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Motivation

The mind is an information
processing system.
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But what kind of
information processor?
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learning by probabilistic inference.
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* The probabilistic language of thought
hypothesis:

® Mental representations are compositional,
® Their meaning is probabilistic,

® They encode generative knowledge,

® Hence, they support thinking and
learning by probabilistic inference.

Can this hypothesis be formalized?
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Probabilistic generative models

® Mental model of the causal
process that gives rise to

Dl

observations. cough | T8 | noTB
flu 08 | 07
o
E.g. Bayes nets. T 07 | o
® But what’s “hidden inside”
the nodes and arrows?  writetalk | ZoT | YR
‘ ame sleep
going to
S 0.7 0.05
it’s raining 0.002 0.004




A\ calculus

e Notation:

® Function have parentheses on the wrong side: |(sin x)

e Operators always go at the beginning: (+ X V)

® \ makes functions, define binds values to symbols:

(define double
(A (X) (+ x X)))

(double 3)| => 6

(define repeat

(A (£) (A (%) (£ (f x)))))

( (repeat double) 3)| => 12

(define 2nd-derivative (repeat derivative))




Church

Random primitives: >
(define a (flip 0.3)) => 100 %
(define b (flip 0.3))|=> 000 3
(define ¢ (flip 0.3))|=> 1 01 3
(+ a b c) => 201..%

Conditioning (inference):

(query 2
(define a (flip 0.3)) g
(define b (flip 0.3)) >
(define c¢ (flip 0.3)) => 2
((+ a b ¢) Query ) S

A

0 I 2 3

3
(= (+ a b) 1)) iti

Condition, Goodman, Mansinghka, Roy,
. must be true  j  popawitz, Tenenabum (2008)
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PLol

® Formalizing the PLoT:
Mental representations (concepts) are
functions in a stochastic lambda calculus
(e.g. Church).

® _.or pieces of probabilistic programs, anyhow.

® Separate the process of inference from
representations and the inferences they license

(Cf. Marr’s levels).

http://projects.csail.mit.edu/church
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Outline (next 3 lectures)

® Church: language design considerations.
® Church: inference techniques.

® Social cognition.

® Natural language pragmatics (etc).

® Concept learning as program induction.
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" e Church: language design considerations.

® Church: inference techniques.
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Church language design

e Start with (pure subset of) LISP.

® Add random primitives.
e Add mem.
® Add query.



Why functions!?

e Composition of probabilistic functions
represents directed generative models.

e Captures the intuition that much human
knowledge is about causal process.

® For example, explaining away: conditioning an
undirected model can introduce new independence
but not new dependence.

® Hierarchical models, etc.



Undirected modeling?

® Complex conditions in query represent
(any) undirected constraints.

® For example an Ising model:

(query
(define a (flip)

)
(define b (flip))
(define ¢ (flip))

(list a b c¢)

(and (flip (if (equal? a b)) 1.0 0.3)
1.0 0.3)

(flip (1f (equal? b c)) ) )




Undirected modeling?

® Complex conditions in query represent
(any) undirected constraints.

® For example an Ising model:

(query
(define a (flip)

)
(define b (flip))
(define ¢ (flip))

(list a b c¢)

6111(().:3)(5&:1,)

(and Qflip (1f (equal? a b)) 1
1

.0 0.3)
(flip (1f (equal? b c)) 1.0 0.3)))




Undirected modeling?

® Complex conditions in query represent
(any) undirected constraints.

® For example Markov Logic:

(query
(define world (repeat N flip))

world

(and
(log-flip (1f (clausel world) 0.0 weightl)))
(log-flip (1f (clause2 world) 0.0 weight2)))

-))




Undirected modeling?

® Complex conditions in query represent
(any) undirected constraints.

® S0, Church can represent directed,
undirected, and hybrid models.

e Complex conditions can be built out of

directed pieces.
(This seems important for natural language.
Cf. Montegue.)



Why functional?

® First class abstraction.

® The pieces needed for model specification
are representable in the modeling language.

e Abstraction permits domain specific languages
-- changes the effective language of thought.

® Higher-order functions are useful.
(E.g. the higher-order distribution DPmem.)

® Recursion.

® Models are parsimonious.



Why LISP?

® Small core language.
® Simple semantics.
® Very little syntax.
® Simple type system.

® Code as data (meta-circular, homoiconic).

® Well-worked out concepts for
computation (see SICP).



Random primitives

® Just the fair-coin £1ip primitive is
enough (\PA-calculus),

® But it is convenient (and well-formed) to
add other random primitives.

® An ERP is a primitive (with arguments)
that can sample values and score.

® For each set of arguments, multiple samples

from an ERP must be independent identically
distributed (iid)

® Examples: f1ip, sample-discrete,
gaussian.



Exchangeability

o [f all the ERPs return iid samples, then is
any Church thunk (procedure without
arguments) an iid distribution?

® No. Consider:

® But they are
exchangeable.

(define weight (beta 1 1))
(define (mycoin) (flip weight))
(repeat 10 mycoin)

=> (tttttttttt)

® Theorem (Freer & Roy, 2010):
Any church thunk is exchangeable and
any exchangeable distribution may be
represented by a Church thunk.




Random primitives

® Relax the interface for random
primitives: an XRP can sample and
score. Multiple calls exchangeable.

® Examples:
e Uniform draw without replacement.
e Gensym.

® Beta-binomial.

e CRP



Memoization

(= (flip) (flip)) > True with probability 0.5

(define mem-flip ( flip))
(= (mem-flip) (mem-flip))

> True with probability |.0

® The mem primitive memoizes a procedure.

® This changes the semantics (unlike in deterministic
languages).

® Interacts with symbols and gensym, to enable
“BLOG style” style world models.

(define people (repeat (poisson 1.0) gensym))
(define eye-color
(mem (A (person) (uniform-draw ‘(blue brown)))))
(define blue-eyed-people
(filter (A (person) (equal? ‘blue (eye-color person)))
people))




Stochastic memoization

® DPmem: stochastically reuse return
values from functions.

® A higher-order distribution: it takes a
stochastic function (of any type) and samples
a new function (of same type) that
concentrates the original.

® Adapts a generative process to balance reuse
with re-computation (see Johnson, O’Donnell).

® Implemented in Church via stick-breaking or
using an XRP.

(define mem-flip ( flip))
(= (mem-flip) (mem-flip))




DP mixture model

(define draw-class

(DPmem 1.0 gensym))
(define class

(mem (lambda (obj) (draw-class))))
(define class-weight

(mem (lambda (obj-class feature)

(beta 1.0 1.0))))
(define observe-feature

(lambda (obj feature)
(flip (class-weight (class obj) feature)))))




DP mixture model

T R T N P 3 TTT P SOy R PR
(define draw-class A pool of cluster symbols

. (DPmem 1.0 gensym)) with DP prior.
((define class

y
<
(mem (lambda (obj) (draw-class)))) [he cluster of an

(define class-weight object and
(mem (lambda (obj-class feature) cluster parameters
L (beta 1.0 1.0)))) are persistent.

(define observe-feature
(lambda (obj feature)

(flip (class-weight (class obj) feature)))))




Infinite relational model

The IRM model from: Kemp, et al, 2006

(define draw-class

(DPmem 1.0 ) )
(define class

(mem (lambda (obj) (draw-class ))))
(define class-weight

(mem (lambda (obj-classl )

(beta 1.0 1.0))))

(define

(lambda (objl )

(flip (class-weight (class objl) )))))




Infinite relational model

The IRM model from: Kemp, et al, 2006

(define draw-class
(DPmem 1.0 ) )
(define class
(mem (lambda (obj) (draw-class ))))
(define class-weight
(mem (lambda (obj-classl )
(beta 1.0 1.0))))
(define
(lambda (objl )
(flip (class-weight (class objl)




Nested CRP

(define category
(DPmem 1.0
(A (parent-category)
(palir (gensym) parent-category))))

(define (category-hierarchy N)
(if (= N 0)

‘(top)
(category (category-hierarchy (- N 1)))))

(category-hierarchy 3) x4..




Nested CRP

(define category
(DPmem 1.0
(A (parent-category)
(palir (gensym) parent-category))))

(define (category-hierarchy N)
(if (= N 0)

‘(top)
(category (category-hierarchy (- N 1)))))

(category-hierarchy 3) x4..

=2 ((90 gl g2 top)
(g3 gl g2 top)
(g4 gl g2 top)
(g5 g6 g7 top))




RADP-HMM

(define draw-state (DPmem 1.0 gensym))
(define transition (DPmem 1.0 (A (state) (draw-state))))
(define obsfn

(mem (A (state) (make-dirichlet-multi terminals)))

(define (hdp-hmm state N)
(Lf (= N 0)
“()
(pair ((obsfn state))
(hdp-hmm (transition state) (- N 1)))))




first-class query

®* How should we specify observations in
probabilistic programs!?

® Separate model from data / data variables!?
® ‘Observe’ statements within model?

® Better: make inference an ordinary function.

e Can define inference within the language (e.g. by
rejection).

e Gives proper scoping, complex conditions, nested
query (‘inference about inference’).



Nested query

Alice and Bob arrange to meet at the bar, each later realizes

they didn’t fix which bar and must guess where to meet.
(A coordination game, see Schelling, 1960)

Recursive social inference:

(define (sample-location)
(1f (flip .55) ’'popular-bar ’'unpopular-bar))

(define (bob depth)

(query
(define bob-location (sample-location))

bob-location
(equal? bob-location (alice (- depth 1)))))

(define (alice depth)
(query
(define alice-location (sample-location))
alice-location
(or (= depth 0)
(equal? alice-location (bob depth)))))




Nested query

Alice and Bob arrange to meet at the bar, each later realizes

they didn’t fix which bar and must guess where to meet.
(A coordination game, see Schelling, 1960)

Recursive social inference:

(define (sample-location)
(1f (flip .55) ’'popular-bar ’'unpopular-bar)

o
&)

>
=
Q
©
Q
o
S
o

(define (bob depth)

(query
(define bob-location (sample-location)) 0
. o 1 2 3 4 5 6 7 8 9 10
bob-location Depth of recursion
(equal? bob-location (alice (- depth 1))) © Unpopular bar Popular bar

(define (alice depth)
(query
(define alice-location (sample-location))
alice-location
(or (= depth 0)
(equal? alice-location (bob depth)))))




Nested query

Policy-free MDP planning as a
recursively optimal action selection.

(define (choose-action state)
(query
(define action (action-prior))
action
(flip (normalize-reward
(sample-reward action state)))))

(define (sample-reward action state)
(let ((next-state (state-transition state action)))
(+ (reward next-state)
(Lf (terminal? next-state)
0
(sample-reward
(choose-action next-state)
next-state)))))




Church vs.

® Bugs: Less expressive language for
directed models. More stable engine.

® BLOG: Nice constructs for unknown
objects. No abstraction.

® |BAL (etc): Similar. No continuous
variables, mem, xrps. Obs not query.

® MLN: Undirected, based on FolL. Good
implementations.

e Csoft, Factorie, Figaro, Hansei,
ProblLog....



Church inference

® Universal representation (PLoT) needs
universal inference.

® The mind can’t have a separate algorithm for
every task.

® Rejection sampling is sound, but slow.

e Efficient universal inference?



Metropolis-Hastings

® To sample from P(z), repeatedly:

® propose z' from Q(z — '),

P(z)Q(z — z') )
P(x")Q(z' — x)

® This converges in distribution to P(x)
(even if P(x)isn’t normalized).

® accept with probability: min (1,



MH for Church

® What is a state!

® The set of random choices made in
executing (forward) the query expression.

® How can choices be individuated?

® Not by evaluation order (can change)...
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MH for Church

® What is a state!

® The set of random choices made in
executing (forward) the query expression.

® How can choices be individuated?

® Not by evaluation order (can change)...

(and
(if (flip)+—— 1T
(flip) — 2:F
true)
(flip)_) — 3:1
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® What is a state!

® The set of random choices made in
executing (forward) the query expression.

® How can choices be individuated?

® Not by evaluation order (can change)...

(and
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(if (flip)-
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true)

1T —=» |:F
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MH for Church

® What is a state!

® The set of random choices made in
executing (forward) the query expression.

® How can choices be individuated?

® Not by evaluation order (can change)...

(and

(£lip).)

(if (flip)-

(flip)
true)

1T —=» |:F
—> 2: F
—> 3T 21 F




MH for Church

® What is a state!

® The set of random choices made in
executing (forward) the query expression.

® How can choices be individuated?

® Not by evaluation order (can change)...

® Named via dynamic calling address:

(£1ip).)

(‘and
(1f (£lip)-
(£lip)
true)

. (AB:T —» (AB):F

 (AQ):F

~» (AD):T (A D):T




MH for Church

® What is a state!

® The set of random choices made in
executing (forward) the query expression.

® How can choices be individuated?

® Not by evaluation order (can change)...

® Named via dynamic calling address:

4'°P[E] = ((lambda (addr) A[E]) '(top))
Al(lambda (I'_)) Epggy)] = (lambda (addr . I ) AlEpyqyl)
where § is a globally unique symbol.
A[(mem E)] = ((lambda (maddr f) (lambda (addr .args) (apply f (cons args maddr) args))) addr A[E])
Al(begin E' )] = (begin A[E;]7 )

A[(letrec (([; El):lzl) Ebody)]]:(letrec ((I; ﬂlﬂEi]])?:l) /‘Zl[[EbOdy]])
Aal(if Ey E; Eg)l=(if A[E:] A4lE;] AlEg4l)

A[(define I E)] = (define I A[E])

A[(quote E)] = (quote E)

A[(Eop E! D)1= (AlEopl (cons S addr) AIE;I" )

A[E] = E, otherwise.




MH for Church

® What is a state!

® The set of random choices made in
executing (forward) the query expression.

® How can choices be individuated?

® Not by evaluation order (can change)...

® Named via dynamic calling address:

AP [E] = ((1ambda (addr) A4[E]) '(top))
Al(lambda (I") Epog,)] = (lambda (addr . I (begin _ ((lambda (addr)
where § is a globally unique symbol. (define geometric (begin

B (lambda (p) (define geometric
A[(mem E)] = ((lambda (maddr f) (lambda (add (if (£lip p) (lambda (addr p)

A[(begin Ezlzl)]]: (begin ﬂﬂEiﬂ?zﬁ 1 (if (flip (comns ’al addr) p)

Al(letrec ((I; Ej)7 |) Epoay)l = (letrec ((J; (+ 1 (geometric p))))) 1
A[(if E; E. Ep)] = (if A[E:] AlE;] AlEg4]) (geometric .7)) (+ (cons ’a2 addr)

. . 1
A[(define I E)] = (define I A[E]) (geometric (cons ’a3 addr) p)))))
A[(quote E)] = (quote E)

| (geometric (cons ’ab addr) 0.7)))
Al(Eop E_ )1 =(AlEgpl (cons S addr) A[E;]} > (top))

A[E] = E, otherwise.




MH for Church

e MH over ‘execution traces’:

® propose: change a single random choice,

® trace update: re-execute to update the state,
reusing existing choices (new choices from
conditional prior),

® collect, the (now) unused choices,
® check condition and compute score,

® accept/reject.

® |nitial state must satisfy condition
(rejection, annealing, constraint propagation).



MH for Church

® Very similar to BLOG algorithm.

® Evaluation automatically instantiates minimal
“partial world” (but cf. lazy evaluation).

® “Lightweight” technique, addressing by
program transformation, works for
almost any programming language --
enter Stochastic X.

e Current implementation doesn’t scale

well (due to software engineering issues).

Goodman, et al. (2008)
Wingate, Stuhlmueller, Goodman (201 |)



Hamiltonian Monte Carlo

® Add an auxiliary “momentum” variable
for each continuous variable.

e Hamiltonian evolution is ¢(z) = —In(P(x))
reversible and conserves H(z,p) = ¢(x) + mp°
probability (hence satisfies dz 0H dp  OH

detailed balance). dt — 9p’ dt  0q

® Numeric integration introduces conservation
errors, so add an MH accept step.

® Need the gradient of the score....



Automatic differentiation

® Since programs are compositions of
functions, can compute derivatives
automatically (remember the chain
rule?)

® A“non-standard interpretation” --
implemented by operator overloading.

® Exact (to machine precision) gradient of
score at each point. (No silly errors!)

® Low overhead (roughly 2x in Bher).

® Generalizes back-prop.



HMC via AD

® We use AD to provide gradients needed
in HMC.

¢ HMC can be much more efficient.

® Sampling an eccentric 3-dim gaussian:

o

expectation
N

N

)
-]
-
-
O
e
)
O
C
Qv
e
§<
O

o
o

100 150 200 250 300
Samples

Wingate, Stuhlmueller, Siskind, Goodman (under review)



HMC via AD

® We use AD to provide gradients needed
in HMC.

® Conditioning Perlin noise on symmetry:

. . o

Wingate, Stuhlmueller, Siskind, Goodman (under review)




Other techniques

® Sequential Monte Carlo

® Particle filter with rejuvenation,

® Any model, and any sequentialization
(specified via free variable in query).

® Dynamic programming (UDP/cosh)

® Inference as marginalization,

® Builds compact system of polynomial
equations...



Other techniques

Factored coroutine Factored computation graph

((vector-ref op265 0) op265
(vector
(lambda (self266 tmpl51)
(let ((b135 tmpl51))
O (let ((op267
riginal program (vector-ref
g p g self266 2)))
. ((vector-ref op267 0)
(define (game player) 0p267
(if (flip .6) (vector
(lambda
(pot (game (not player))) (se1£268 tmpl53)
(1f player (make-application
(flip .2) tmp153
. (vector-ref
(fllp =71)))) self268 2)
#t))
(game true) '60 A:false
(vector-ref
self266 3))
(vector-ref self266
4)))))
'61l (vector-ref self258 3)
k134 game)
game absl1l36)

—

Subproblem dependency graph Systems of polynomial equations Marginal probabilities

@—>® GL=lbak Al=1.0%A
‘C:false‘:‘A:false‘*Cl A2=0.4+x Al
[C:true|=[A:true]+Cl A3=0.6* Al

[A:false|=0.8% A2 +[B:true|* A3
[A:true|=0.2% A2+[B:false |+ A3

B1=1.0%B
B2=0.6* Bl
B3=0.4%B1

@ @ [B:false|=0.3 % B3+[A:true]* B2
[Ertzme]- 07+ 33+ [Krzaizs] B2

0.8

Subproblem component DAG




Many directions open..

To work on
Church
inference @&
algorithms




Bonus: counterfactuals

® Structured models do more than specify
distributions. See Pearl, next.

e Can build a counterfactual operator in

Church from the same “update” operator
needed for MH.

(counterfactual
( (dad-eyes

(define dad-eyes
(define mom-eyes

‘brown))

(uniform-draw ‘(blue brown)))
(uniform-draw ‘(blue brown)))

(Lf (or (eqg? dad-eyes ‘brown)
(eq? mom-eyes ‘brown)
(flip 0.1))
‘brown
‘blue))

With Tobi Gerstenberg and And

=>
(blue . brown)
(actual . counterf)

reas Stuhlmueller.



Conclusion

® The PLoT: mental representations as
stochastic functions.

® Church: an expressive probabilistic
programming language suited for
cognitive modeling.

® Next lectures: applications to social
cognition, natural language, concept
learning.



