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Probabilistic LoT

• The probabilistic language of thought 
hypothesis:

• Mental representations are compositional,

• Their meaning is probabilistic,

• They encode generative knowledge,

• Hence, they support thinking and 
learning by probabilistic inference.

Can this hypothesis be formalized?
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Probabilistic generative models

• Mental model of the causal 
process that gives rise to 
observations.

• E.g. Bayes nets.

• But what’s “hidden inside” 
the nodes and arrows?

cough TB no TB

flu 0.8 0.7

no flu 0.7 0.1

write talk want 
fame

want 
sleep . .

going to 
IPAM

0.7 0.05

it’s raining 0.002 0.004

:

Flu

cough

TB

Belief

Action

Desire



λ calculus
• Notation:

• Function have parentheses on the wrong side:

• Operators always go at the beginning:

(sin x)

(+ x y)

(define double
  (λ (x) (+ x x))) (double 3) 

(define repeat 
  (λ (f) (λ (x) (f (f x)))))

((repeat double) 3)

=> 6

=> 12

(define 2nd-derivative (repeat derivative))

• λ makes functions, define binds values to symbols:



Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

(query 
  (define a (flip 0.3))
  (define b (flip 0.3))
  (define c (flip 0.3))
  (+ a b c)
  (= (+ a b) 1))    

=>

Random primitives:

Conditioning (inference):

=> 1
=> 0
=> 1
=> 2

0
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Goodman, Mansinghka, Roy, 
Bonawitz, Tenenabum (2008)

Query
Condition,

must be true
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PLoT

• Formalizing the PLoT: 
Mental representations (concepts) are 
functions in a stochastic lambda calculus 
(e.g. Church).

• ...or pieces of probabilistic programs, anyhow.

• Separate the process of inference from 
representations and the inferences they license 
(Cf. Marr’s levels).

http://projects.csail.mit.edu/church
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Church language design

• Start with (pure subset of) LISP.

• Add random primitives.

• Add mem.

• Add query.



Why functions?

• Composition of probabilistic functions 
represents directed generative models.

• Captures the intuition that much human 
knowledge is about causal process.

• For example, explaining away: conditioning an 
undirected model can introduce new independence 
but not new dependence.

• Hierarchical models, etc.
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Undirected modeling?
• Complex conditions in query represent 

(any) undirected constraints.

• For example Markov Logic:

(query
  (define world (repeat N flip))
  world
  (and
   (log-flip (if (clause1 world) 0.0 weight1)))
   (log-flip (if (clause2 world) 0.0 weight2)))
   ...))



Undirected modeling?
• Complex conditions in query represent 

(any) undirected constraints.

• So, Church can represent directed, 
undirected, and hybrid models.

• Complex conditions can be built out of 
directed pieces. 
(This seems important for natural language. 
Cf. Montegue.)



Why functional?

• First class abstraction.

• The pieces needed for model specification 
are representable in the modeling language.

• Abstraction permits domain specific languages 
-- changes the effective language of thought.

• Higher-order functions are useful. 
(E.g. the higher-order distribution DPmem.)

• Recursion.

• Models are parsimonious.



Why LISP?

• Small core language.

• Simple semantics.

• Very little syntax.

• Simple type system.

• Code as data (meta-circular, homoiconic).

• Well-worked out concepts for 
computation (see SICP).



Random primitives
• Just the fair-coin flip primitive is 

enough (ψλ-calculus),

• But it is convenient (and well-formed) to 
add other random primitives.

• An ERP is a primitive (with arguments) 
that can sample values and score. 

• For each set of arguments, multiple samples 
from an ERP must be independent identically 
distributed (iid)

• Examples: flip, sample-discrete, 
gaussian.



Exchangeability
• If all the ERPs return iid samples, then is 

any Church thunk (procedure without 
arguments) an iid distribution?

• No. Consider: 

• But they are 
exchangeable.

• Theorem (Freer & Roy, 2010): 
Any church thunk is exchangeable and 
any exchangeable distribution may be 
represented by a Church thunk.

(define weight (beta 1 1)) 
(define (mycoin) (flip weight))
(repeat 10 mycoin)

=> (t t t t t t t t t t)



Random primitives

• Relax the interface for random 
primitives: an XRP can sample and 
score. Multiple calls exchangeable.

• Examples:

• Uniform draw without replacement.

• Gensym.

• Beta-binomial.

• CRP.



Memoization

• The mem primitive memoizes a procedure.
• This changes the semantics (unlike in deterministic 

languages).

• Interacts with symbols and gensym, to enable 
“BLOG style” style world models.

(= (flip) (flip))

(define mem-flip (mem flip))
(= (mem-flip) (mem-flip))

True with probability 0.5

True with probability 1.0

(define people (repeat (poisson 1.0) gensym))
(define eye-color 
   (mem (λ (person) (uniform-draw ‘(blue brown)))))
(define blue-eyed-people 
 (filter (λ (person) (equal? ‘blue (eye-color person))) 
         people))



Stochastic memoization

• DPmem: stochastically reuse return 
values from functions.
• A higher-order distribution: it takes a 

stochastic function (of any type) and samples 
a new function (of same type) that 
concentrates the original.

• Adapts a generative process to balance reuse 
with re-computation (see Johnson, O’Donnell).

• Implemented in Church via stick-breaking or 
using an XRP.

(define mem-flip (DPmem 1.0 flip))
(= (mem-flip) (mem-flip))



DP mixture model

(define draw-class 
   (DPmem 1.0 gensym))
(define class 
   (mem (lambda (obj) (draw-class))))
(define class-weight 
   (mem (lambda (obj-class feature) 
                (beta 1.0 1.0))))
(define observe-feature 
   (lambda (obj feature) 
     (flip (class-weight (class obj) feature)))))



DP mixture model

(define draw-class 
   (DPmem 1.0 gensym))
(define class 
   (mem (lambda (obj) (draw-class))))
(define class-weight 
   (mem (lambda (obj-class feature) 
                (beta 1.0 1.0))))
(define observe-feature 
   (lambda (obj feature) 
     (flip (class-weight (class obj) feature)))))

A pool of cluster symbols
 with DP prior.

The cluster of an
object and

cluster parameters
are persistent.



Infinite relational model
The IRM model from: Kemp, et al, 2006

(define draw-class 
   (DPmem 1.0 (lambda (obj-domain) (gensym))))
(define class 
   (mem (lambda (obj) (draw-class (domain obj)))))
(define class-weight 
   (mem (lambda (obj-class1 obj-class2) 
                   (beta 1.0 1.0))))
(define observe-relation 
   (lambda (obj1 obj2) 
     (flip (class-weight (class obj1) (class obj2))))))



Infinite relational model
The IRM model from: Kemp, et al, 2006

(define draw-class 
   (DPmem 1.0 (lambda (obj-domain) (gensym))))
(define class 
   (mem (lambda (obj) (draw-class (domain obj)))))
(define class-weight 
   (mem (lambda (obj-class1 obj-class2) 
                   (beta 1.0 1.0))))
(define observe-relation 
   (lambda (obj1 obj2) 
     (flip (class-weight (class obj1) (class obj2))))))



Nested CRP

(define category
  (DPmem 1.0
         (λ (parent-category) 
           (pair (gensym) parent-category))))

(define (category-hierarchy N)
  (if (= N 0)
      ‘(top)
      (category (category-hierarchy (- N 1)))))

(category-hierarchy 3) x4...



Nested CRP

(define category
  (DPmem 1.0
         (λ (parent-category) 
           (pair (gensym) parent-category))))

(define (category-hierarchy N)
  (if (= N 0)
      ‘(top)
      (category (category-hierarchy (- N 1)))))

(category-hierarchy 3) x4...

=> ((g0 g1 g2 top) 
     (g3 g1 g2 top) 
     (g4 g1 g2 top) 
     (g5 g6 g7 top))



HDP-HMM

(define draw-state (DPmem 1.0 gensym))
(define transition (DPmem 1.0 (λ (state) (draw-state))))
(define obsfn 
  (mem (λ (state) (make-dirichlet-multi terminals)))

(define (hdp-hmm state N)
 (if (= N 0)
     ‘()
     (pair ((obsfn state))
           (hdp-hmm (transition state) (- N 1))))) 



first-class query

• How should we specify observations in 
probabilistic programs?

• Separate model from data / data variables?

• ‘Observe’ statements within model?

• Better: make inference an ordinary function.

• Can define inference within the language (e.g. by 
rejection).  

• Gives proper scoping, complex conditions, nested 
query (‘inference about inference’).



Nested query
Alice and Bob arrange to meet at the bar, each later realizes 

they didn’t fix which bar and must guess where to meet.
(A coordination game, see Schelling, 1960)

(define (sample-location)
  (if (flip .55) ’popular-bar ’unpopular-bar))

(define (bob depth)
  (query
    (define bob-location (sample-location))
    bob-location
    (equal? bob-location (alice (- depth 1)))))

(define (alice depth)
  (query
    (define alice-location (sample-location))
    alice-location
    (or (= depth 0)
         (equal? alice-location (bob depth)))))

Recursive social inference:
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(define (sample-location)
(if (flip .55) ’popular-bar ’unpopular-bar))

(define (bob depth)
(query
(define bob-location (sample-location))
bob-location
(equal? bob-location (alice (- depth 1)))))

(define (alice depth)
(query
(define alice-location (sample-location))
alice-location
(or (= depth 0)

(equal? alice-location (bob depth)))))

Figure 1: A simple coordination game. Two agents reason about each other in order to coordinate where to
meet. As we increase the depth of recursive reasoning, the probability of meeting at the more popular bar—the
Schelling point of this game—converges to 1. The query operator represents a conditional distribution—for
instance, Bob’s location choice is sampled from the common location prior conditioned on Alice choosing the
same location.

of which contains a conditional distribution with unknown normalizing constant (“nested queries”).
This series of unknown normalizing constants makes standard Monte Carlo methods inapplicable.
We could implement the inner queries with rejection sampling and the outermost with MCMC as in
Murray et al. (17), but this too proves inefficient (see below). However, the distribution on choices
at each depth can be reused many times in computing the next depth; if this can be automatically
detected, exact inference becomes tractable, though recursive dependencies will means that dynamic
programming takes some care.

Our goal is to apply dynamic programming automatically to inference in arbitrary discrete proba-
bilistic programs1, including programs that include complex structural dependencies such as nested
queries. This requires detecting which computations share subcomputations, compactly represent-
ing this structure of computational dependencies, and efficiently exploiting this structure to compute
the marginal distribution of the given program.

2 Algorithm

In the following, we state more precisely the problem we want to solve, sketch the algorithm on a
high level, and then describe the individual stages of the algorithm.

(define (rejection proc)
(let ((val (proc)))
(if (first val)

(rest val)
(rejection proc))))

The problem of inference is commonly stated in terms of
conditioning. However, conditioning itself can be stated in
terms of unconditional sampling from a probabilistic pro-
gram: at right we show a Church representation of the
query operator as rejection sampling (the query has been
packaged into a single procedure proc that returns a pair of
condition value and return value; for more details see 4). By
replacing each query operator in a Church program with
the rejection function, we attain a program with no special conditioning operator—the con-
ditional distribution is now the marginal distribution of the new program. Using this form of the
program directly can be very inefficient. However, note that a rejected sample results in returning
to the rejection function in the original computation state. This suggests that there are opportunities
to efficiently compute the marginal distribution by dynamic programming. We use this approach
below, and show that the UDP algorithm can indeed efficiently handle this rejection procedure, even
when it is recursively nested within itself.

Given the source code of a probabilistic program, UDP solves the marginalization problem as fol-
lows: (1) Transform the probabilistic program into a coroutine that returns whenever it hits a random
choice, function application, or terminal value. (2) Using this coroutine, build a graph that makes

1We describe the UDP algorithm implemented for the Church language (4). The ideas should be applicable
more generally, though they rely heavily on techniques of functional programming.

2



(define (choose-action state)
  (query
   (define action (action-prior))
   action
   (flip (normalize-reward
           (sample-reward action state)))))

(define (sample-reward action state)
  (let ((next-state (state-transition state action)))
      (+ (reward next-state) 
         (if (terminal? next-state) 
             0 
             (sample-reward 
              (choose-action next-state) 
              next-state)))))

Nested query
Policy-free MDP planning as a 

recursively optimal action selection.



Church vs.  ...
• Bugs: Less expressive language for 

directed models. More stable engine.

• BLOG: Nice constructs for unknown 
objects. No abstraction.

• IBAL (etc): Similar. No continuous 
variables, mem, xrps. Obs not query.

• MLN: Undirected, based on FoL. Good 
implementations.

• Csoft, Factorie, Figaro, Hansei, 
ProbLog....



Church inference

• Universal representation (PLoT) needs 
universal inference.

• The mind can’t have a separate algorithm for 
every task.

• Rejection sampling is sound, but slow.

• Efficient universal inference?



Metropolis-Hastings

• To sample from      , repeatedly:

• propose    from               ,

• accept with probability:

• This converges in distribution to
(even if      isn’t normalized).

min
�

1,
P (x)Q(x→ x�)
P (x�)Q(x� → x)

�

Q(x→ x�)
P (x)

P (x)

x� Q(x→ x�)

P (x)

P (x)
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executing (forward) the query expression.

• How can choices be individuated?

• Not by evaluation order (can change)...
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• What is a state? 

• The set of random choices made in 
executing (forward) the query expression.

• How can choices be individuated?

• Not by evaluation order (can change)...

MH for Church

(and
  (if (flip)
      (flip)
      true)
  (flip))

1: T

2: F
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• What is a state? 

• The set of random choices made in 
executing (forward) the query expression.

• How can choices be individuated?

• Not by evaluation order (can change)...

• Named via dynamic calling address:

MH for Church

(and
  (if (flip)
      (flip)
      true)
  (flip))

A
B
C

D

(A B): T

(A C): F

(A D): T (A D): T

(A B): F



• What is a state? 

• The set of random choices made in 
executing (forward) the query expression.

• How can choices be individuated?

• Not by evaluation order (can change)...

• Named via dynamic calling address:

MH for Church

Manuscript under review by AISTATS 2011

A top �E�= A�E� ´

A� I n
i=1

Ebod y �= I n
i=1

A�Ebod y �
where S is a globally unique symbol.

A� E �= A�E�
A� E n

i=1
�= A�Ei �n

i=1

A� Ii Ei
n
i=1

Ebod y �= Ii A�Ei � n
i=1

A�Ebod y �
A� Et Ec Ea �= A�Et � A�Ec � A�Ea�
A� I E �= I A�E�
A� E �= E
A� Eop E n

i=1
�= A�Eop � Ś A�Ei �n

i=1

A�E�= E , otherwise.

Figure 3: The naming specification for Bher is given by a syntactic transform A top
.

application such that (1) the current address is extended

with a symbol that uniquely identifies this (syntactic) ap-

plication within the program and (2) pass on this modi-

fied address as an argument when the function is applied.

On the top level of the program, the address variable

is initialized to ´ . Except for memoization

( ) and , all remaining syntax cases are handled

by applying the addressing transform to all proper subex-

pressions. Primitive functions like and need to

be redefined to take (and ignore) the address argument,

e.g. to .

In Bher, all globally free variables are treated as primitives

and redefined in this way.

In deterministic programs, memoization is an optimiza-

tion technique that does not affect semantics. In stochas-

tic programs, we can distinguish as a semantic con-

struct from as an optimization technique [3]. The
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• What is a state? 

• The set of random choices made in 
executing (forward) the query expression.

• How can choices be individuated?

• Not by evaluation order (can change)...

• Named via dynamic calling address:

MH for Church
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i=1

A�E�= E , otherwise.

Figure 3: The naming specification for Bher is given by a syntactic transform A top
.

application such that (1) the current address is extended

with a symbol that uniquely identifies this (syntactic) ap-

plication within the program and (2) pass on this modi-

fied address as an argument when the function is applied.

On the top level of the program, the address variable

is initialized to ´ . Except for memoization

( ) and , all remaining syntax cases are handled

by applying the addressing transform to all proper subex-

pressions. Primitive functions like and need to

be redefined to take (and ignore) the address argument,

e.g. to .

In Bher, all globally free variables are treated as primitives

and redefined in this way.

In deterministic programs, memoization is an optimiza-

tion technique that does not affect semantics. In stochas-

tic programs, we can distinguish as a semantic con-

struct from as an optimization technique [3]. The

distribution defined by is very dif-

ferent from the distribution defined by

.

When addresses are available, semantic memoization is

a simple syntactic transform. In a program that has been

transformed to provide addresses, random variables get

their values by looking up the value that is stored in the

global database at their address. Thus, to enforce that

two random choices always have the same value, we

make sure that the address they receive is the same. To

achieve this, the case of the addressing transform

builds a function that captures within its closure the ad-

dress of the creation and uses this address (extended

by any function arguments) instead of the address pro-

vided to the function when it is applied.

The Church program shown in Algorithm 5 and its trans-

formed version (Algorithm 6) illustrate the address com-

putation that is induced by the syntactic transform. The

program defines a simple geometric distribution with a

potentially unbounded number of random choices, each

of which gets a unique address. When we propose to

change the value of the that controls the recur-

Algorithm 5 A Church program that samples from a geo-

metric distribution.

Algorithm 6 Transformed version of the Bher program

shown in Algorithm 5.

sion depth, we want to reuse as much of the existing

trace as possible. An example of such a trace is shown

in Figure 5. Note that apply nodes (shown in green) are

the only place where addresses change and that nodes

that refer to the same syntactic place (e.g. the two blue

nodes) have different addresses when they oc-

cur in different places in the trace. A change to the re-

turn value of such a does not affect the addresses of

the choices “above” it. Thus, any randomness stored for

these choices persists across the change.

A major virtue of source-to-source transformations is

simplicity and compositionality. To illustrate this point,

we now sketch a complementary transformation, eager

style to lazy style, that can be used to avoid unnecessary

computation. As shown in Figure 4, we delay expressions

that must not necessarily get evaluated—for example, ar-

Manuscript under review by AISTATS 2011

A top �E�= A�E� ´

A� I n
i=1

Ebod y �= I n
i=1

A�Ebod y �
where S is a globally unique symbol.

A� E �= A�E�
A� E n

i=1
�= A�Ei �n

i=1

A� Ii Ei
n
i=1

Ebod y �= Ii A�Ei � n
i=1

A�Ebod y �
A� Et Ec Ea �= A�Et � A�Ec � A�Ea�
A� I E �= I A�E�
A� E �= E
A� Eop E n

i=1
�= A�Eop � Ś A�Ei �n
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MH for Church
• MH over ‘execution traces’: 

• propose: change a single random choice, 

• trace update: re-execute to update the state, 
reusing existing choices (new choices from 
conditional prior),

• collect, the (now) unused choices,

• check condition and compute score,

• accept/reject.

• Initial state must satisfy condition
(rejection, annealing, constraint propagation).



MH for Church
• Very similar to BLOG algorithm.

• Evaluation automatically instantiates minimal 
“partial world” (but cf. lazy evaluation).

• “Lightweight” technique, addressing by 
program transformation, works for 
almost any programming language -- 
enter Stochastic X.

• Current implementation doesn’t scale 
well (due to software engineering issues).

Goodman, et al. (2008)
Wingate, Stuhlmueller, Goodman (2011)



Hamiltonian Monte Carlo

• Add an auxiliary “momentum” variable 
for each continuous variable.

• Hamiltonian evolution is 
reversible and conserves 
probability (hence satisfies 
detailed balance).

• Numeric integration introduces conservation 
errors, so add an MH accept step.

• Need the gradient of the score....

φ(x) = − ln(P (x))

H(x, p) = φ(x) +mp
2

dx

dt
=

∂H

∂p
,
dp

dt
= −∂H

∂q



Automatic differentiation
• Since programs are compositions of 

functions, can compute derivatives  
automatically (remember the chain 
rule?)

• A “non-standard interpretation” -- 
implemented by operator overloading.

• Exact (to machine precision) gradient of 
score at each point. (No silly errors!)

• Low overhead (roughly 2x in Bher).

• Generalizes back-prop.



HMC via AD
• We use AD to provide gradients needed 

in HMC.

• HMC can be much more efficient.

• Sampling an eccentric 3-dim gaussian:
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Figure 2: On the left: samples from the structured Perlin noise generator. On the right: convergence
of expected mean for a draw from a 3D spherical Gaussian conditioned on lying on a line.

this experiment illustrates how the automatic nature of the gradients is most helpful, as it would be
time consuming to compute these gradients by hand—particularly since we are free to condition
using any function of the image.

Complex conditioning. For our second example, we demonstrate the improved statistical efficiency
of the samples generated by HMC versus Bher’s standard MCMC algorithm. In this task, the goal
is to sample points from a complex 3-dimensional distribution. We construct this by starting with a
simple Gaussian mixture model prior, but then sample points that are noisily conditioned to be on
a line running through R3. This conditioner creates complex interactions with the prior to yield a
smooth, but strongly coupled, energy landscape.

Fig. 2 shows results comparing our HMC implementation with Bher’s standard MCMC inference
engine. The x-axis denotes samples, while the y-axis denotes the convergence of an estimator of
certain marginal statistics of the samples. We see that this estimator converges much faster for
HMC, implying that the samples which are generated are less autocorrelated – affirming that HMC
is indeed making better distal moves. HMC is about 5x slower than MCMC for this experiment, but
the overhead is justified by the significant improvement in the statistical quality of the samples.

4 Provenance Tracking for Fine-Grained Dynamic Dependency Analysis

One reason gradient based inference algorithms are effective is that the chain rule of derivatives
provides a principled way to compositionally backpropagate information from the data up to the
proposal variables. But gradients, and the chain rule, are only defined for continuous variables. Is
there a corresponding structure for discrete choices? We now introduce a new nonstandard inter-
pretation based on provenance tracking (PT). In programming language theory, the provenance of a
variable is the history of variables and computations that combined to form its value. In probabilistic
programming, we propose to use this to track fine-grained dependency information between random
values and intermediate computations as they combine to form a likelihood.

Importantly, the provenance information is collected for a particular value x of the probabilistic pro-
gram, which can be useful for models with sparse, dynamic dependencies among variables. This can
provide more detailed information than, say, a graphical model: in a graphical model, conditional
independencies must hold for every value of variables in the model, but in practice, for a specific
value, the dependencies may be sparser than the graph indicates. An example of this is shown in
Alg. 4, where a simple renderer renders a triangle mesh into an image. Vertices in the mesh can
move arbitrarily, so there is some value for each vertex such that every triangle could be rendered to
any pixel, but for any particular set of vertex values, each triangle affects a small number of pixels.

4.1 Defining and Implementing Provenance Tracking

Like AD, PT can be implemented with operator overloading. Because provenance information is
much coarser than gradient information, the operators in PT objects have a particularly simple form;
most program expressions can be covered by considering a few cases. Let X denote the set {xi}
of all (not necessarily random) variables in a program. Let R(x) ⊂ X define the provenance of a
variable x. Given R(x), the provenance of expressions involving x can be computed by breaking
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HMC via AD
• We use AD to provide gradients needed 

in HMC.

• Conditioning Perlin noise on symmetry:
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Figure 2: On the left: samples from the structured Perlin noise generator. On the right: convergence
of expected mean for a draw from a 3D spherical Gaussian conditioned on lying on a line.
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using any function of the image.
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is to sample points from a complex 3-dimensional distribution. We construct this by starting with a
simple Gaussian mixture model prior, but then sample points that are noisily conditioned to be on
a line running through R3. This conditioner creates complex interactions with the prior to yield a
smooth, but strongly coupled, energy landscape.

Fig. 2 shows results comparing our HMC implementation with Bher’s standard MCMC inference
engine. The x-axis denotes samples, while the y-axis denotes the convergence of an estimator of
certain marginal statistics of the samples. We see that this estimator converges much faster for
HMC, implying that the samples which are generated are less autocorrelated – affirming that HMC
is indeed making better distal moves. HMC is about 5x slower than MCMC for this experiment, but
the overhead is justified by the significant improvement in the statistical quality of the samples.

4 Provenance Tracking for Fine-Grained Dynamic Dependency Analysis

One reason gradient based inference algorithms are effective is that the chain rule of derivatives
provides a principled way to compositionally backpropagate information from the data up to the
proposal variables. But gradients, and the chain rule, are only defined for continuous variables. Is
there a corresponding structure for discrete choices? We now introduce a new nonstandard inter-
pretation based on provenance tracking (PT). In programming language theory, the provenance of a
variable is the history of variables and computations that combined to form its value. In probabilistic
programming, we propose to use this to track fine-grained dependency information between random
values and intermediate computations as they combine to form a likelihood.

Importantly, the provenance information is collected for a particular value x of the probabilistic pro-
gram, which can be useful for models with sparse, dynamic dependencies among variables. This can
provide more detailed information than, say, a graphical model: in a graphical model, conditional
independencies must hold for every value of variables in the model, but in practice, for a specific
value, the dependencies may be sparser than the graph indicates. An example of this is shown in
Alg. 4, where a simple renderer renders a triangle mesh into an image. Vertices in the mesh can
move arbitrarily, so there is some value for each vertex such that every triangle could be rendered to
any pixel, but for any particular set of vertex values, each triangle affects a small number of pixels.

4.1 Defining and Implementing Provenance Tracking

Like AD, PT can be implemented with operator overloading. Because provenance information is
much coarser than gradient information, the operators in PT objects have a particularly simple form;
most program expressions can be covered by considering a few cases. Let X denote the set {xi}
of all (not necessarily random) variables in a program. Let R(x) ⊂ X define the provenance of a
variable x. Given R(x), the provenance of expressions involving x can be computed by breaking
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Other techniques

• Sequential Monte Carlo

• Particle filter with rejuvenation,

• Any model, and any sequentialization 
(specified via free variable in query).

• Dynamic programming (UDP/cosh)

• Inference as marginalization,

• Builds compact system of polynomial 
equations...
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(define (game player)
  (if (flip .6)
      (not (game (not player)))
      (if player
          (flip .2)
          (flip .7))))

(game true)

True 2.375E-01
False 0.7625

0

0.2

0.4

0.6

0.8

True False

C 1 = 1.0∗C

C:false = A:false ∗C 1

C:true = A:true ∗C 1

A1 = 1.0∗ A

A2 = 0.4∗ A1

A3 = 0.6∗ A1

A:false = 0.8∗ A2+ B:true ∗ A3

A:true = 0.2∗ A2+ B:false ∗ A3

B1 = 1.0∗B

B2 = 0.6∗B1

B3 = 0.4∗B1

B:false = 0.3∗B3+ A:true ∗B2

B:true = 0.7∗B3+ A:false ∗B2

...
((vector-ref op265 0) op265
 (vector
  (lambda (self266 tmp151)
    (let ((b135 tmp151))
      (let ((op267
             (vector-ref
              self266 2)))
        ((vector-ref op267 0)
         op267
         (vector
          (lambda
              (self268 tmp153)
            (make-application
             tmp153
             (vector-ref
              self268 2)
             #t))
          '60
          (vector-ref
           self266 3))
         (vector-ref self266
                     4)))))
  '61 (vector-ref self258 3)
  k134 game)
 game abs136)
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Figure 2: Illustration of each of the stages of the UDP algorithm for a simple probabilistic program.

explicit the dependencies between the probabilities of the return values of different subproblems
(function applications). (3) Partition this graph into a directed acyclic graph of subproblem com-
ponents that makes explicit which problems need to be solved together and which can be solved
sequentially or in parallel. (4) Traversing this DAG of components in topological order, convert
each component to a system of polynomial equations, and solve this system using fixed-point itera-
tion. Figure 2 illustrates these steps for a simple recursive program.

2.1 Probabilistic programs as factored coroutines

Informally, the execution of a probabilistic program can be viewed as an interaction between de-
terministic computation and stochastic choice: When a probabilistic program attempts to sample
a value from a primitive distribution, we can think of the program ceding control to an oracle that
samples the value and then returns control to the program. The program then resumes and eventually
either halts (with some return value) or again cedes control at the next stochastic choice.

More carefully, elements in the domain C of continuations are representations of the control state of
a program when it cedes control to the oracle. Thus, a program may halt and return an element from
a countable domain V of values or it may cede control to the oracle by returning a pair (K,P ) ∈
C × P(V) where K is a continuation and P is the distribution on values from which the oracle will
sample. If we define the domains S = C ×P(V) and U = V ∪ S , then we can model the domain of
continuations by C = V → U , i.e., the control state of a program when it cedes control is represented
by a function that takes the value from the oracle and returns either a value (representing a halting
state) or a new request to the oracle (represented by a distribution on values and a continuation).

The domain U can be embedded in a directed, labeled graph called the coroutine graph, whose
vertices are the elements of U and whose edges with label v ∈ V connect (K,P ) ∈ S and u ∈ U
if and only if v is in the support of P and K(v) = u. Moreover, every probabilistic program
corresponds with some element in u ∈ U and the execution of the probabilistic program can be
viewed as a random walk in the graph starting from u. In particular, given that the random walk
arrives at a “stochastic choice” vertex (K,P ) ∈ S , the next vertex visited is K(ν) where ν ∼ P .
When the random walk arrives at a “value” node v ∈ V , the random walk halts. We will say that a
random walk returns a value v ∈ V if it eventually halts at v.

3



Many directions open..

To work on 
Church 

inference 
algorithms

 



Bonus: counterfactuals
• Structured models do more than specify 

distributions. See Pearl, next.

• Can build a counterfactual operator in 
Church from the same “update” operator 
needed for MH.

With Tobi Gerstenberg and Andreas Stuhlmueller.

(counterfactual
  ((dad-eyes ‘brown))

  (define dad-eyes (uniform-draw ‘(blue brown)))
  (define mom-eyes (uniform-draw ‘(blue brown)))
  (if (or (eq? dad-eyes ‘brown)
          (eq? mom-eyes ‘brown)
          (flip 0.1))
      ‘brown
      ‘blue))

=> 
(blue . brown)

 (actual  .  counterf)



Conclusion

• The PLoT: mental representations as 
stochastic functions.

• Church: an expressive probabilistic 
programming language suited for 
cognitive modeling.

• Next lectures: applications to social 
cognition, natural language, concept 
learning.


