Vision: Overview
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Why is Vision Hard?

Complexity and Ambiguity of Images. Range of Vision Tasks.

More 10x10 images -- 2567100 = 6.7 x 10 2240 -- than the total
number of images seen by all humans throughout history 3 x 10721.

(50 billion people, live 20 billion seconds, 30 image per second)




Why does Vision seem easy?

 Because we devote roughly half our cortex to
vision.

 Understanding vision means understanding half
the cortex.




Bayes and Vision.

History of Bayes and Vision dates to the early 1980’s
and before. (Ulf Grenander’s pattern theory, 1960’s).

Vision as an inverse inference problem.
Decode images by inverting image formation.

As argued by Gibson and Marr, this requires knowledge
about the world Natural constraints (Marr), Ecological
constraints (Gibson).

Bayesian formulations are natural. Constraints are
priors and can be learnt from examples.



Bayes for Vision

e Courtesy of Pavan Sinha (MIT)
 The likelihood is not enough.
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When priors are violated

e Who is bigger?




Models for Generating Images:

e Grammars (Grenander, Fu, Mjolsness, Biederman).
e Simple to Complex Grammars: Easy to hard Inference
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Analysis by Synthesis

e Analyze an image by inverting image formation.
 Proposals and Verification
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Can we do this for Real Images?

Image Parsing:

Learn probabilistic models of the visual patterns that can appear in
images.

Interpret/understand an image by decomposing it into its constituent
parts.
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Vision Goals and Tasks

e Vision is often formalized as low, middle, and
high-level.

 This seems to map onto different parts of the
visual cortex (V1, V2,..., IT). (Poggio’s Talk).

* High level vision relates very naturally to other
aspects of cognition — reasoning, language.



Some Vision Goals (SC Zhu et al)

 Understanding objects, scenes, and events.
Reasoning about functions and roles of
objects, goals and intentions of agents,
predicting the outcomes of events.

Crutput: parse graph with syntax and semantics
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Figure 1. Example of image understanding. Analysis of the image (top-left) produces a parse graph
(r1ght) representing hierarchically objects, contextual relations, and semantic associations (i italic orange
font) for attnibutes, functions, roles, and intents. The parse graph maybe converted to a description m
natural language (bottom-left)



Converting Parse Graphs to Language

lllustration: Perona and Fei-Fei Li.
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Figure 2. Human subjects reporting on what he/she saw in an image shown for different presentation
durations (PD=27. 40, 67, 80, 107, 500ms). From Fei-Fe1 and Perona [26].




Reasoning about Objects in 3D Space

 Understanding the 3D scene structure enables
reasoning.

Figure 9. Placing
objects 1n a consistent
geometric frame,
such as children
playing soccer,
allows reasoning
about objects 1n 3D
space. Results from
Koller’s group
ICCV09 [37]




Graphical Models

e Graphical Models give a nice way to formulate
vision problem:s.

e Different types of Interactions.
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Cue Combination

* How to couple different visual cues?

 Uncertainty — statistics relations between
different factors that cause the image. What
factors are independent? Which are not?

e Studies show (e.g., Larry Maloney) that
humans can combine visual, and other
perceptual cues, optimally and make optimal
decisions.



How optimal are humans?

Vision researchers can design Ideal Observer Models.

These can be used to benchmark human performance
compared to an ideal observer who know how the
stimuli are generated.

Humans typically perform poorly compared to the
benchmark.

But for certain tasks — like motion estimation — it
appears that humans use an ecological prior, based on
the statistics of natural images, instead the "prior’ used
by the experimenter to construct the stimuli.

Conjecture — humans are optimal for ecological stimuli.



Optimal Vrs. Slow and Smooth

Optimal for Experiment — vrs. Slow-and-smooth (e.g., Hongling Lu).

Humans perform orders of magnitude worse than an ideal model which
knows the probabilistic model that generated the stimuli.

But humans perform similarly to a model that assumes a prior of slow-and-

smooth motion, similar to the prior measured from the statistics of natural
image sequences.
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Figure 3: The left two panels show detection thresholds — human subjects (far left) and BIO
and BT thresholds (left). The right two panels show discrimination thresholds — human
subjects (right) and BIO and BT (far right).



Stochastic Grammars and
Compositional Models

Objects are composed of parts. These are
composed of subparts, and so on.

Semantic parts — e.g., arms and legs of humans.

Structured graphical models, probability defined
over these models, inference algorithms.

Learning the models with, or without, known
graph structure.

Talks by Geman, Bienenstock, Yuille, Zhu, Poggio.



Key Idea: Compositionality

 Objects and Images are constructed by compositions
of parts — ANDs and ORs.

 The probability models for are built by combining
elementary models by composition.

o Efficient Inference and Learning.

Object A




Why compositionality?

(1). Ability to transfer between contexts and generalize or
extrapolate (e.g., from Cow to Yak).

(2). Ability to reason about the system, intervene, do diagnostics.

(3). Allows the system to answer many different questions based
on the same underlying knowledge structure.

(4). Scale up to multiple objects by part-sharing.

“An embodiment of faith that the world is knowable, that one can
tease things apart, comprehend them, and mentally recompose
them at will.”

“The world is compositional or God exists”.



Horse Model (ANDs only).

Nodes of the Graph represents parts of the object.

Parts can move and deform.

y: (position, scale, orientation)




AND/OR Graphs for Horses

* Introduce OR nodes and switch variables.

e Settings of switch variables alters graph topology
— allows different parts for different
viewpoints/poses:

 Mixtures of models — with shared parts.
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AND/OR Graphs for Baseball

 Enables RCMs to deal with objects with
multiple poses and viewpoints (~100).

* Inference and Learning by bottom-up and top-
down processing




Results on Baseball Players

e Performed well on benchmarked datasets.
e Zhu, Chen, Lin, Lin, Yuille CVPR 2008, 2010.
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Unsupervised Structure Learning

* Task: given 10 training images, no labeling, no
alignment, highly ambiguous features.

— Estimate Graph structure (nodes and edges)
— Estimate the parameters.

Correspondence is
unknown
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The Dictionary: From Generic Parts to
Object Structures

e Unified representation (RCMs) and learning

* Bridge the gap between the generic features and

specific object structures
LO - m

L1 ———— fy

L2 \ N —t = ¥ & R
IR U o S ‘\; \ s

S MUY At X

L4 \\‘q; } \r..« \



Bottom-up Learning

Suspicious
Coincidence

Competitive
Exclusion
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Top-down refinement

e Fill in missing parts
e Examine every node from top to bottom
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Part Sharing for multiple objects

Strategy: share parts between different objects
and viewpoints.




Learning Shared Parts

Unsupervised learning algorithm to learn
parts shared between different objects.

Zhu, Chen, Freeman, Torralba, Yuille 2010.

Structure Induction — learning the graph
structures and learning the parameters.

Supplemented by supervised learning of
masks.



Many Objects/Viewpoints

e 120 templates: 5 viewpoints & 26 classes
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Learn Hierarchical Dictionary.

 Low-level to Mid-level to High-level.

Learn by suspicious coincidences.
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Part Sharing decreases with Levels
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Multi-View Single Class Performance

e Comparable to State of the Art.

Precision

(a) Multi-view Motorbike dataset
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(b) Weizmann Horse dataset
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(c) LabelMe Multi-view Car dataset
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Conclusions

Principles: Recursive Composition

— Composition -> complexity decomposition
— Recursion -> Universal rules (self-similarity)
— Recursion and Composition -> sparseness

A unified approach — object detection, recognition,
parsing, matching, image labeling.

Statistical Models, Machine Learning, and Efficient
Inference algorithms.

Extensible Models — easy to enhance.

Scaling up: shared parts, compositionality.

Trade-offs: sophistication of representation vrs. Features.
The Devil is in the Details.



