s

L\} ngoodman@

stanford.edu

(%

Concept learning and
the language of thought

Noah D. Goodman
Stanford University

IPAM graduate summer school
July 15,2011

mailto:ndg@mit.edu
mailto:ndg@mit.edu
mailto:ndg@mit.edu
mailto:ndg@mit.edu

Statistics and composition

Probabilistic language of
thought hypothesis

Thought is useful
IN an uncertain
world

Belief

Probabilistic
inference

Thought is productive:
“the infinite use of
finite means’”’

Generative =~ Compositional

models

representations

PLol

® The probabilistic language of thought
hypothesis:

® Mental representations are compositional,
® Their meaning is probabilistic,

® They encode generative knowledge,

® Hence, they support thinking and
learning by probabilistic inference.

PLol

® The probabilistic language of thought
hypothesis:
Mental representations are functions
in 2 stochastic process calculus

(e.g. WA-calculus / Church).

® Intuitive framework theories.
® Flexible reasoning and language use.

® Learning structured concepts.

Outline

If concepts are probabilistic programs,
then concept learning is probabilistic program induction.

Outline

If concepts are probabilistic programs,

then concept learning is probabilistic program induction.

(query

(define
concept
(and (=

(=

-))

concept (sample-PLoT-expression))

(noisy (sample concept)) obsl)

(noisy (sample concept)) obs2)

3
|

=

Outline

If concepts are probabilistic programs,
then concept learning is probabilistic program induction.

® Boolean categories

e Quantified concepts

® Natural number concepts
® Generative kinds

® Program induction

Categorization

Medin & Schaffer (1978):

Categorization

Medin & Schaffer (1978):

sk ok K

“These are Feps”

Categorization

Medin & Schaffer (1978):

ook do ke ok
“These are Feps”

*
--

“These are not Feps”

Categorization
Medin & Schaffer (1978):

e kS
| e

*
--

“These are not Feps”

“Is this a Fep!?”

Categorization

® Rule-based category e Statistical category

learning: learning:
® Infinitely many ® Graded inferences
concepts formed from sparse, noisy

compositionally. evidence.

Categorization

Medin & Schaffer, 1978 (data from Nosofsky, et al.,1994):
1.0

% Fep
o
on

“These are Feps” “These are not Feps”

“Is th|s a Fep?”

Categorization

Medin & Schaffer, 1978 (data from Nosofsky, et al.,1994):
1.0

% Fep
o
on

“These are Feps” “These are not Feps”

“Is th|s a Fep?”

® Graded judgements

Categorization

Medin & Schaffer, 1978 (data from Nosofsky, et al.,1994):
1.0

% Fep
o
on

“These are Feps” “These are not Feps”

“Is th|s a Fep?”

e Typicalit
® Graded judgements 7P !

Categorization

Medin & Schaffer, 1978 (data from Nosofsky, et al.,1994):
1.0

% Fep
o
on

“These are Feps” “These are not Feps”

“Is th|s a Fep?”

o Typicality
® Graded judgements
® Prototype enhancement

Generating rules

“I'saFepifithasflat % 0 T T

head and round wings” non-Feps: % % g% %

*e o

Generating rules

(define fep? Feps: C%éJ % (% TR GO
(A (x)

--

(and (flat-head x)
(round-wings x)))) non- FePS

*e o

Generating rules

(define fep? Feps: C%é; %} % Y S8
(A (%)

--

(and (flat-head x)
(round-wings x)))) non- FePS
(fep?)

=> true

Generating rules

(define fep? Feps: C%éJ % (% R SO
(N (%)

--

(and (flat-head x)
(round-wings x)))) nonFePS

*e o

& (define rule-generator
(fep?) (A ()
(if (flip 0.3)
=> true (sample-feature)

(combine-rules (sample-feature)
(rule-generator)))

(define combine-rules
(N (rl r2)
(N (x) (and (rl x) (r2 x)))

Generating rules

(define fep? Feps: C%éJ % (% R SO
(N (%)

--

(and (flat-head x)
(round-wings x)))) nonFePS

*e o

& (define rule-generator
(fep?) (A ()
(if (£lip 0.3))
=> true (sample-feature)

(combine-rules (sample-feature)
(rule-generator)))

(define combine-rules
(N (rl r2)
(N (x) (and (rl x) (r2 x)))

Generating rules

(define fep? Feps: %3 % % TE GO
(A (%)

--

(and (flat-head x)
(round-wings x)))) nonFePS

*e o

& (define rule-generator <«
(fep?) (A ()
(if (£lip 0.3))
=> true (sample-feature)

(combine-rules (sample-feature)
(rule-generator

(define combine-rules
(N (rl r2)
(N (x) (and (rl x) (r2 x)))

Generating rules

(define fep? Feps: C%éJ % (% TE GO
(A (%)

--

(and (flat-head x)
(round-wings x)))) nonFePS

*e o

& (define rule-generator <«
(fep?) (A ()
(if (£lip 0.3))
=> true (sample-feature)

(combine-rules (sample-feature)
(rule-generator

(define combine-rules
(N (rl r2)
(N (x) (and (rl x) (r2 x)))

® Longer rules have lower probability (Occam’s razor).

Generating rules

Put uncertainty over rule probabilities:

(define rule-prob (uniform 0 1))
(define rule-generator

(A ()
(Lf (flip rule-prob)

Generate disjunctive normal form (DNF) rules:

(define fep?
(N (x)
(and (or (flat-head x) ...)
(or (round-wings X) ...)

ce+)))

The general idea:
grammar-based induction.

Inference:

Inducing rules

(query

ce))

(define rule (rule-generator))

(rule)

(and (= (rule

(= (rule é%é) false)

éé@) true)

[Hypotheses}

=

Inducing rules

Inference:
(query [Hypotheses}
(define rule (rule-generator)) l

(rule)
(and (= (noisy (rule lﬁé)) true) { Data J

(= (noisy (rule)) false)

-))

Observation noise:

(define noisy
(N (bit) (if (flip b) bit (not bit))))

Categorization

st sk ke koK

«
)
(4]
O
c
(g}
-
)
I

B transfer
0.2 0.4 0.6 | Goodman, et al.

Rule-induction model (2007, 2008a, 2008b)

Categorization

st sk ke koK

r = 0.99

(one free param.)

«
)
(4]
O
c
(g}
-
)
I

B transfer
0.2 0.4 0.6 | Goodman, et al.

Rule-induction model (2007, 2008a, 2008b)

Categorization
%é % % ® Graded judgments
sk o ok ok .

” =099

(one free param.)

Human data

B transfer

0.2 04 06 . Goodman, et al.
Rule-induction model (2007, 2008a, 2008b)

Categorization
%é % % ® Graded judgments
% %} * Typicality

” =099

(one free param.)

Human data

B transfer

0.2 04 06 . Goodman, et al.
Rule-induction model (2007, 2008a, 2008b)

Categorization
%é % % ® Graded judgments
% %} * Typicality

® Prototype
enhancement

” =099

(one free param.)

Human data

B transfer

0.2 04 06 . Goodman, et al.
Rule-induction model (2007, 2008a, 2008b)

Categorization

st sk ke koK

® Graded judgments
e Jypicality

® Prototype

r =0.99
enhancement

(one free param.)

e Selective attention

«
)
(4]
O
c
(g}
-
)
I

B transfer
0.2 0.4 0.6 | Goodman, et al.

Rule-induction model (2007, 2008a, 2008b)

ddavvddd
dddadvdad
vddadvdad
dvdadvdd
ddvdvdad
vdavdavdad
dvvdvdd
vyvvdavad
dddvvdd
dvdavvdd
dvvyvvdd
vvvvvad
ddd9d4avd
ddddvvd
dvdadvvd
dvavvvd
vddadddav
dvvddadayv
dvavaayv
ddd4dvav
dvdadavayv
davdavav
vavavayv
dvvdavav
vvvavayv
dvavvayv
dvvvvayv
ddadad4avyv
vdavaavyv
ddadadavvy
vddadavvy
dvdadavvyv
davavvyv
dvvavvyv
avavvvyv
VVVVVVY

-
O
=
S
N
O
o0
O,
=
(g
@,

oV To) _.r o
S T o <
(@) o
uJa33ed UOEIISSE|D SIYY YIIM SS %

Individual generalization patterns (for 7 transfer items):
® Model assumes individuals sample a (few) rule(s).

Complexity shift

® With more exposure to
training examples
subjects shift from
simple to complex

categorization patterns.
(Medin, et al.,1982)

® Tradeoff between
observation noise and
simplicity bias (Occam’s
razor).

Complexity shift

® With more exposure to
training examples
subjects shift from
simple to complex

categorization patterns.
(Medin, et al.,1982)

o Tradeoff be>ingle feature:

. |(define fep?
observatio "\ (x) (flat-head x)))

simplicity bias (Occam’s
razor).

Complexity shift

® With more exposure to
training examples
subjects shift from
simple to complex

categorization patterns.
(Medin, et al.,1982)

o Tradeoff be>ingle feature:

. |(define fep?
observatio "\ (x) (flat-head x)))

simplicity bias (Occam’s Multiple feature:

razor). (define fep?
(A (x) (or (and (flat-head x)
(round-wings X))
(and (round-head x)
(square-wings Xx))))

Complexity shift

Model inferences:

® With more exposure to
training examples
subjects shift from
simple to complex

categorization patterns.
(Medin, et al.,1982)

I
[

Ole- FoTu r-
feature feature

rules. rules.

7y
9
)
|
|
bt
)
()
a8

(Log posterlior)

¢ [radeoff between
observation noise and
simplicity bias (Occam’s

razor). 3 4 5
Amount of evidence

Complexity shift

Model inferences:
® With more exposure to Simple Complex
training examples imperfect rules. " exact rules.
subjects shift from 1 |
simple to complex One- Four-

Izati feature
categorization patterns. fea?ure atur
(Medin, et al.,1982) rules.

I
[

7y
9
)
|
|
bt
)
()
a8

(Log posterlior)

¢ [radeoff between
observation noise and
simplicity bias (Occam’s

razor). 3 4 5
Amount of evidence

Complexity shift

Model inferences:
® With more exposure to Simple Complex
training examples imperfect rules. " exact rules.
subjects shift from 1 |
simple to complex One- Four-

Izati feature
categorization patterns. fea?ure atur
(Medin, et al.,1982) rules.

I
[

7y
9
)
|
|
bt
)
()
a8

(Log posterlior)

¢ [radeoff between
observation noise and
simplicity bias (Occam’s

razor). 3 4 5
Amount of evidence

Evaluating languages

® [nduction to the language generated by
the DNF grammar explains important
phenomena (and fits relevant data).

® But is this the right LoT?

® Jest on wider data set!

e Compare to other propositional languages?

Broader test

e / Boolean features.

® 43 randomly generated concepts (3-6 pos. + 2 neg. exs)

® |28 judgements (~122 transfer questions)

S
> g ot
o0

W

)
3
=
3)
=)
o
O
-
e
Q
7]
-
)
o
70]
3
a7
S
3
=
=)
aw

Mean Human Response Frequency

O

ko
_o
ko

-
—_

04 0.6
Posterior Generalization Probability

Goodman, et al (2008)

0.2 04 0.6 0.8
Posterior Generalization Probability

Evaluating languages

* High-throughput MTurk experiment.

e |08 concepts,
® Boolean (circle or red)

e Context-dependent (‘Determiners”)
(unique largest , exists another with same shape)

®) orders per concept,

® |596 participants. Piantadosi, Goodman,
Tenenbaum (in prep)

Evaluating languages

* High-throughput MTurk experiment.

e |08 concepts,
® Boolean (circle or red)

e Context-dependent (‘Determiners”)
(unique largest , exists another with same shape)

®) orders per concept,

® |596 participants. Piantadosi, Goodman,
Tenenbaum (in prep)

Evaluating languages

T F F

* High-throughput MTurk experiment.

e |08 concepts,
® Boolean (circle or red)

e Context-dependent (‘Determiners”)
(unique largest , exists another with same shape)

®) orders per concept,

® |596 participants. Piantadosi, Goodman,
Tenenbaum (in prep)

Evaluating languages
T F F

* High-throughput MTurk experiment.

e |08 concepts,
® Boolean (circle or red)

e Context-dependent (‘Determiners”)
(unique largest , exists another with same shape)

®) orders per concept,

® |596 participants. Piantadosi, Goodman,
Tenenbaum (in prep)

Evaluating languages
T F F F F F

* High-throughput MTurk experiment.

e |08 concepts,
® Boolean (circle or red)

e Context-dependent (‘Determiners”)
(unique largest , exists another with same shape)

®) orders per concept,

® |596 participants. Piantadosi, Goodman,
Tenenbaum (in prep)

Evaluating languages
T F F F F F

* High-throughput MTurk experiment.

e |08 concepts,
® Boolean (circle or red)

e Context-dependent (‘Determiners”)
(unique largest , exists another with same shape)

®) orders per concept,

® |596 participants. Piantadosi, Goodman,
Tenenbaum (in prep)

Evaluating languages
T F F F F F T F T

* High-throughput MTurk experiment.

e |08 concepts,
® Boolean (circle or red)

e Context-dependent (‘Determiners”)
(unique largest , exists another with same shape)

®) orders per concept,

® |596 participants. Piantadosi, Goodman,
Tenenbaum (in prep)

Evaluating languages

T F F F F F T F T

* High-throughput MTurk experiment.

e |08 concepts,
® Boolean (circle or red)

e Context-dependent (‘Determiners”)
(unique largest , exists another with same shape)

®) orders per concept,

® |596 participants. Piantadosi, Goodman,
Tenenbaum (in prep)

Accuracy

Accuracy

Boolean

concepts

Circle or blue

—— Human

40

Response number

Size 2

— Human

30 40

Response number

Accuracy

Accuracy

Response number

Circle or triangle

—— Human

20 30 40

Response number

Boolean concepts

Circle or blue Not [circle or blue]

— FullBoolean grammar . — FullBoolean grammar
—— Human —— Human

[[[
40 40 60

Response number Response number

[Circle or tfriangle] implies blue

— FullBoolean grammar . —— FullBoolean grammar
—— Human — Human

| | | |
40 50 60 30 40

Response number Response number

Boolean concepts

Best model performance on Boolean concepts:

Language-FullBoolean

)
L
D
=
o
o
)
L
h—
=
4
=
=
i i

0.4 0.6 0.8 1.0

Model predictions

Comparing languages

(A (X) (or (and (red? x) (circle? x))

P DNF (and (red? x) (triangle? x))))

disjunctions of conjunctions

(N (x) (and (implies (not (red? x)) false)
® HOI’n C|auseS (implies (not (triangle? X)) (circle? x))))

conjunctions of implications

(A (x) (and (red? x) (or (circle? x)

® FU” bOOIGan (triangle? x))))
any combinations of AND, OR, NOT, IF, IFF

® Nand (A (x) (nand false (nand (red? x)
. . (nand (nand false (circle? x)) (nand
combinations false (triangle? x)))))

of NAND

-
Q
[4y]
| -
=3
Q
Q
<

Comparing languages

—— FullBoolean grammar
NAND
—— Human

40

Response number

® Fit hyper-parameters (dirichlet
on each NT) for each language.

® Evaluated against held out
data.

FULLBOOLEAN -16315.27

CNF -16333.59
DNF -16368.31
BICONDITIONAL -16385.01
IMPLIES -16442.40
HORNCLAUSE -16487.25

SIMPLEBOOLEAN -16490.51

NAND -16902.68
NOR -16917.49
UNIFORM -19482.72
EXEMPLAR -23645.13
ONLYFEATURES -31662.08
RESPONSE-BIASED -37906.77

Outline

If concepts are probabilistic programs,
then concept learning is probabilistic program induction.

® Boolean categories

e Quantified concepts

® Natural number concepts
® Generative kinds

® Program induction

Role-governed concepts

€¢ K ey’ b
%6

Goodman, et al. (2007)

Role-governed concepts

Goodman, et al. (2007)

Role-governed concepts

“There is no logic to the
shape of a key. Its logic is:
it turns the lock.” -Chesterton

Goodman, et al. (2007)

Role-governed concepts

“There is no logic to the
shape of a key. Its logic is:
it turns the lock.” -Chesterton

® Key, poison, passenger...

Goodman, et al. (2007)

Role-governed concepts

“There is no logic to the
shape of a key. Its logic is:
it turns the lock.” -Chesterton

® Key, poison, passenger...

® Go beyond features to
relations and roles.

Goodman, et al. (2007)

Role-governed concepts

“There is no logic to the
shape of a key. Its logic is:

it turns the lock.’ -Chesterton

® Key, poison, passenger...

® Go beyond features to
relations and roles.

® Extend language by allowing
relations and quantifiers.

Goodman, et al. (2007)

Role-governed concepts

“There is no logic to the
shape of a key. Its logic is:
it turns the lock.” -Chesterton

® Key, poison, passenger...

® Go beyond features to
relations and roles.

® Extend language by allowing
relations and quantifiers.

® Features-to-relations shift
(Cf. Keil & Batterman,|984).

Goodman, et al. (2007)

Role-governed concepts

“There is no logic to the
shape of a key. Its logic is:

it turns the lock.’ -Chesterton

® Key, poison, passenger...

® Go beyond features to
relations and roles.

Expected weight

® Extend language by allowing
relations and quantifiers.

9 10 11 12

® Features-to-relations shift
(Cf. Keil & Batterman,|984). Goodman, et al. (2007)

Non-Boolean concepts

® Big experiment included context-
dependent (determiner-like) concepts.

® What languages explain inductive bias
for these non-boolean concepts!?

Exists another object with the same color

-

o 7y
s ©
= =
£

3! 3
<< T

—— FullBoolean
Best Quantifier
— Human

Response number Response number

Piantadosi, Goodman, Tenenbaum (in prep)

0y
@
w
c
o
<
oy
@
=
©
=
=
= =

Non-Boolean concepts

® Best language is full boolean
plus quantifiers.

H.O. LL
-79279.95
-79560.90
-79642.46
-79972.75
-80198.75
-80267.46
-80285.38
-80300.00
-80614.35
-80942.77
v -81138.27

v -81289.85

v o -81596.68

v o -81651.36
FULLBOOLEAN -81773.43
BICONDITIONAL -81967.68
SIMPLEBOOLEAN -82144.71
- -82219.08

CNF -82685.21
DNF -82752.82

- -82853.59

2nd-Ord.-Quan.

One-Or-Fewer

0.4 0.6

Model predictions

Other work

e Quantifying over objects/features
(Kemp and Jerns, 2010)

® | earning a relation (by learning a theory)
(Kemp, Goodman, Tenenbaum, 2008a, 2008b)

® | earning intuitive theories

(Katz, et al, 2008; Goodman, Ullman, Tenenbaum,
201 I; Ullman, Goodman, Tenenbaum, in prep)

Outline

If concepts are probabilistic programs,
then concept learning is probabilistic program induction.

® Boolean categories

e Quantified concepts

® Natural number concepts
® Generative kinds

® Program induction

Learning number

Number
Age Level How many
knowledge .
3 y duckies?
© w.or <24m No-knower
meanings

Can you give me
two duckies!?

See, e.g. Spelke 2003;Wynn 1990, 1992

Learning number

Number
Age Level How many
knowledge .
3 y duckies?
© w.or <24m No-knower
meanings
“one” 24-30m One-knower

Can you give me
two duckies!?

See, e.g. Spelke 2003;Wynn 1990, 1992

Learning number

Number
Age Level How many
knowledge .
3 y duckies?
© w.or <24m No-knower
meanings
“one” 24-30m One-knower

¢¢

one’“two” 30-39m Two-knower

Can you give me
two duckies!?

See, e.g. Spelke 2003;Wynn 1990, 1992

Learning number

Number
Age Level How many
knowledge .
3 y duckies?
© w.or <24m No-knower
meanings
“one” 24-30m One-knower

¢¢

one’“two” 30-39m Two-knower

Can you give me
two duckies!?

’”»

“one’-"three” 39-42m Three-knower

See, e.g. Spelke 2003;Wynn 1990, 1992

Learning number

Number
Age Level
knowledge
No w.ord <24m No-knower
meanings
“one” 24-30m One-knower

¢¢

one”,“two” 30-39m

Two-knower

’”»

“one’-"three” 39-42m

Three-knower

All number

>4)m
words

CP-knower

See, e.g. Spelke 2003;Wynn 1990, 1992

How many
duckies?

Can you give me
two duckies!?

Central questions

® How can number concepts be learned!?
(Cf. Rips, et al, 2008, and responses.)

® In a way that doesn’t presuppose integers!
® Explaining the abrupt CP-transition?

® What is the role of language?

Learning number

® Sample a lexicon: a mapping from
situations to descriptions.

® | exicons expressed in (limited) A-calculus
plus primitives:

® Set primitives: difference, union,
select, singleton?, doubleton?,...

® Count-list operations: prev / next move
between words on the list.

® Recursion: (L. S).

® if, and,...
Piantadosi, Tenenbaum, Goodman (subm.)

Learning number

A two-knower lexicon:

(define L
(A (S)
(1f (singleton? S)
“one”
(Lf (doubleton? S) “two” undef))

Learning number

A two-knower lexicon:

(define L
(A (S)
(1f (singleton? S)
“one”
(Lf (doubleton? S) “two” undef))

A CP-knower lexicon:

(define L
(A (S)
(1f (singleton? S)
“one”
(next (L (set-difference S (select S)))))

Learning number

® |arge space of hypotheses contains many
potentially useful lexica, as well as very silly ones.

Learning number

® |arge space of hypotheses contains many
potentially useful lexica, as well as very silly ones.

For example:a ‘mod 5’ lexicon:

(define L
(N (S)
(Lf (or (singelton? 8S)
(equal? (L (set-diff S (select S)))
“five")
“one”
(next (L (set-diff S (select S)))))))

(Cf. Rips, et al, 2008.)

Learning number

(query

(define lexicon (noisify (lex-generator))

(eq? (lexicon@ @)“two blobs!”)

(and

(eg? (lexicon @) “one blobs!”)
(eq? (lexicon @@ “two blobs!”)
-))

>
=
el
©
Qo
o
=
o
©
=
2

Frequency of
word + noun

[}4ypotheses}

Data

® | earning data: number
words paired with sets of

objects (frequency of words
matches CHILDES corpus).

Learning number

= (One-knower

= Two-knower
Three—-knower
Four—knower
CP-knower
Others

)
S5
9 2
X

L
e
LL
o 3
il
0 &
a)]

I
150 200

Amount of evidence

Learning number

One...

Two... Three...

Four, five, six, ...

= (One-knower

= Two-knower
Three—-knower
Four—knower
CP-knower
Others

)
S5
9 2
X

L
e
LL
o 3
il
0 &
a)]

Amount of evidence

Outline

If concepts are probabilistic programs,
then concept learning is probabilistic program induction.

® Boolean categories

e Quantified concepts

® Natural number concepts
® Generative kinds

® Program induction

Generative kinds

(]
(]
(]

[PP

1 PEPEEREAELC]

j | - -] -
0] PR PE

Learning generative kinds

Simple o)
(node "b (node "¢ (node 'c))
prototype

(node ’'d (node ’e))))

Model Log Score

00 02 04 06 08 1.0

Human Judgement

Su b_ (begin
(define (part) (node "¢ (node 'c (node "a)) (node 'c)))

(lambda () (node "a (node ’'b) (node ’'d (part)) (node 'b (part) (node ’'d)))))
concepts

Model Log Score

® ®© 06 00 0 0 o0 0 ® o o o
o o o oo

o o o o o o 9de o I
0008 006 008 008 o009 008 0098 o009 00 02 04 06 08 10
o O o . ¢ o @ o o

Human Judgement

. (begin
Slngle (define (part) (node 'a (node 'b (if (flip) (node 'c) (part)))))
(lambda () (node 'c (node 'd) (part) (node 'e (node "f (part))))))

Model Log Score

® o6 0660 o o ® L e 0060 oo ® 0.0 02 04 06 08 1.0
®

000 00 000 00 00600 000 00600 00 00 o0 000 00 Human Judgement

Stuhlmueller, Tenenbaum, Goodman (2010)

Learning generative kinds

Prototype Nested Prototype Parameterized Single Recursion Multiple
Parts Recursion

Transition Tree Generative
GCM GCM Model

Prototype 0.751 0.803 0.748
Nested Prototype 0.851 0.937 0.904
Parts™ 0.617 0.705 0.835

Parameterized 0.591 0.778 0.911
Parts

Single Recursion 0.499 0.637 0.773

Multiple 0.561 0.451 0.770
Recursion

Outline

If concepts are probabilistic programs,
then concept learning is probabilistic program induction.

® Boolean categories

e Quantified concepts

® Natural number concepts
® Generative kinds

® Program induction

Algorithms for induction

® What algorithms are capable of learning
concepts in a language of thought!?

® All results so far were computed using
MCMC based on constituent regeneration
(Goodman, et al, 2008).

® |s this cognitively
plausible! Maybe...

® But this is probably
not enough on its own.

Simulation iterations

(Ullman, Goodman, Tenenbaum, 2010)

Program induction

® Program induction is especially hard.
How could it be done?

® |dea: syntactic analogy + argument
compression (+ search/MCMC).

(/ (+ 1 (* 2 3))| “inverse inIining; (define (F x) (+ 1 (* x 3)))

(+ 1 (* 5 3)) (/ (F 2) (F5))
(define (F Xx) (define (F)
(+ 1 (* x 3))) “de-argument”) (+ 1 (* (gaussian 3.5 1.0) 3)))
(/ (F 2) (F5)) (/ (F) (F))

(define (F Xx) (define (F)
(+ 1 (* x 3))) “de-argument” (if (£lip) (+ 1 (* (F) 3)) 1))

—

(F (F 1)) (F)

Program induction

® Program induction is especially hard.
How could it be done?

® |dea: syntactic analogy + argument
compression (+ search/MCMC).

“inverse inIining; (define (F x) (+ 1 (* x 3)))
(/ (F 2) (F 5))

RS

(define (F Xx) (define (F)
(+ 1 (* x 3))) “de-argument”) (+ 1 (* (gaussian 3.5 1.0) 3)))
(/ (F 2) (F5)) (/ (F) (F))

(define (F Xx) (define (F)
(+ 1 (* x 3))) “de-argument” (if (£lip) (+ 1 (* (F) 3)) 1))

—>

(F (F 1)) (F)

Program induction

® Program induction is especially hard.
How could it be done?

® |dea: syntactic analogy + argument
compression (+ search/MCMC).

(/ “inverse inIiningji (define (F x) (+ 1 (* x 3)))
(/ (F 2) (F 5))

(define (F Xx) (define (F)
(+ 1 (* x 3))) “de-argument”) (+ 1 (* (gaussian 3.5 1.0) 3)))
(/ (F 2) (F5)) (/ (F) (F))

(define (F Xx) (define (F)
(+ 1 (* x 3))) “de-argument” (if (£lip) (+ 1 (* (F) 3)) 1))

—>

(F (F 1)) (F)

Program induction

® Program induction is especially hard.
How could it be done?

® |dea: syntactic analogy + argument
compression (+ search/MCMC).

(/ “inverse inIining; (define (F x) (+ 1 (* x 3)))
(/ (F 2) (F 5))

(define (F Xx) (define (F)

(+ 1 (* x 3))) “de-argument” (+ 1 (* (gaussian 3.5 1.0) 3)))
(/ (F@ (F@)) > |(/ (F) (F))

(define (F Xx) (define (F)

(+ 1 (* x 3))) “de-argument’; (if (£lip) (+ 1 (* (F) 3)) 1))
(F (F 1)) (F)

Program induction

® Program induction is especially hard.
How could it be done?

® |dea: syntactic analogy + argument
compression (+ search/MCMC).

(/ “inverse inIining; (define (F x) (+ 1 (* x 3)))
(/ (F 2) (F 5))

(define (F Xx) (define (F)

(+ 1 (* x 3))) “de-argument”) (+ 1 (* (gaussian 3.5 1.0) 3)))
(/ (F@ (F@)) (/ (F) (F))

(define (F Xx) (define (F)

(+ 1 (* x 3))) “de-argument’; (if (£lip) (+ 1 (* (F) 3)) 1))
(F @@L (F)

Program induction

® Bayesian program merging algorithm:
(Cf. Stolcke & Omohundro, 1994)

® |nitial state is exemplar program (mixture of data).

® Transform programs via syntactic analogy and
argument compression.

® Beam search* with respect to the posterior score.

(*Or stochastic search, Monte Carlo, etc.)

o Likelihood: marginal probability of data given program
(computed by lazy particle filter).

® Prior:syntactic complexity.

Hwang, Stuhlmueller, Goodman (in prep)

Example

/
Y “data incorporation” |{"°%¢ T (noce)
. P 9 (node r (node b)
N, (node r (node b)
N (node r (node b) b)
“inverse inline” (detine (F x) (node r (node b) x))

> (F (F (F (F b))))

(define (F) (if (flip 0.8)
“de-al’gument” (node r (node b) (F))
< b))
(F)
|
\// W,
N
sample N/ N y
-------------------------- > N, \./
\/ .

Example

(begin (define F4 (lambda (V7 V8) (node (F1 V7 0.1) V8)))
(define F3 (lambda (V6) (node (F1 V6 0.3))))
(define F2
(lambda (V3 V4)
((lambda (V5) (F4 V3 (F4 V4 V5)))
(if (flip 9/11)
(F2 81.0 85.0)
(uniform-choice
(node (F1 204.0 0.3) (F3 199.0)
(F3 243.0) (F3 233.0) (F3 240.0)))
(F4 151.0
(node (F1 -21.0 0.3) (F3 7.0)
(F3 49.0) (F3 3el) (F3 44.0))))))))

(define F1
(lambda (V1 V2)
(data (color (gaussian V1 25)) (size V2))))
(lambda ()

(uniform-choice
(node (F1 13.0 1) (F2 89.0 111.0)
(F2 85.0 121.0))))

Analogy and number?

® |[n simple MCMC over a rich concept space
some transitions are very unlikely.

e E.g. N-knower => CP-knower.

Analogy and number?

® |[n simple MCMC over a rich concept space
some transitions are very unlikely.

e E.g. N-knower => CP-knower.

® Proposals via
Syntactic
analogy +
recursion
detection!

Analogy and number?

® |[n simple MCMC over a rich concept space

some transitions are very unlikely.

e E.g. N-knower => CP-knower.

® Proposals via

A three-knower lexicon:

Syntactic . .
(define lexicon
anaIOg)’ + (A (word)
. (case word
recurSIOn (uone" (>\ (Set)
deteCtiOn7 (empty? (diff set (select set))))

(“two” (N (set)

((lexicon “one”)

(diff set (select set))
(“three” (AN (set)

((lexicon “two”)

(diff set (select set))
(else null))

Analogy and number?

® |[n simple MCMC over a rich concept space
some transitions are very unlikely.

e E.g. N-knower => CP-knower.

® Proposals via .
P A three-knower lexicon:

Syntactic | .
(define lexicon
analogy + (A (word)
. (case word
Fecursion (“one” (}\ (set)
detection? :

diff set (select set

(N (set)

((lexicon -)

(diff set (select set))
(else null))

Analogy and number?

® |[n simple MCMC over a rich concept space
some transitions are very unlikely.

e E.g. N-knower => CP-knower.

R :
PI’OPOSEIJS via A CP-knower lexicon:

SyntaCtIC ((define lexicon
analogy + (A (word)

! (Lf (= word “one”)
Fecursion (A (set)

. empty? (diff set (select set
detection? A coery |)

((lexicon (prev word))
(diff set (select set)))))))

(“three” (N (set)

((lexicon -)

(diff set (select set))
(else null))

Analogy and number?

® |[n simple MCMC over a rich concept space
some transitions are very unlikely.

e E.g. N-knower => CP-knower.

R :
PI’OPOSEIJS via A CP-knower lexicon:

SyntaCtIC ((define lexicon
analogy + (A (word)

! (Lf (= word “one”)
Fecursion (A (set)

. (empty? (diff set (select set))))
detection? N (sot)

((Lexicon (EESHINGES))
(diff set (select set)))))))

(“three” (N (set)

((lexicon .)

(diff set (select set))
(else null))

Outline

If concepts are probabilistic programs,
then concept learning is probabilistic program induction.

® Boolean categories

e Quantified concepts

® Natural number concepts
® Generative kinds

® Program induction

An evolving conceptome

® Concepts (and theories) are
represented in the PLoT, induced in
response to evidence.

® Learned concepts become ‘effective
primitives’ for new concepts.

Role of existing concepts

® 8 concepts all have same @ 3 —
“logical” structure.

Click what you think the

® In Number domain people * ‘ .@ ':' ﬂ

have pre-existing concepts
that are useful to varying degrees.

® Learning can be enhanced or retarded by existing concepts.

@Q(z) when z is: Q(z) when z is:
Label | 1 2 3 4 o5 6 1 2 3 4 »p 0

+7 8 9 10 11 12 13

+3« |9 10 11 12 13 8

¢ =

14— ia 12 11 19 9 8 o @
= g

mem |12 9 13 10 11 8 o ¢ ‘¢

Ouyang & Goodman (in prep)

An evolving conceptome

® Concepts (and theories) are
represented in the PLoT, induced in
response to evidence.

® Learned concepts become ‘effective
primitives’ for new concepts.

® The evidence comes from perception,
language, and social interaction.

® Rich trajectories of conceptual change
emerge.

Conclusion

Probabilistic Generative =~ Compositional
inference models representations

Probabilistic language
of thought

S S

* *
