaussians

Distributional Model

Lexical-Distributional Model

Summary

- Using information from words can help disambiguate overlapping categories, even if the forms in the lexicon are not given explicitly to the learner
- Qualitative behavior mimics human data
- Interactive learning poses different challenges than learning each domain in isolation
 - Disambiguating overlapping categories is difficult in isolation
 - Similar-sounding words are difficult for interactive learner

Outline

- Distributional learning
- Lexical-distributional learning
- Learning English vowels
- Dealing with systematic variability

Work by Ewan Dunbar, Brian Dillon, & Bill Idsardi More information: http://ling.umd.edu/~emd/ or emd@umd.edu

Lexical-distributional model assumes a single Gaussian distribution for a phonetic category, regardless of context

What about phonological alternations?

[k] and [k^h] are allophones of the same phoneme

- Complementary distribution: [k] and [k^h] appear in different phonological contexts
- No minimal pairs involving [k] and [k^h]
- Speakers and listeners think of [k] and [k^h] as "the same sound"

Typically characterized by a rule:

 $k \rightarrow k^h$ at the beginning of a stressed syllable

Learning Phonemes: Option 1

Two stages:

- 1. Learn separate phonetic categories for [k] and [k^h]
- In a separate learning process, notice that the [k] and [k^h] occur in complementary distribution, and infer that they are allophones of a single phoneme

Learning Phonemes: Option 2

Give up the assumption that sound categories are Gaussian distributions

categories are Gaussians

categories are linear models

Linear Models

t-test/ANOVA (Dunbar, Dillon, & Idsardi, in preparation)

Mixture of Linear Models

Mixture of Linear Models

Inuktitut: Vowels change before uvular consonants

How are sound categories learned?

An Inference Problem

Learner recovering linguistic structure

Hypotheses: possible linguistic analyses Data: corpus (language input)

 $p(h \mid d) \propto p(d \mid h)p(h)$

An Inference Problem

Learner recovering linguistic structure

Hypotheses: possible linguistic analyses Data: corpus (language input)

$p(h \mid d) \propto p(d \mid h)p(h)$

What types of hypotheses should learners consider?

An Inference Problem

Phonetic Category Learning

Phonetic Category Learning

Acknowledgements

Word model joint work with Tom Griffiths, James Morgan, Sharon Goldwater; allophone model by Ewan Dunbar, Brian Dillon, Bill Idsardi

Thanks to: Sheila Blumstein, Adam Darlow, Mark Johnson, Joseph Williams

Metcalf Infant Research Lab (Brown) Computational Cognitive Science Lab (Berkeley) Computational Modeling Reading Group (Brown)

NSF grants BCS-0924821, BCS-0631518 NIH grant HD032005 AFOSR grant FA9550-07-1-0351