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Probabilistic language of 
thought hypothesis

Statistics and composition

Compositional 
representations

Probabilistic
inference

Thought is productive:
“the infinite use of 

finite means”

Thought is useful 
in an uncertain 

world

p=mv

Belief

Action

Desire

Generative
models



PLoT

• The probabilistic language of thought 
hypothesis: 

• Mental representations are compositional,

• Their meaning is probabilistic,

• They encode generative knowledge,

• Hence, they support thinking and 
learning by probabilistic inference.



PLoT

• The probabilistic language of thought 
hypothesis: 
Mental representations are functions 
in a stochastic process calculus 
(e.g. ψλ-calculus / Church).

• Intuitive framework theories.

• Flexible reasoning and language use.

• Learning structured concepts.



Outline
If concepts are probabilistic programs,

then concept learning is probabilistic program induction.



Outline
If concepts are probabilistic programs,

then concept learning is probabilistic program induction.

(query

 (define concept (sample-PLoT-expression))

 concept

 (and (= (noisy (sample concept)) obs1)

      (= (noisy (sample concept)) obs2) 

      ...))

Program

Data



Outline
If concepts are probabilistic programs,

then concept learning is probabilistic program induction.

• Boolean categories

• Quantified concepts

• Natural number concepts

• Generative kinds

• Program induction
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Categorization

• Rule-based category 
learning:

• Infinitely many 
concepts formed 
compositionally.

• Statistical category 
learning:

• Graded inferences 
from sparse, noisy 
evidence.



Categorization
Medin & Schaffer, 1978 (data from Nosofsky, et al.,1994):
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Categorization

• Graded judgements

Medin & Schaffer, 1978 (data from Nosofsky, et al.,1994):
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Categorization

• Graded judgements
• Typicality

Medin & Schaffer, 1978 (data from Nosofsky, et al.,1994):
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Categorization

• Graded judgements
• Typicality

• Prototype enhancement

Medin & Schaffer, 1978 (data from Nosofsky, et al.,1994):
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Generating rules

“It’s a Fep if it has flat 
head and round wings”

Feps:

non-Feps:



(define fep?
 (λ (x) 
  (and (flat-head x)
       (round-wings x))))
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(define fep?
 (λ (x) 
  (and (flat-head x)
       (round-wings x))))

Generating rules

=> true

(define rule-generator
 (λ ()
 (if (flip 0.3)
     (sample-feature)
     (combine-rules (sample-feature) 
                    (rule-generator)))

(define combine-rules 
 (λ (r1 r2) 
 (λ (x) (and (r1 x) (r2 x)))
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(define fep?
 (λ (x) 
  (and (flat-head x)
       (round-wings x))))

Generating rules

=> true

(define rule-generator
 (λ ()
 (if (flip 0.3)
     (sample-feature)
     (combine-rules (sample-feature) 
                    (rule-generator)))

(define combine-rules 
 (λ (r1 r2) 
 (λ (x) (and (r1 x) (r2 x)))

• Longer rules have lower probability (Occam’s razor).

Feps:

non-Feps:

(fep?      )



Generating rules

(define rule-prob (uniform 0 1))
(define rule-generator
 (λ ()
 (if (flip rule-prob)
     ...

Put uncertainty over rule probabilities:

Generate disjunctive normal form (DNF) rules:
(define fep?
 (λ (x) 
  (and (or (flat-head x) ...)
       (or (round-wings x) ...)
       ...)))

The general idea: 
grammar-based induction.



(query

 (define rule (rule-generator))

 (rule      )

 (and (= (rule     ) true)

      (= (rule     ) false) 

      ...))

Hypotheses

Data

Inference:

Inducing rules



(query

 (define rule (rule-generator))

 (rule      )

 (and (= (noisy (rule     )) true)

      (= (noisy (rule     )) false) 

      ...))

Observation noise:

Hypotheses

Data

Inference:

Inducing rules

(define noisy 
 (λ (bit) (if (flip b) bit (not bit))))
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Figure 3. (a) Posterior complexity distribution of the RRDNF model (b=1) for the category structure of Medin & Schaffer (1978), see
Table 3. (b) Posterior feature weights for this category structure. Together these weight distributions indicate that the RRDNF model focuses
on simple rules along features 1 and 3.

Table 3
The category structure of Medin & Schaffer (1978), with the
human data of Nosofsky et al. (1994), and the predictions of
the Rational Rules model (b=1).
Object Feature Values Human RRDNF

A1 0001 0.77 0.82
A2 0101 0.78 0.81
A3 0100 0.83 0.92
A4 0010 0.64 0.61
A5 1000 0.61 0.61
B1 0011 0.39 0.47
B2 1001 0.41 0.47
B3 1110 0.21 0.21
B4 1111 0.15 0.07
T1 0110 0.56 0.57
T2 0111 0.41 0.44
T3 0000 0.82 0.95
T4 1101 0.40 0.44
T5 1010 0.32 0.28
T6 1100 0.53 0.57
T7 1011 0.20 0.13

arable concepts could be harder for human participants to
learn than closely matched concepts which were not lin-
early separable. As an example, consider Medin and Schwa-
nenflugel (1981), Experiment 3, in which participants were
trained on the two concepts shown in Table 4, and tested on
classification accuracy for the training set. Concept LS is
linearly separable, Concept NLS is not, and the two concepts
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Figure 2. Comparison of human judgments with RRDNF model
predictions: mean probability of category A judgments after train-
ing on the category structure of Medin & Schaffer (1978), see Ta-
ble 3, for human and RRDNF model (b=1). The fit between model
and human data is R2=0.98.

have matched single dimension strategies (that is, any sin-
gle feature predicts category membership two thirds of the
time, in each concept). Throughout the experiment learners
make fewer errors on Concept NLS (Fig. 4a). In Fig. 4b we
see that the Rational Rules model provides good qualitative
agreement with the human data, predicting more errors on
the linearly separable concept (and note that no parameters
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Figure 3. (a) Posterior complexity distribution of the RRDNF model (b=1) for the category structure of Medin & Schaffer (1978), see
Table 3. (b) Posterior feature weights for this category structure. Together these weight distributions indicate that the RRDNF model focuses
on simple rules along features 1 and 3.
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arable concepts could be harder for human participants to
learn than closely matched concepts which were not lin-
early separable. As an example, consider Medin and Schwa-
nenflugel (1981), Experiment 3, in which participants were
trained on the two concepts shown in Table 4, and tested on
classification accuracy for the training set. Concept LS is
linearly separable, Concept NLS is not, and the two concepts
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Figure 2. Comparison of human judgments with RRDNF model
predictions: mean probability of category A judgments after train-
ing on the category structure of Medin & Schaffer (1978), see Ta-
ble 3, for human and RRDNF model (b=1). The fit between model
and human data is R2=0.98.

have matched single dimension strategies (that is, any sin-
gle feature predicts category membership two thirds of the
time, in each concept). Throughout the experiment learners
make fewer errors on Concept NLS (Fig. 4a). In Fig. 4b we
see that the Rational Rules model provides good qualitative
agreement with the human data, predicting more errors on
the linearly separable concept (and note that no parameters

r = 0.99
(one free param.)
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Figure 2. Comparison of human judgments with RRDNF model
predictions: mean probability of category A judgments after train-
ing on the category structure of Medin & Schaffer (1978), see Ta-
ble 3, for human and RRDNF model (b=1). The fit between model
and human data is R2=0.98.

have matched single dimension strategies (that is, any sin-
gle feature predicts category membership two thirds of the
time, in each concept). Throughout the experiment learners
make fewer errors on Concept NLS (Fig. 4a). In Fig. 4b we
see that the Rational Rules model provides good qualitative
agreement with the human data, predicting more errors on
the linearly separable concept (and note that no parameters

r = 0.99
(one free param.)
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Figure 3. (a) Posterior complexity distribution of the RRDNF model (b=1) for the category structure of Medin & Schaffer (1978), see
Table 3. (b) Posterior feature weights for this category structure. Together these weight distributions indicate that the RRDNF model focuses
on simple rules along features 1 and 3.

Table 3
The category structure of Medin & Schaffer (1978), with the
human data of Nosofsky et al. (1994), and the predictions of
the Rational Rules model (b=1).
Object Feature Values Human RRDNF

A1 0001 0.77 0.82
A2 0101 0.78 0.81
A3 0100 0.83 0.92
A4 0010 0.64 0.61
A5 1000 0.61 0.61
B1 0011 0.39 0.47
B2 1001 0.41 0.47
B3 1110 0.21 0.21
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arable concepts could be harder for human participants to
learn than closely matched concepts which were not lin-
early separable. As an example, consider Medin and Schwa-
nenflugel (1981), Experiment 3, in which participants were
trained on the two concepts shown in Table 4, and tested on
classification accuracy for the training set. Concept LS is
linearly separable, Concept NLS is not, and the two concepts
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Figure 2. Comparison of human judgments with RRDNF model
predictions: mean probability of category A judgments after train-
ing on the category structure of Medin & Schaffer (1978), see Ta-
ble 3, for human and RRDNF model (b=1). The fit between model
and human data is R2=0.98.

have matched single dimension strategies (that is, any sin-
gle feature predicts category membership two thirds of the
time, in each concept). Throughout the experiment learners
make fewer errors on Concept NLS (Fig. 4a). In Fig. 4b we
see that the Rational Rules model provides good qualitative
agreement with the human data, predicting more errors on
the linearly separable concept (and note that no parameters

r = 0.99
(one free param.)
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Figure 3. (a) Posterior complexity distribution of the RRDNF model (b=1) for the category structure of Medin & Schaffer (1978), see
Table 3. (b) Posterior feature weights for this category structure. Together these weight distributions indicate that the RRDNF model focuses
on simple rules along features 1 and 3.

Table 3
The category structure of Medin & Schaffer (1978), with the
human data of Nosofsky et al. (1994), and the predictions of
the Rational Rules model (b=1).
Object Feature Values Human RRDNF

A1 0001 0.77 0.82
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A4 0010 0.64 0.61
A5 1000 0.61 0.61
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arable concepts could be harder for human participants to
learn than closely matched concepts which were not lin-
early separable. As an example, consider Medin and Schwa-
nenflugel (1981), Experiment 3, in which participants were
trained on the two concepts shown in Table 4, and tested on
classification accuracy for the training set. Concept LS is
linearly separable, Concept NLS is not, and the two concepts
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Figure 2. Comparison of human judgments with RRDNF model
predictions: mean probability of category A judgments after train-
ing on the category structure of Medin & Schaffer (1978), see Ta-
ble 3, for human and RRDNF model (b=1). The fit between model
and human data is R2=0.98.

have matched single dimension strategies (that is, any sin-
gle feature predicts category membership two thirds of the
time, in each concept). Throughout the experiment learners
make fewer errors on Concept NLS (Fig. 4a). In Fig. 4b we
see that the Rational Rules model provides good qualitative
agreement with the human data, predicting more errors on
the linearly separable concept (and note that no parameters

r = 0.99
(one free param.)
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Figure 3. (a) Posterior complexity distribution of the RRDNF model (b=1) for the category structure of Medin & Schaffer (1978), see
Table 3. (b) Posterior feature weights for this category structure. Together these weight distributions indicate that the RRDNF model focuses
on simple rules along features 1 and 3.

Table 3
The category structure of Medin & Schaffer (1978), with the
human data of Nosofsky et al. (1994), and the predictions of
the Rational Rules model (b=1).
Object Feature Values Human RRDNF

A1 0001 0.77 0.82
A2 0101 0.78 0.81
A3 0100 0.83 0.92
A4 0010 0.64 0.61
A5 1000 0.61 0.61
B1 0011 0.39 0.47
B2 1001 0.41 0.47
B3 1110 0.21 0.21
B4 1111 0.15 0.07
T1 0110 0.56 0.57
T2 0111 0.41 0.44
T3 0000 0.82 0.95
T4 1101 0.40 0.44
T5 1010 0.32 0.28
T6 1100 0.53 0.57
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arable concepts could be harder for human participants to
learn than closely matched concepts which were not lin-
early separable. As an example, consider Medin and Schwa-
nenflugel (1981), Experiment 3, in which participants were
trained on the two concepts shown in Table 4, and tested on
classification accuracy for the training set. Concept LS is
linearly separable, Concept NLS is not, and the two concepts
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Figure 2. Comparison of human judgments with RRDNF model
predictions: mean probability of category A judgments after train-
ing on the category structure of Medin & Schaffer (1978), see Ta-
ble 3, for human and RRDNF model (b=1). The fit between model
and human data is R2=0.98.

have matched single dimension strategies (that is, any sin-
gle feature predicts category membership two thirds of the
time, in each concept). Throughout the experiment learners
make fewer errors on Concept NLS (Fig. 4a). In Fig. 4b we
see that the Rational Rules model provides good qualitative
agreement with the human data, predicting more errors on
the linearly separable concept (and note that no parameters

r = 0.99
(one free param.)
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Individual generalization patterns (for 7 transfer items):
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Figure 9. Individual generalization patterns: the probability of responding with the indicated categorizations for the seven transfer stimuli
of Table 3. Human data from Nosofsky et al. (1994), Experiment 1. The model values are for parameters b=4, η=0.09. Agreement of model
with human data is good: R2=0.85, rmsd=0.016.

unseen objects. In a more natural setting, one with many
features and sparse training examples, one might expect dif-
ferent aspects of concept learning to come to the fore. For
instance, when training examples are sparse, learning will be
less constrained by available information and the inductive
bias of the learning mechanism will play a relatively larger
role. Further, when there are many features, the memory de-
mands of remembering even a single exemplar become sig-
nificant, so it is important to focus on informative rules based
on a subset of the features. Given these considerations, it is
important to test models of concept learning against human
learning in settings with many features and sparse examples.

In addition, there is a danger of selecting the concepts
to be tested in a way that biases the results. Historically,
many concept learning experiments have used the same
hand-picked concept structures, e.g. the Medin and Schaf-
fer (1978) 5-4 concept, which has been used in dozens of
studies. It is extremely plausible that some learning tech-
niques work better on some types of concepts than others (see
Briscoe & Feldman, 2006; Feldman, 2003, 2004), leaving
doubt about whether performance on a small set of concepts
is a reliable indicator of success more generally. This was
one of the motivations for Shepard et al. (1961)’s famous
concept set, which constitutes an exhaustive (and thus in-
herently unbiased) survey of concepts with three dimensions
and four positive examples. When the number of features is
large, it is impossible to be similarly exhaustive, but we can
achieve a similar end by choosing our concepts randomly, so
that we are at least guaranteed that our choices will be unbi-
ased with respect to the performance of competing models—
a level playing field. Thus in the experiment described below,
the training set is a randomly selected subset of the complete
set of objects.

The complexity of patterns formed by chance should vary
with the number of examples: for example, with few exam-

ples there may be more “accidental” simple regularities. It
isn’t feasible to vary the number of examples systematically
over a wide range, but it is possible to do so for small num-
bers of examples. Hence, in the experiment that follows we
use a large set of Boolean features (D=7), yielding 27=128
objects total, of which a small randomly drawn set of 3 to
6 are presented as positive examples, and two are presented
as negative examples. (Some negative examples are neces-
sary to give the participant a sense of the range of positive
examples; for simplicity we always used two negative exam-
ples.) This leaves the vast majority of the space (at least 122
objects) as “transfer” objects. After brief training with the
example objects, participants were asked to classify all 128
objects in random order. The goal is to apply the model to
predict responses on the 128 generalization trials, as a func-
tion of the training set.

Method
Participants. Participants were 47 undergraduate students

enrolled in a Psychology class, participating in the study in
return for course credit. All were naive to the purposes of the
study.

Materials and procedure. Objects were amoeba-like
forms, each consisting of an outer boundary and one or more
“nuclei” (smaller shapes in the interior). The amoebas varied
along seven Boolean dimensions (body shape = rectangle or
ellipse; boundary = solid or fuzzy; nucleus shape = triangle
or circle; nucleus size = large or small; nucleus color = filled
or unfilled; nucleus number = 1 or 2; fins present or absent).
These features were chosen simply to be plainly perceptible
and salient to participants.

Participants were told they were to play the role of a bi-
ologist studying a new species of “amoeba”-like organisms.
They were instructed that they were to study a small number

R2=0.85

• Model assumes individuals sample a (few) rule(s).
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(define fep?
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Evaluating languages

• Induction to the language generated by 
the DNF grammar explains important 
phenomena (and fits relevant data).

• But is this the right LoT?

• Test on wider data set?

• Compare to other propositional languages?



Broader test
• 7 Boolean features.

• 43 randomly generated concepts (3-6 pos. + 2 neg. exs)

• 128 judgements (~122 transfer questions)20 NOAH D. GOODMAN, JOSHUA B. TENENBAUM, JACOB FELDMAN, THOMAS L. GRIFFITHS
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Figure 13. (a) Human categorization response frequency (proportion of “yes” judgments) against model posterior generalization probabil-
ity, R2=0.97; error bars represent standard error of frequency (assuming binomial distribution). (Frequencies are computed by first binning
responses according to model prediction.) (b) The mean of response frequencies (binned according to model prediction) computed for each
run separately; error bars represents standard error of the mean over runs; bars below each data point indicate number of runs contributing
to that bin (scale on right).

model (Love et al., 2004) than they are to representations
in RULEX; conjunctive blocks of RRDNF formulae are anal-
ogous to the clusters that SUSTAIN learns, with features that
are ommitted from a conjunctive clause analogous to fea-
tures that receive low attentional weights in SUSTAIN. All
three of these models—RULEX, SUSTAIN, and RRDNF—
navigate similar issues of representational flexibility, trade-
offs between conceptual complexity and ease of learning, and
generalization under uncertainty. The main advantages that
Rational Rules offers over the other two models come from
its focus on the computational-theory level of analysis and
the modeling power that we gain at that level: the ability
to work with a minimal number of free parameters and still
achieve strong quantitative data fits, the ability to separate
out the effects of representational commitments and induc-
tive logic from the search and memory processes that imple-
ment inductive computations, and the ability to seamlessly
extend the model to work with different kinds of predicate-
based representations, such as those appropriate for learning
concepts in continuous spaces, concepts defined by causal
implications (see N. D. Goodman et al., In Press), or con-
cepts defined by relational predicates (see below).

A central theme of our work is the complementary nature
of rule-based representations and statistical inference, and
the importance of integrating these two capacities in a model
of human concept learning. Other authors have written about
the need for both rule-based and statistical abilities—or of-

ten rules and similarity—in concept learning, and cognition
more generally (Sloman, 1996; Pinker, 1997; Pothos, 2005).
The standard approach to combining these notions employs
a “separate-but-equal” hybrid approach: endowing a model
with two modules or systems of representation, one special-
ized for rule-based representations and one for statistical or
similarity-based representations, and then letting these two
modules compete or cooperate to solve some learning task.
The ATRIUM model of Erickson and Kruschke (1998) is a
good example of this approach, where a rule module and a
similarity module are trained in parallel, and a gating module
arbitrates between their predictions at decision time.

We argue here for a different, more unified approach to
integrating rules and statistics. Rules expressed in a flexi-
ble concept language provide a single unitary representation;
statistics provides not a complementary form of representa-
tion, but the rational inductive mechanism that maps from
observed data to the concept language. We thus build on the
insights of Shepard (1987) and Tenenbaum (2000) that the
effects of similarity and rules can both emerge from a single
model: one with a single representational system of rule-like
hypotheses, learned via a single rational inductive mecha-
nism that operates according to the principles of Bayesian
statistics.

Goodman, et al (2008)
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Boolean concepts
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Best model performance on Boolean concepts:



Comparing languages

• DNF
disjunctions of conjunctions

• Horn clauses
conjunctions of implications

• Full boolean
any combinations of AND, OR, NOT, IF, IFF

• Nand
combinations 
of NAND

(λ (x) (or (and (red? x) (circle? x)) 
(and (red? x) (triangle? x)))) 

(λ (x) (and (implies (not (red? x)) false) 
(implies (not (triangle? x)) (circle? x))))

(λ (x) (and (red? x) (or (circle? x) 
(triangle? x))))

(λ (x) (nand false (nand (red? x) 
(nand (nand false (circle? x)) (nand 
false (triangle? x)))))



Comparing languages
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• Fit hyper-parameters (dirichlet 

on each NT) for each language. 

• Evaluated against held out 
data.



Outline

• Boolean categories

• Quantified concepts

• Natural number concepts

• Generative kinds

• Program induction

If concepts are probabilistic programs,
then concept learning is probabilistic program induction.
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Table 4
An ill-defined role-governed category. The objects A1 and A2 are positive examples, B1 and B2 are negative examples, and
T1-T4 are unlabeled transfer objects. It may be convenient to think of r1 as “loved-by” and r2 as “respected-by”, and the
concept label as “good leader”.
Object f1 r1: A1 A2 B1 B2 T1 T2 T3 T4 r2: A1 A2 B1 B2 T1 T2 T3 T4
A1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0
A2 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1
B1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1
B2 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 1
T1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0
T2 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1
T3 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1
T4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 5
The six highest posterior weight formulae from the extended
RRINF model applied to the world of Table 4.
weight formula
0.178 ∀x �(x)⇔(∀y (T⇒(r2(x, y)=1)))
0.178 ∀x �(x)⇔(∀y (T⇒(r1(x, y)=1)))
0.049 ∀x �(x)⇔(∀y (((r1(x, y)=0) ∧ T )⇒(r2(x, y)=1)))
0.016 ∀x �(x)⇔(∀y (T⇒( f1(x)=1)))
0.016 ∀x �(x)⇔(∀y (T⇒( f1(y)=0)))
0.016 ∀x �(x)⇔(∃y (T⇒( f1(y)=1)))

a measure of feature and relation weights we use the poste-
rior expectation of the number of features or relations used in
a formula; by averaging over many random worlds we get a
qualitative prediction for typical learning. In Fig. 7 we have
plotted these feature and relation weights against the number
of observed labels. We see a clear feature-to-relation transi-
tion: early in learning features are of primary importance, as
observations accumulate relations become more important,
and eventually the correct role-governed concept is learned.

Recall children’s shift for words like “uncle”, from a
feature-based interpretation to a role-based one. The quali-
tative feature-to-relation transition predicted by the extended
RRINF model suggests that this shift may in fact be the result
of rational belief updating rather than limited resources or a
domain general shift (e.g. from concrete to abstract under-
standing).

Discussion

The previous sections may be thought of as an ex-
tended example illustrating our view on what composition-
ality should mean in Bayesian rational analysis. The key fea-
tures of our grammar-based induction approach to concept
learning are the use of a concept language and a likelihood
function compatible with the grammar of this language—the
concept language lays the foundation for the virtues of com-
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Figure 7. A feature-to-relation transition: the posterior weight of
features and relations versus number of labels observed. Labels are
consistent with the role-governed concept ∀x �(x)⇔(∃y r1(x, y)=1).
Error bars are standard deviation over 10 randomly generated
worlds.

positionality, while compatibility gives the theory its seman-
tic teeth. The RRINF model is a case study of this approach.

We compared the feature-based version of the RRINF
model to human data from two concept learning experiments,
and found extremely good fits, comparable to the best ex-
isting models. This is particularly encouraging because the
RRINF model has only one free parameter—far fewer than
other models. The RRINF model has similarities with sev-
eral well established models of concept learning. Like the
RULEX model of Nosofsky et al. (1994), the RRINF model
learns a mixture of rule-like representations. However, while
RRINF is a computational-level rational model, the RULEX
model is a process-level model. Thus the RRINF model com-
plements other efforts by providing a missing level of expla-
nation to the rule-based approach to concept learning. RRINF

the binary relations had probability 0.05 (providing sparse matri-
ces).

∀x �(x)⇔(∃y r1(x, y)=1)

Goodman, et al. (2007)



Non-Boolean concepts
• Big experiment included context-

dependent (determiner-like) concepts.

• What languages explain inductive bias 
for these non-boolean concepts?
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Piantadosi, Goodman, Tenenbaum (in prep)



Non-Boolean concepts

• Best language is full boolean 
plus quantifiers.
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Other work

• Quantifying over objects/features
(Kemp and Jerns, 2010)

• Learning a relation (by learning a theory)
(Kemp, Goodman, Tenenbaum, 2008a, 2008b)

• Learning intuitive theories
(Katz, et al, 2008; Goodman, Ullman, Tenenbaum, 
2011; Ullman, Goodman, Tenenbaum, in prep)
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• Generative kinds

• Program induction
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then concept learning is probabilistic program induction.



Number
knowledge

Age Level

No word 
meanings <24m No-knower

“one” 24-30m One-knower

“one”,“two” 30-39m Two-knower

“one”-”three” 39-42m Three-knower
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“one”,“two” 30-39m Two-knower

“one”-”three” 39-42m Three-knower

All number 
words >42m CP-knower

Learning number

How many
duckies?

Can you give me 
two duckies?

See, e.g. Spelke 2003; Wynn 1990, 1992



Central questions

• How can number concepts be learned?
(Cf. Rips, et al, 2008, and responses.)

• In a way that doesn’t presuppose integers?

• Explaining the abrupt CP-transition?

• What is the role of language?



Learning number
• Sample a lexicon: a mapping from 

situations to descriptions.

• Lexicons expressed in (limited) λ-calculus 
plus primitives:

•Set primitives: difference, union, 
select, singleton?, doubleton?, ...

• Count-list operations: prev / next move 
between words on the list.

• Recursion: (L S).

• if, and, ...
Piantadosi, Tenenbaum, Goodman (subm.)



Learning number

(define L
 (λ (S) 
   (if (singleton? S) 
       “one”
       (if (doubleton? S) “two” undef))

A two-knower lexicon:



Learning number

(define L
 (λ (S) 
   (if (singleton? S) 
       “one”
       (next (L (set-difference S (select S)))))

A CP-knower lexicon:

(define L
 (λ (S) 
   (if (singleton? S) 
       “one”
       (if (doubleton? S) “two” undef))

A two-knower lexicon:



Learning number

• Large space of hypotheses contains many 
potentially useful lexica, as well as very silly ones. 



For example: a ‘mod 5’ lexicon:

(define L
 (λ (S)
   (if (or (singelton? S)
           (equal? (L (set-diff S (select S)))
                   “five”)
        “one”
        (next (L (set-diff S (select S)))))))

Learning number

• Large space of hypotheses contains many 
potentially useful lexica, as well as very silly ones. 

(Cf. Rips, et al, 2008.)



(query

 (define lexicon (noisify (lex-generator))

 (eq? (lexicon      )         )

 (and (eq? (lexicon    )         )

      (eq? (lexicon    )         )

      ...))

Hypotheses

Data

Learning number

“two blobs!”

“one blobs!”

“two blobs!”

• Learning data: number 
words paired with sets of 
objects (frequency of words 
matches CHILDES corpus).

Frequency of 
word + noun
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Figure 2. : Number word frequencies from CHILDES (MacWhinney 2000) used to simulate learn-
ing data for the model.

return undef , meaning that it is better for a learner to remain uncommitted than to make a strong
incorrect prediction. This likelihood uses a second free parameter, α, which controls the degree to
which the learner is penalized for data which does not agree with their hypothesis.

To create data for the learning model, we simulated noisy pairing of words and sets of objects,
where the word frequencies approximate the naturalistic word probabilities in child-directed speech
from CHILDES (MacWhinney 2000). We used all English transcripts with children aged between
20 and 40 months to compute these probabilities. This distribution is shown in Figure 2. Note
that all occurrences of number words were used to compute these probabilities, regardless of their
annotated syntactic type. This was because examination of the data revealed many instances in
which it is not clear if labeled pronoun usages actually have numerical content—e.g., “give me
one” and “do you want one?” We therefore simply used the raw counts of number words. This
provides a distribution of number words much like that observed cross-linguistically by Dehaene &
Mehler (1992), but likely overestimates the probability of “one”. Noisy data that fits the generative
assumptions of the model was created for the learner by pairing each set size with the correct word
with probability α, and with a uniformly chosen word with probability 1−α.

Inference & Methods

The previous section established a formal probabilistic model which assigns any potential
hypothesized numerical system L a probability, conditioning on some observed data consisting of
sets and word-types. This probabilistic model defines the probability of a lambda expression, but
does not say how one might find high-probability hypotheses or compute predicted behavioral pat-
terns. To solve these problems, we use a general inference algorithm similar to the tree-substitution
Markov-chain monte-carlo (MCMC) sampling used in the rational rules model.

This algorithm essentially performs a stochastic search through the space of hypotheses L.
For each hypothesized lexicon L, a change is proposed to L by resampling one piece of a lambda
expression in L according to a PCFG. The change is accepted with a certain probability such that
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Figure 3. : Figure 3a shows marginal posteriors probability of exhibiting each type of behavior, as a
function of amount of data. Figure 3b shows the same plot on a log y-axis demonstrating the large
number of other numerical systems which are considered, but found to be unlikely given the data.

behavior. For instance, the 2-knower line shows the sum of the posterior probability of all LOT
expressions which map sets of size 1 to “one”, sets of size 2 to “two”, and everything else to
undef . Intuitively, this marginal probability corresponds to the proportion of children who should
look like subset- or CP-knowers at each point in time. This figure shows that the model exhibits the
correct developmental pattern, first learning the meaning of “one”, then “two”, “three”, and finally
transitioning to a CP-knower who knows the correct meaning of all number words. That is, with
very little data the “best” hypothesis is one which looks like a 1-knower, and as more and more data
is accumulated, the model transitions through subset-knowers. Eventually, the model accumulates
enough evidence to justify the CP-knower lexicon that recursively defines all number words on the
count list. At that point, the model exhibits a conceptual re-organization, changing to a hypothesis
in which all number word meanings are defined recursively as in the CP-knower lexicon in Table 1.

The reason for the model’s developmental pattern is the fact that Bayes’ theorem implements

Learning number
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Figure 3. : Figure 3a shows marginal posteriors probability of exhibiting each type of behavior, as a
function of amount of data. Figure 3b shows the same plot on a log y-axis demonstrating the large
number of other numerical systems which are considered, but found to be unlikely given the data.

behavior. For instance, the 2-knower line shows the sum of the posterior probability of all LOT
expressions which map sets of size 1 to “one”, sets of size 2 to “two”, and everything else to
undef . Intuitively, this marginal probability corresponds to the proportion of children who should
look like subset- or CP-knowers at each point in time. This figure shows that the model exhibits the
correct developmental pattern, first learning the meaning of “one”, then “two”, “three”, and finally
transitioning to a CP-knower who knows the correct meaning of all number words. That is, with
very little data the “best” hypothesis is one which looks like a 1-knower, and as more and more data
is accumulated, the model transitions through subset-knowers. Eventually, the model accumulates
enough evidence to justify the CP-knower lexicon that recursively defines all number words on the
count list. At that point, the model exhibits a conceptual re-organization, changing to a hypothesis
in which all number word meanings are defined recursively as in the CP-knower lexicon in Table 1.

The reason for the model’s developmental pattern is the fact that Bayes’ theorem implements
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Outline

• Boolean categories

• Quantified concepts

• Natural number concepts

• Generative kinds

• Program induction

If concepts are probabilistic programs,
then concept learning is probabilistic program induction.



Generative kinds
Online Submission ID: 0387

f3 : sharp turns at large towers
f4 : straight walls across small towers

f5, f6 : distance      between two short 
   towers, otherwise 

d1
d2

Stage 3: Sample tower positions; 

f1 : types of adjacent towers
f2 : types of three consecutive towers

Stage 2: Sample tower types (S, L); 

Stage 1: #Towers ~ P(N); 

f3 f4

L S

L S

f1

Xi Xj ···

L, L
L, S
S, L

S, S

0.05
0.5
0.5

0.2

f1(xi, xj)(xi, xj)

···

Figure 15: Castles synthesized with 3-stage factor graphs. f1 (partly shown) is a factor function that discourages two consecutive large

towers while f2 encourages sequences of three small towers. f3 and f4 are context sensitive constraints whose application depends on tower

type. Accounting for burn-in, each castle was generated in 10 seconds. After burn-in, samples were gathered every 3000 iterations at the last

stage.

Figure 14(c) compares our method with two commonly used meth-492

ods of introducing randomness to a pattern: 1) random jittering of493

points within a range and 2) generating points in sequence, turn-494

ing by a random angle at each step. The end points of the vine495

are fixed at the red flowers. The constraint is a soft constraint on496

straightness; that the curvature measured between any three con-497

secutive points has mean 0 with variance 0.1. This allows the vine498

to smoothly curve. We see that we cannot satisfy these constraints499

using traditional methods. Random jittering is unable to preserve500

the curvature constraints. While sequential random turning gener-501

ates smooth curves, the vine goes off track from the endpoint. Our502

method generates vines that satisfy the straightness constraint while503

respecting the fixed endpoints.504

Castles: context-sensitive constraints. In this example, we505

show that it is useful for constraints at one stage to depend on val-506

ues sampled at previous stages. We also demonstrate our method’s507

ability for handling models with non-tree-like topologies.508

Consider the design of a castle, composed of a set of large towers509

(L) and small towers (S) connected by walls in a circular topology.510

Large towers tend to occur at sharper turns in the wall and small511

towers occur at relatively straight sections. This has semantic sig-512

nificance; the field of view, and therefore the tactical effectiveness,513

of each tower increases as the turn is made sharper. Concave turns514

also facilitate the defense of areas close to the castle wall. The cas-515

tle also contains a gate which, due to its tactical value, must be more516

heavily defended than the rest of the castle.517

In Figure 15, we show synthesized castles exhibiting these con-518

straints. There are 3 stages in the synthesis process: the generation519

of the number of towers, the type of each tower (large or small),520

and finally the position of each tower. This allows constraints at521

the third stage (tower positions) to depend on sampled values at the522

second stage (tower types).523

Note that we use a construction function to generate all random
variables corresponding to towers at once instead of incrementally

generating them one at a time. It is easy to use a scope constructor
to recover the circular topology. For example, constraints between
two consecutive towers use this scope constructor:

s(X1, X2 . . . Xn) = {(Xn, X1), (X1, X2), . . . , (Xn−1, Xn)}

Models are then rendered with walls following the same topology.524

To express the dynamic constraint between type and position using525

multi-stage factor graphs, we attach different factors depending on526

the type of each tower after them in stage 2. This is illustrated in527

Figure 15 along with other constraints used. Note that we have not528

imposed a constraint against self-intersection. It is still possible for529

castles to self-intersect; to mitigate this, we initialize the sampling530

algorithm with the towers arranged in a circle.531

As shown in Figure 15, each castle generated satisfies the con-532

straints specified. Large towers occur at sharp turns in the wall,533

large towers surround gates, small towers occur at straighter sec-534

tions, and there is separation between large and small towers. A535

variety of castles can be synthesized from this multi-stage factor536

graph, from ordinary rectangular castles to complex castles with537

concave sections.538

Conference rooms. Previous examples showed how we could539

use different template factors to encode different constraints. Here,540

we demonstrate how the same template factors can be used to en-541

code the same types of constraints in a variety of settings. Consider542

the layout of chairs in a conference room; there are several rows of543

chairs facing a central object, such as a podium. We can specify544

one set of template factors and scope constructors so that the layout545

adapts to different room shapes and podium positions.546

We used two stages to synthesize the result: 1) sample the number547

of rows and the displacement of the first row from the podium, and548

2) sample the position, relative spacing and number of chairs in549

each row.550

The constraints are as follows:551
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Procedural Modeling using Multi-Stage Factor Graphs

Figure 1: Building facades and tree patterns synthesized using multi-stage factor graphs.

Abstract1

Man-made and natural environments exhibit both structured and2

unstructured concepts, arrangements, and relationships. Procedural3

grammar-based methods generate objects as a sequence of elemen-4

tary geometric operations. However, the results are hard to control;5

it is difficult to satisfy geometrically complex or semantically rel-6

evant design constraints procedurally. This paper describes a for-7

malism for pattern synthesis, the multi-stage factor graph, which8

addresses those limitations. One synthesizes patterns from multi-9

stage factor graphs by interleaving the sampling from and genera-10

tion of individual factor graphs. Being an open-universe probabilis-11

tic model, the multi-stage factor graph handles uncertainty in the12

number and existence of random variables. Constraints can there-13

fore be specified without the need to fix the set of objects being14

constrained. We demonstrate the applicability of this approach with15

four examples: buildings, decorative patterns, castles, and confer-16

ence rooms. We show that our synthesized patterns satisfy con-17

straints that are hard to satisfy through grammar-based methods,18

while capturing the natural variation of patterns satisfying these19

constraints.20

Keywords: factor graphs, procedural modeling, constrained syn-21

thesis22

1 Introduction23

Procedural modeling can be used to automatically create visual con-24

tent using a compact set of rules. Models are generated by ex-25

ecuting the rules. However, it is hard to control the results of a26

procedural processs; it requires expert knowledge of not only how27

individual rules work, but how they interact with one another. In28

this paper, we address this issue of controllability by augmenting29

procedural methods with elements from declarative modeling.30

In contrast to procedural modeling, where one specifies how to gen-31

erate a model as a series of elementary operations, declarative mod-32

eling is based on specifying what to generate as a collection of con-33

straints.34

Patterns exhibit constraints of many forms. For example, build-35

ings exhibit compositional structures. A building decomposes into36

floors; a floor decomposes into architectural elements such as win-37

dows and doors. Buildings also exhibit mutual interactions among38

elements. Windows on different floors are aligned. In addition,39

the ground floor has exactly one door. We argue that each type40

of constraint should be specified using its most perspicuous repre-41

sentation. Some constraints are better captured procedurally while42

others are better captured declaratively. Both types of constraints43

are needed to correctly describe real-world objects.44

In this paper, we propose a probabilistic model allowing for speci-45

fying constraints both ways simultaneously. Our contributions are46

as follows:47

1. We cast the problem of imposing soft constraints over a pro-48

cedural process as sampling from a multi-stage factor graph.49

2. We show that our representation, an open-universe probabilis-50

tic model, allows us to encode both geometrically complex51

and semantically relevant design constraints without fixing a52

set of objects to constrain.53

3. We demonstrate that many desirable constraints that are hard54

to satisfy through purely procedural methods can be captured55

by sampling from a multi-stage factor graph.56

2 Related Work57

Grammar-based procedural modeling. Procedural modeling58

has a long history. Formal grammars have been used to model the59

growth of plants. The L-system [Lindenmayer 1968] , used for pro-60

cedural modeling of plants, is one of the earliest grammar-based61

systems. In a grammar-based system, a model is the interpretation62

of a string of symbols which are in turn derived from other sym-63

bols using production rules. Besides strings, one can also specify64

production rules on graphs [Smith 1984].65

The earliest formal grammars for procedural modeling were lim-66

ited in expressiveness; they were deterministic and context-free.67

Formal grammars have been extended in several ways. By aug-68

menting L-systems with context-sensitivity, one can simulate the69

effect of control signals on plant growth [Prusinkiewicz and Lin-70

denmayer 1996]. Plants generated by deterministic L-systems are71

all identical. To introduce variety into the results, researchers have72

developed stochastic L-systems, whose productions nondetermin-73

istically choose between multiple successors [Prusinkiewicz 1987].74

Both context-sensitive and stochastic L-systems have been general-75

ized to allow numerical parameters, providing finer control over the76

geometry of the resulting plant [Hanan 1992].77

Researchers have also developed grammars for modeling objects78

other than plants. More recently, CGA Shape [Müller et al. 2006a],79

a context-sensitive, stochastic, and parametric grammar, was devel-80

oped for the procedural modeling of urban spaces.81

Constrained procedural modeling. While grammar-based82

techniques are powerful, their applicability is limited by the dif-83
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Abstract

Many real world concepts, such as “car”, “house”, and “tree”,

are more than simply a collection of features. These objects

are richly structured, defined in terms of systems of relations,

subparts, and recursive embeddings. We describe an approach

to concept representation and learning that attempts to capture

such structured objects. This approach builds on recent proba-

bilistic approaches, viewing concepts as generative processes,

and on recent rule-based approaches, constructing concepts in-

ductively from a language of thought. Concepts are modeled

as probabilistic programs that describe generative processes;

these programs are described in a compositional language. In

an exploratory concept learning experiment, we investigate hu-

man learning from sets of tree-like objects generated by pro-

cesses that vary in their abstract structure, from simple proto-

types to complex recursions. We compare human categoriza-

tion judgements to predictions of the true generative process as

well as a variety of exemplar-based heuristics.

Introduction
Concept learning has traditionally been studied in the con-

text of relatively unstructured objects that can be described

as collections of features. Learning and categorization can be

understood formally as problems of statistical inference, and

a number of successful accounts of concept learning can be

viewed in terms of probabilistic models defined over different

ways to represent structure in feature sets, such as prototypes,

exemplars, or logical rules (Anderson, 1990; Shi, Feldman,

& Griffiths, 2008; Goodman, Tenenbaum, Feldman, & Grif-

fiths, 2008). Yet for many real world object concepts, such as

“car”, “house”, “tree, or “human body”, instances are more

than simply a collection of features. These objects are richly

structured, defined in terms of features connected in systems

of relations, parts and subparts at multiple scales of abstrac-

tion, and even recursive embedding (Markman, 1999). A tree

has branches coming out of a trunk, with roots in the ground;

branches give rise to smaller branches, and there are leaves

at the end of the branches. A human body has a head on top

of a torso; arms and legs come out of the torso, with arms

ending in hands, made of fingers. A house is composed of

walls, roofs, doors, and other parts arranged in characteristic

functional and spatial relations that are harder to verbalize but

still easy to recognize and reason about. Besides objects, ex-

amples of structured concepts can be found in language (e.g.

the mutually recursive system of phrase types in a grammar),

in the representation of events (e.g. a soccer match with its

fixed subparts), and processes (e.g. the recipe for making a

pancake with steps at different levels of abstraction).

Such concepts have not been the focus of research in the

probabilistic modeling tradition. Here we describe an ap-

proach to representing structured concepts—more typical of

the complexity of real world categories—using probabilistic

generative processes. We test whether statistical inference

with these generative processes can account for how people

categorize novel instances of structured concepts and com-

pare with more heuristic, exemplar-based approaches.

Because a structured concept like “house” has no single,

simple perceptual prototype that is similar to all examples,

learning such a concept might seem very difficult. However,

each example of a structured concept itself has internal struc-

ture which makes it potentially very informative. Consider

figure 1, where from only a few observations of a concept it

is easy to see the underlying structural regularity that can be

extended to new items. The regularities underlying structured

concepts can often be expressed with instructions for gener-
ating the examples: “Draw a sequence of brown dots, choose

a branch color, and for each brown dot draw two dots of this

color branching from it.”

Figure 1: Three examples of a structured concept described by a

simple generative process.

We build on the work of Goodman, Tenenbaum, et al.

(2008), who introduced an approach to concept learning as

Bayesian inference over a grammatically structured hypoth-

esis space—a “language of thought.” Single concepts ex-

pressed in this language were simple propositional rules for

classifying objects, but this approach naturally extends to

richer representations, providing a concept learning theory

for any representation language. Here we consider a language

for generative processes based on probabilistic programs: in-

structions for constructing objects, which may include prob-

abilistic choices, thus describing distributions on objects—in

our case distributions on colored trees. Because this language

describes generative processes as programs, it captures regu-

larities as abstract as subparts and recursion.

The theory of concept representation that we describe here

shares many aspects with previous approaches to concepts.

Like prototype and mixture models (Anderson, 1990; Grif-

fiths, Canini, & Sanborn, 2007), probabilistic programs de-

scribe distributions on observations. However, prototypes and

mixtures generate observations as noisy copies of ideal pro-

totypes for the concept and thus cannot capture more abstract

structures such as recursion. Like rule-based models of con-

cept learning, our approach supports compositionality: com-

plex concepts are composed out of simple ones—but rather

Inducing Probabilistic Programs by Bayesian Program Merging

Irvin Hwang

Stanford University

Andreas Stuhlmüller

MIT

Noah Goodman

Stanford University

Abstract

This report outlines an approach for representing generative models with probabilistic programs
and learning these programs from data. The main advantage of using probabilistic programs as
generative models is the ability to capture interesting patterns in a concise manner that is amenable
to inference. Formulating model learning in terms of program induction also leads us to explore
the idea of understanding pattern as repeated computation within a generative process. This idea
provides a unifying theme for the program transformations used in searching the space of generative
models, which is framed in a Bayesian model merging-like way. There are two main types of program
transformations we consider: the first is based on merging common subexpressions within a program
and the second focuses on reducing the number of parameters for functions in the program. We
demonstrate this approach on a simple domain of list structured data.

1 Introduction

What do you see when you look at figure 1? What kinds of patterns are there in the image?

Figure 1: Tree-like objects.

You might describe the image as a series of trees where each tree has a large base and a number of

branches of variable length with each branch ending in a flower that is either red or purple. Each part

of this description corresponds to a different pattern detected in the image. The large base for each

individual plant, the variable length branches, branches end in red flowers, etc. Recognizing patterns

like these is an important aspect of intelligence and it would be useful if we could automate this process.

One possible way to approach this problem is in terms of learning generative models represented as

probabilistic programs. In this document, we build on the notion of representing patterns or concepts

as probabilistic programs [5] and begin to explore a family of algorithms for learning such programs.

One of the major difficulties with identifying regularities in data is the many notions of what it means

to be a pattern and how this can vary with the types of data being analyzed. We propose approaching

this problem by performing a “reduction” by first transforming data (whatever its type) into a canonical

form (an expression in a programming language) and then defining pattern as repeated computation

in such a program. The main components of our approach are as follows: representation of data in

terms of algebraic data types, representation of patterns in data as probabilistic programs, guiding

1



Concept Type Example Program and Observations

Prototype
(lambda ()

(node ’a
(node ’b (node ’c (node ’c)) (node ’b))
(node ’d (node ’e))))

Nested prototype
(lambda ()

(node ’a
(node ’b

(node ’a
(if (flip)

(node ’c (node ’a) (node ’a (node ’a (node ’b)) (node ’b)))
(node ’d (node ’e) (node ’f (node ’f)) (node ’f)))))))

Subconcepts without arguments
(begin

(define (part) (node ’c (node ’c (node ’a)) (node ’c)))
(lambda () (node ’a (node ’b) (node ’d (part)) (node ’b (part) (node ’d)))))

Subconcepts with arguments
(begin

(define (part x) (node ’a x (node ’a x (node ’a x (node ’a x x) x) x) x))
(lambda () (part (if (flip) (node ’b) (node ’c)))))

Single recursion
(begin

(define (part) (node ’a (node ’b (if (flip) (node ’c) (part)))))
(lambda () (node ’c (node ’d) (part) (node ’e (node ’f (part))))))

Multiple recursion
(begin

(define (part) (node ’a (if (flip 0.3) (part) (node ’a)) (if (flip 0.3) (part) (node ’d))))
(lambda () (node ’c (node ’d (node ’f (part))) (part))))

Table 1: Taxonomy of Generative Concepts. For each concept type, an example program and observations drawn from this

program are shown.

Learning generative kinds
Concept Type Example Program and Observations

Prototype
(lambda ()

(node ’a
(node ’b (node ’c (node ’c)) (node ’b))
(node ’d (node ’e))))

Nested prototype
(lambda ()

(node ’a
(node ’b

(node ’a
(if (flip)

(node ’c (node ’a) (node ’a (node ’a (node ’b)) (node ’b)))
(node ’d (node ’e) (node ’f (node ’f)) (node ’f)))))))

Subconcepts without arguments
(begin

(define (part) (node ’c (node ’c (node ’a)) (node ’c)))
(lambda () (node ’a (node ’b) (node ’d (part)) (node ’b (part) (node ’d)))))

Subconcepts with arguments
(begin

(define (part x) (node ’a x (node ’a x (node ’a x (node ’a x x) x) x) x))
(lambda () (part (if (flip) (node ’b) (node ’c)))))

Single recursion
(begin

(define (part) (node ’a (node ’b (if (flip) (node ’c) (part)))))
(lambda () (node ’c (node ’d) (part) (node ’e (node ’f (part))))))

Multiple recursion
(begin

(define (part) (node ’a (if (flip 0.3) (part) (node ’a)) (if (flip 0.3) (part) (node ’d))))
(lambda () (node ’c (node ’d (node ’f (part))) (part))))

Table 1: Taxonomy of Generative Concepts. For each concept type, an example program and observations drawn from this

program are shown.

Concept Type Example Program and Observations

Prototype
(lambda ()

(node ’a
(node ’b (node ’c (node ’c)) (node ’b))
(node ’d (node ’e))))

Nested prototype
(lambda ()

(node ’a
(node ’b

(node ’a
(if (flip)

(node ’c (node ’a) (node ’a (node ’a (node ’b)) (node ’b)))
(node ’d (node ’e) (node ’f (node ’f)) (node ’f)))))))

Subconcepts without arguments
(begin

(define (part) (node ’c (node ’c (node ’a)) (node ’c)))
(lambda () (node ’a (node ’b) (node ’d (part)) (node ’b (part) (node ’d)))))

Subconcepts with arguments
(begin

(define (part x) (node ’a x (node ’a x (node ’a x (node ’a x x) x) x) x))
(lambda () (part (if (flip) (node ’b) (node ’c)))))

Single recursion
(begin

(define (part) (node ’a (node ’b (if (flip) (node ’c) (part)))))
(lambda () (node ’c (node ’d) (part) (node ’e (node ’f (part))))))

Multiple recursion
(begin

(define (part) (node ’a (if (flip 0.3) (part) (node ’a)) (if (flip 0.3) (part) (node ’d))))
(lambda () (node ’c (node ’d (node ’f (part))) (part))))

Table 1: Taxonomy of Generative Concepts. For each concept type, an example program and observations drawn from this

program are shown.
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Figure 3: Comparison between human and model responses across concept types. For each concept type, three generating

concepts were used in the experiments. A single concept type graph shows the subject responses to all test items in all three

experiments plotted against the model judgments (where available).

• Lack of context. The experimental setup did not provide

information to the subject about the origin of the trees they

saw and thus different subjects may have had very different

expectations about what trees are of the same type due to

different background assumptions.

• Misleading visual representation of the stimuli. The colors

were chosen such that they are easily distinguishable and

the assignments were randomized, but grouping effects that

are not part of the model may nonetheless have had an im-

pact on the responses (in particular in combination with the

small number of subjects).

• Divergence of the model’s noise process from the subject’s

intuitive noise process. The noise process of the genera-

tive model allows a switch during the generating process

from the prototype to a base distribution at any node with

a low probability pnoise. This may not correspond to the

process used to intuitively judge similarity between a tree

and noisified versions of this tree.

• Noise in the model score estimation process. The model

scores were estimated by the adaptive importance sampler

using 300 samples which may not have been enough for

the more complex models. In particular, this casts doubt

on the model results for the recursion conditions.

• True generative model used instead of inferred program.

The assumption that the true generating program is close to

what an ideal observer that knows the generating grammar

would infer given the 15 training examples shown to the

subjects may not be correct.

Model Comparison

Since inference over a space of programs that allows lambda

abstraction is not implemented yet
3

and since it is difficult

to infer the most likely program for given observations and

under a given program grammar without inference, I limit

the model comparison to nested prototypes agains prototypes.

Here, the best models under the prototype grammar for ob-

servations from a given nested prototype program are usually

those that choose either one branch or the other branch de-

terministically but are otherwise identical to the nested proto-

type program that generated the observations.

Figure 4 shows for all three concepts within the nested pro-

totype category how well the true model corresponds to the

human data as well as how well two prototype models ac-

count for the data. The correlation between model and hu-

man judgment is .89, .87 and .95 for the nested prototype

model and (.53, .61), (.23, .49), and (.85, .81) for the proto-

type models. The subjects do learn that subparts of concepts

can be either this or that, and a model that does not take into

account this fact needs to explain one of the branches as ran-

dom noise which results in a score much lower than seen in

the subjects’ responses.

3
Inference over programs with lambda abstraction requires “in-

verse inlining” proposals.
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Figure 3: Comparison between human and model responses across concept types. For each concept type, three generating

concepts were used in the experiments. A single concept type graph shows the subject responses to all test items in all three

experiments plotted against the model judgments (where available).

• Lack of context. The experimental setup did not provide

information to the subject about the origin of the trees they

saw and thus different subjects may have had very different

expectations about what trees are of the same type due to

different background assumptions.

• Misleading visual representation of the stimuli. The colors

were chosen such that they are easily distinguishable and

the assignments were randomized, but grouping effects that

are not part of the model may nonetheless have had an im-

pact on the responses (in particular in combination with the

small number of subjects).

• Divergence of the model’s noise process from the subject’s

intuitive noise process. The noise process of the genera-

tive model allows a switch during the generating process

from the prototype to a base distribution at any node with

a low probability pnoise. This may not correspond to the

process used to intuitively judge similarity between a tree

and noisified versions of this tree.

• Noise in the model score estimation process. The model

scores were estimated by the adaptive importance sampler

using 300 samples which may not have been enough for

the more complex models. In particular, this casts doubt

on the model results for the recursion conditions.

• True generative model used instead of inferred program.

The assumption that the true generating program is close to

what an ideal observer that knows the generating grammar

would infer given the 15 training examples shown to the

subjects may not be correct.

Model Comparison

Since inference over a space of programs that allows lambda

abstraction is not implemented yet
3

and since it is difficult

to infer the most likely program for given observations and

under a given program grammar without inference, I limit

the model comparison to nested prototypes agains prototypes.

Here, the best models under the prototype grammar for ob-

servations from a given nested prototype program are usually

those that choose either one branch or the other branch de-

terministically but are otherwise identical to the nested proto-

type program that generated the observations.

Figure 4 shows for all three concepts within the nested pro-

totype category how well the true model corresponds to the

human data as well as how well two prototype models ac-

count for the data. The correlation between model and hu-

man judgment is .89, .87 and .95 for the nested prototype

model and (.53, .61), (.23, .49), and (.85, .81) for the proto-

type models. The subjects do learn that subparts of concepts

can be either this or that, and a model that does not take into

account this fact needs to explain one of the branches as ran-

dom noise which results in a score much lower than seen in

the subjects’ responses.

3
Inference over programs with lambda abstraction requires “in-

verse inlining” proposals.
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Figure 3: Comparison between human and model responses across concept types. For each concept type, three generating

concepts were used in the experiments. A single concept type graph shows the subject responses to all test items in all three

experiments plotted against the model judgments (where available).

• Lack of context. The experimental setup did not provide

information to the subject about the origin of the trees they

saw and thus different subjects may have had very different

expectations about what trees are of the same type due to

different background assumptions.

• Misleading visual representation of the stimuli. The colors

were chosen such that they are easily distinguishable and

the assignments were randomized, but grouping effects that

are not part of the model may nonetheless have had an im-

pact on the responses (in particular in combination with the

small number of subjects).

• Divergence of the model’s noise process from the subject’s

intuitive noise process. The noise process of the genera-

tive model allows a switch during the generating process

from the prototype to a base distribution at any node with

a low probability pnoise. This may not correspond to the

process used to intuitively judge similarity between a tree

and noisified versions of this tree.

• Noise in the model score estimation process. The model

scores were estimated by the adaptive importance sampler

using 300 samples which may not have been enough for

the more complex models. In particular, this casts doubt

on the model results for the recursion conditions.

• True generative model used instead of inferred program.

The assumption that the true generating program is close to

what an ideal observer that knows the generating grammar

would infer given the 15 training examples shown to the

subjects may not be correct.

Model Comparison

Since inference over a space of programs that allows lambda

abstraction is not implemented yet
3

and since it is difficult

to infer the most likely program for given observations and

under a given program grammar without inference, I limit

the model comparison to nested prototypes agains prototypes.

Here, the best models under the prototype grammar for ob-

servations from a given nested prototype program are usually

those that choose either one branch or the other branch de-

terministically but are otherwise identical to the nested proto-

type program that generated the observations.

Figure 4 shows for all three concepts within the nested pro-

totype category how well the true model corresponds to the

human data as well as how well two prototype models ac-

count for the data. The correlation between model and hu-

man judgment is .89, .87 and .95 for the nested prototype

model and (.53, .61), (.23, .49), and (.85, .81) for the proto-

type models. The subjects do learn that subparts of concepts

can be either this or that, and a model that does not take into

account this fact needs to explain one of the branches as ran-

dom noise which results in a score much lower than seen in

the subjects’ responses.

3
Inference over programs with lambda abstraction requires “in-

verse inlining” proposals.

Simple 
prototype

Single 
recursion

Sub-
concepts

Stuhlmueller, Tenenbaum, Goodman (2010)
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Figure 2: Comparison between human and model responses across concept types for tree exemplar and generative model. For each of the
six concept types, three examples were shown; the color of the dots indicates to which example any given datapoint belongs. Empty circles
denote isolated part cases that were excluded from the correlation analysis.

Set
GCM

Transition
GCM

Tree
GCM

Generative
Model

Prototype 0.589 0.751 0.803 0.748
Nested Prototype 0.544 0.851 0.937 0.904
Parts* 0.320 0.617 0.705 0.835
Parameterized
Parts

0.298 0.591 0.778 0.911

Single Recursion 0.284 0.499 0.637 0.773
Multiple
Recursion

0.505 0.561 0.451 0.770

Table 2: Human-model correlations for the experiment. Each row
shows how well the different models predicted subjects’ perfor-
mance for a particular concept type. *Correlations excluding iso-
lated part cases (see text).

tics was the best predictor for any of the concept types, with
the transition-based exemplar model performing strictly bet-
ter than the set-based model. An effect that is not accounted
for by the less structural exemplar models is illustrated by
the nested prototype example in table 3: Subjects generalize
significantly more to examples with branches they have seen
before than to examples that have a mixture of two known
branches. Likewise, subjects seem to generalize significantly
more to trees with known branches than to trees that have new
branches with similar surface statistics. Both results are ex-
pected under the two models that make use of tree structure.

If we group prototype and nested prototype as “less struc-
tured” and subconcepts with and without arguments, single
recursions, and multiple recursions as “more structured”, then
the tree exemplar model best predicts human responses for
the less structured stimuli whereas the true generative model
best predicts performance for the more structured stimuli.

Our generative model makes the simplifying assumption
that the learner infers a single generating concept from the ex-
amples whereas one interpretation of the tree exemplar model
is that it uses each of the training examples as a hypothesis
on what the true concept looks like. A fully Bayesian learner,
which maintains a distribution over generative processes, may

predict human behavior in ways similar to the tree exemplar
model for less structured examples and similar to the true gen-
erating process model for the more structured examples.

Having seen how different models predict human judge-
ments for different concept types, we will now look at indi-
vidual response patterns in order to determine ways in which
both of the two structural models can be improved.

The part example in table 3 shows how changes to the lo-
cation of a part can have significantly different effects de-
pending on whether the overall concept is preserved (result-
ing in high generalization) or the part is moved into a com-
pletely different environment (resulting in low generaliza-
tion). By analogy, a Picasso face, with eyes in odd places,
is still more of a face than an eye alone. Parts seen out of
context constitute a problem for all models (except for the
simplest set-based one): subjects judged these isolated parts
as unlikely to come from the concept that included them as
subparts whereas the models did give a high score to these ex-
amples. Since including these outliers dramatically changed
the scores and made the interpretation of the model compar-
ison difficult, we excluded these data points from the analy-
sis in table 2. Without correction, the model-human correla-
tions for the part concepts are: 0.403 for the set-based exem-
plar model, 0.505 for the transition exemplar model, 0.512
for the tree-based exemplar model, and 0.543 for the genera-
tive model (note that rank-order among the models does not
change as a result of excluding these data points).

For the parameterized part example in table 3, changing the
argument uniformly, i.e. in all places where it occurs, leads
to consistently higher scores than changing the argument dif-
ferently in different places; however, this difference is not
significant. This difference is expected if subjects inferred
the true generative model, since changes to the argument re-
quire only one use of the noise process, whereas nonuniform
changes require many different nodes to be generated by the
noise process. Future research needs to determine whether
this effect is real, perhaps by manipulating the diversity of

Prototype Nested Prototype Parts Parameterized

Parts

Single Recursion Multiple

Recursion

(node •
(node •

(node •
(node •)
(node •))))

(node •
(node •

(node •
(if (flip .5)

(node •
(node •)
(node •

(node •
(node •))

(node •)))
(node •

(node •)
(node •

(node •))
(node •))))))

(define (part)
(node •

(node •
(node •))))

(node •
(part)
(node •

(node •
(part))

(part)))

(define (part x)
(node •

x
(node •

x
(node •

x
(node • x x)
x)

x)
x))

(part
(if (flip .5)

(node •)
(node •)))

(define (part)
(node •

(if (flip .5)
(node •

(part)
(node •))

(node •))))

(node •
(node •

(node •)
(node •))

(part))

(define (part)
(node •

(if (flip .3)
(part)
(node •))

(if (flip .3)
(part)
(node •))))

(node •
(node •

(node •
(part)))

(part))

Table 1: This table illustrates the concept types that can be represented within our language for generative models. For each type, an example

of a concept (a stochastic program) is shown together with observations drawn from this program. The stochastic function node generates

a mixture of the subtrees that are passed to it as its arguments and a noise process that, with low probability, can generate any tree. The

abstraction methods stochastic branching, (parameterized) parts and recursion compose these stochastic prototypes into more structured

generative processes.

domain that both contains observations with simple structure

and allows for interesting generative processes—the domain

of colored trees generated by probabilistic programs.

Methods

Participants 250 members of Amazon’s crowdsourcing

service Mechanical Turk took part in the online experiment.

Subjects were compensated for participation.

Stimuli Subjects were told that they are looking at newly

discovered kinds of plants that grow in extreme environments.

Each subject saw 18 pages, with each page consisting of 15

training examples, a control question, and a test example to-

gether with a classification question. Both training and test

examples were images of simple trees with colored nodes

drawn from tree-generating programs (see e.g. table 3). For

each of the concept types shown in table 1, there were three

tree-generating programs, and for each program there were 7

test examples. These test examples were chosen to cover a

wide range of both intuitive and model judgements of cate-

gory membership. Both training example order and stimuli

colors were randomized.

Procedure In order to ensure that subjects process the train-

ing stimuli, a control question on each page asked how many

of the training trees consist of more than 7 dots. 55 subjects

answered less than 13 out of the 18 control questions cor-

rectly within an error margin of 2. We did not include these

subjects in the analysis.

The categorization question asked: “How likely is it that

the following plant is the same kind of plant as the plants

above?” Subjects chose on a seven-step scale ranging from

“certainly the same kind” to “certainly not the same kind”.

For each subject, the responses were normalized to [0,1].

Results
Table 2 summarizes the correlation results for all models.

Figure 2 shows for each concept type human results and

model results for both the exemplar and generative model.

For each concept type, three different concepts were part of

the experiment, and for each concept, seven different test ob-

servations were shown. A single point in the scatterplot con-

tains information on the mean subject response for a single

test tree and on the model prediction for this tree.

Neither of the two exemplar models based on simple statis-
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Algorithms for induction

• What algorithms are capable of learning 
concepts in a language of thought?

• All results so far were computed using 
MCMC based on constituent regeneration 
(Goodman, et al, 2008).

• Is this cognitively 
plausible? Maybe... 

• But this is probably 
not enough on its own.

Simulation iterations

Lo
g 

po
st

er
io

r

Figure 5: Representative runs of theory learning in Taxonomy. (a) Dashed lines show

different runs. Solid line is the average across all runs. (b) Highlighting a particular run,

showing the acquisition of rule 4, followed by the acquisition of rule 3 and thus achieving

the final correct theory.

partial theory which included only law 3 or law 4. Several observations are

worth noting with regards to the results:

Abstract learning is possible: Using simple local search, the learner is able

to navigate an infinite space of potential theories to discover the underlying

structure of the domain. Even relatively few examples (the relations between

7 objects and 7 properties) are enough to learn a theory that will apply across

an entire domain.

Learning proceeds in stochastic leaps: Discovering the right rule gives

the learner a great wealth of explanatory power. However, surrounding each

correct theory in the discrete space are many nonsensical formulations. These

leaps of logic from a good theory to a better one depend on making the right

changes to the current theory, changes which are proposed randomly in our

formulation. While we do not suggest that people proceed to learn theories

only by making random changes to their mental structures, the nature of

probabilistic proposals within a search algorithm may explain why individual

learning doesn’t proceed along a smooth curve and shows individual variation

given the same data.

On average, learning is smooth: While the learning for each run happens

in discrete moves, taking an aggregate of all runs shows a smooth transition

that belies the underlying discrete nature of learning. This emphasizes the

possible danger of studying theory learning and theory change by averaging
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• Program induction is especially hard. 
How could it be done?

• Idea: syntactic analogy + argument 
compression (+ search/MCMC).

Program induction
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(/ (F 2) (F 5))
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 (+ 1 (* (gaussian 3.5 1.0) 3)))
(/ (F) (F))

“de-argument”
(define (F x) 
 (+ 1 (* x 3)))
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(define (F) 
 (if (flip) (+ 1 (* (F) 3)) 1))
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(define (F x) 
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Program induction
• Bayesian program merging algorithm:

(Cf. Stolcke & Omohundro, 1994)

• Initial state is exemplar program (mixture of data).

• Transform programs via syntactic analogy and 
argument compression.

• Beam search* with respect to the posterior score.
(*Or stochastic search, Monte Carlo, etc.)

• Likelihood: marginal probability of data given program 
(computed by lazy particle filter).

• Prior: syntactic complexity.

Hwang, Stuhlmueller, Goodman (in prep)



Example

(node r (node b) 
        (node r (node b) 
                (node r (node b) 
                        (node r (node b) b)

“data incorporation”

(define (F x) (node r (node b) x))
(F (F (F (F b))))

(define (F) (if (flip 0.8) 
                (node r (node b) (F)) 
                b))
(F)

“inverse inline”

“de-argument”

sample

...



Example

(petal shade)
(petal shade)))

(define (petal shade)
(node (data (color (gaussian shade 25)) (size .3))))

Bayesian model merging produces a program with a similar structure to the original generating program.
F3 plays a similar role to the petal function. F2 is a function that creates a branch that ends in a flower
with either blue petals or red petals.

(begin (define F4 (lambda (V7 V8) (node (F1 V7 0.1) V8)))
(define F3 (lambda (V6) (node (F1 V6 0.3))))
(define F2

(lambda (V3 V4)
(( lambda (V5) (F4 V3 (F4 V4 V5)))

(if (flip 9/11)
(F2 81.0 85.0)
(uniform-choice

(node (F1 204.0 0.3) (F3 199.0)
(F3 243.0) (F3 233.0) (F3 240.0)))

(F4 151.0
(node (F1 -21.0 0.3) (F3 7.0)

(F3 49.0) (F3 3e1) (F3 44.0))))))))
(define F1

(lambda (V1 V2)
(data (color (gaussian V1 25)) (size V2))))

(lambda ()
(uniform-choice

(node (F1 13.0 1) (F2 89.0 111.0)
(F2 85.0 121.0))))

8 Discussion

We presented an approach to creating generative models from data called Bayesian program merg-
ing. The main ideas were to rerepresent data as a program and then frame finding regularities in the
trasformed data as identifying repeated computation in the program. Finding repeated computation was
performed through program transformations that merged the structure of a program. The sequences of
transformations made while searching were guided using the posterior of the program.

8.1 Noise and Representation

We generated colors for our trees using Gaussians and one motivation for this would be to model the
random processes in the environment. There is another, more subtle, reason to introduce a noise process
into our programs related to representation. Randomness in data constructors (such as color) can
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A three-knower lexicon:
(define lexicon
 (λ (word) 
  (case word
   (“one” (λ (set) 
           (empty? (diff set (select set))))
   (“two”   (λ (set) 
             ((lexicon “one”) 
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A CP-knower lexicon:
(define lexicon
 (λ (word)
  (if (= word “one”)
      (λ (set)
       (empty? (diff set (select set))))
      (λ (set)
        ((lexicon (prev word)) 
               (diff set (select set)))))))
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An evolving conceptome

• Concepts (and theories) are 
represented in the PLoT, induced in 
response to evidence.

• Learned concepts become ‘effective 
primitives’ for new concepts.



Role of existing concepts
• 8 concepts all have same 

“logical” structure.

• In Number domain people 
have pre-existing concepts 
that are useful to varying degrees.

• Learning can be enhanced or retarded by existing concepts.

Ouyang & Goodman (in prep)



An evolving conceptome

• Concepts (and theories) are 
represented in the PLoT, induced in 
response to evidence.

• Learned concepts become ‘effective 
primitives’ for new concepts.

• The evidence comes from perception, 
language, and social interaction.

• Rich trajectories of conceptual change 
emerge.
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Abstract

Many real world concepts, such as “car”, “house”, and “tree”,

are more than simply a collection of features. These objects

are richly structured, defined in terms of systems of relations,

subparts, and recursive embeddings. We describe an approach

to concept representation and learning that attempts to capture

such structured objects. This approach builds on recent proba-

bilistic approaches, viewing concepts as generative processes,

and on recent rule-based approaches, constructing concepts in-

ductively from a language of thought. Concepts are modeled

as probabilistic programs that describe generative processes;

these programs are described in a compositional language. In

an exploratory concept learning experiment, we investigate hu-

man learning from sets of tree-like objects generated by pro-

cesses that vary in their abstract structure, from simple proto-

types to complex recursions. We compare human categoriza-

tion judgements to predictions of the true generative process as

well as a variety of exemplar-based heuristics.

Introduction
Concept learning has traditionally been studied in the con-

text of relatively unstructured objects that can be described

as collections of features. Learning and categorization can be

understood formally as problems of statistical inference, and

a number of successful accounts of concept learning can be

viewed in terms of probabilistic models defined over different

ways to represent structure in feature sets, such as prototypes,

exemplars, or logical rules (Anderson, 1990; Shi, Feldman,

& Griffiths, 2008; Goodman, Tenenbaum, Feldman, & Grif-

fiths, 2008). Yet for many real world object concepts, such as

“car”, “house”, “tree, or “human body”, instances are more

than simply a collection of features. These objects are richly

structured, defined in terms of features connected in systems

of relations, parts and subparts at multiple scales of abstrac-

tion, and even recursive embedding (Markman, 1999). A tree

has branches coming out of a trunk, with roots in the ground;

branches give rise to smaller branches, and there are leaves

at the end of the branches. A human body has a head on top

of a torso; arms and legs come out of the torso, with arms

ending in hands, made of fingers. A house is composed of

walls, roofs, doors, and other parts arranged in characteristic

functional and spatial relations that are harder to verbalize but

still easy to recognize and reason about. Besides objects, ex-

amples of structured concepts can be found in language (e.g.

the mutually recursive system of phrase types in a grammar),

in the representation of events (e.g. a soccer match with its

fixed subparts), and processes (e.g. the recipe for making a

pancake with steps at different levels of abstraction).

Such concepts have not been the focus of research in the

probabilistic modeling tradition. Here we describe an ap-

proach to representing structured concepts—more typical of

the complexity of real world categories—using probabilistic

generative processes. We test whether statistical inference

with these generative processes can account for how people

categorize novel instances of structured concepts and com-

pare with more heuristic, exemplar-based approaches.

Because a structured concept like “house” has no single,

simple perceptual prototype that is similar to all examples,

learning such a concept might seem very difficult. However,

each example of a structured concept itself has internal struc-

ture which makes it potentially very informative. Consider

figure 1, where from only a few observations of a concept it

is easy to see the underlying structural regularity that can be

extended to new items. The regularities underlying structured

concepts can often be expressed with instructions for gener-
ating the examples: “Draw a sequence of brown dots, choose

a branch color, and for each brown dot draw two dots of this

color branching from it.”

Figure 1: Three examples of a structured concept described by a

simple generative process.

We build on the work of Goodman, Tenenbaum, et al.

(2008), who introduced an approach to concept learning as

Bayesian inference over a grammatically structured hypoth-

esis space—a “language of thought.” Single concepts ex-

pressed in this language were simple propositional rules for

classifying objects, but this approach naturally extends to

richer representations, providing a concept learning theory

for any representation language. Here we consider a language

for generative processes based on probabilistic programs: in-

structions for constructing objects, which may include prob-

abilistic choices, thus describing distributions on objects—in

our case distributions on colored trees. Because this language

describes generative processes as programs, it captures regu-

larities as abstract as subparts and recursion.

The theory of concept representation that we describe here

shares many aspects with previous approaches to concepts.

Like prototype and mixture models (Anderson, 1990; Grif-

fiths, Canini, & Sanborn, 2007), probabilistic programs de-

scribe distributions on observations. However, prototypes and

mixtures generate observations as noisy copies of ideal pro-

totypes for the concept and thus cannot capture more abstract

structures such as recursion. Like rule-based models of con-

cept learning, our approach supports compositionality: com-

plex concepts are composed out of simple ones—but rather

Compositional 
representations

Probabilistic
inference


