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Bayesian Rational 
Analysis (Anderson, 1992)

• Find subcomputations which provide best 
explanation for the data.  

• What evidence is available to the learner?

• Which patterns give rise to productivity, which patterns imply reuse?
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• Generalization of Adaptor Grammars (Johnson et al., 2007).

• Bayesian non-parametric distributions (Pitman-Yor).

• Notion of compiling subcomputations via tools 
from probabilistic programming (Church language; Goodman 
et al., 2008).

• Stochastic memoization (Johnson et al., 2007) of stochastically lazy/
eager programs.
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Probabilistic Programming

(Church)

• Alternative to more standard mathematical 
formalization (see, O’Donnell, 2011).

• Highlights relationship between formalisms 
(PCFGs,  Adaptor Grammars, Fragment 
Grammars).

• Cross fertilization of ideas from the theory 
of programming languages. 

• Caveat: Church inference algorithms do not 
work well for these models.
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table

• When function is called with particular 
arguments then grab from table if stored

• When function is called with new 
arguments, then compute and store in table

• Higher-order function: mem
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same value after first call, but sometimes 
we want to probabilistically favor 
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Stochastic Memoization
(Goodman et al., 2008; Johnson et al., 2007)

• Adaptor Grammars: Anything that can be 
computed can be stored and reused 
probabilistically.

• Memoization distribution: Pitman-Yor 
Processes (Pitman & Yor, 1995).

• Stochastic memoization + PCFGs = 
Adaptor Grammars.
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Pitman-Yor Process
• Generalization of the Chinese Restaurant 

Process

• Two parameters:

• a ∈ [0,1]

• b > -a

yi − a

N + b

Probability of Reuse
a ·K + b

N + b

Probability of Novelty

N:  Total number of observations

K:  Total number of values

yi:  Total number of 
                  observations of value  i



Properties of PYPs



Properties of PYPs

• Rich get richer, concentrates distribution 
on a few values.



Properties of PYPs

• Rich get richer, concentrates distribution 
on a few values.

• Prefers fewer customers/tables/tables-per-
customer.



Properties of PYPs

• Rich get richer, concentrates distribution 
on a few values.

• Prefers fewer customers/tables/tables-per-
customer.

• Prefers to generate novel values 
proportional to how often novelty has 
been generated in the past.



Adaptor Grammars
(Johnson et al., 2007)

(define adapted-unfold
(PYMem a b 
(lambda (symbol)

(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol))))))
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1. Always possible to use base grammar.
2. Fully recursive.
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Lazy and Eager 
Evaluation

• Eager Evaluation: Do as much work as early 
as possible.

• Lazy Evaluation: Delay work until it is 
absolutely necessary to continue 
computation.



Example

(define add3 
(lambda (x y z)
(+ x y z)))
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Eager Evaluation

(+ 6 8 2)
x y z



Eager Evaluation

16
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(+ (+ 1 2 3) (* 2 4) (- 3 1))

x y z

} } }
Argument expressions are delayed 
until their values are needed by 
another computation.



Lazy Evaluation

(+ (+ 1 2 3) (* 2 4) (- 3 1))

Primitive + 
procedure forces 

evaluation of 
arguments.



Lazy Evaluation

(+ (+ 1 2 3) (* 2 4) (- 3 1))



Lazy Evaluation

(+ 16 (* 2 4) (- 3 1))
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Lazy Evaluation

(+ 16 8 (- 3 1))



Lazy Evaluation

(+ 16 8 2)
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λ-calculus: Order of 
Evaluation

• Applicative order (eager evaluation): evaluate 
arguments first, then apply function.

• Normal order (lazy evaluation): copy 
arguments into procedure, only evaluate 
when needed.

• Church-Rosser theorem: Order doesn’t 
matter for deterministic λ-calculus.

• Does matter for Ψλ-calculus!
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Ψλ-calculus: Order of 
Evaluation

(define same? 
(lambda (x)
(equal? x x)))

(same? (flip))
P(true) = 1/2lazy

P(true) = 1eager



Tradeoff

• Laziness allows you to delay computation 
and, thus, preserve randomness and 
variability until the last possible moment.

• Eagerness allows you to determine random 
choices early in computation and, thus, 
share choices across different parts of a 
program.
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Random Evaluation 
Order

• Idea: Stochastically mix lazy and eager 
evaluation in Ψλ-calculus.

• Ultimately allow learning of which 
computations should be performed in 
advance and which should be delayed.

• Assume eager evaluation strategy and add 
delay primitive.

• Apply to unfold (can be applied fully 
generally).
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Stochastic Lazy 
unfold

(define delay-or-unfold
(lambda (symbol)
(if (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol))))

(define stochastic-lazy-unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))
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Reusing Delayed 
Computations

• Need to be able to reuse partial 
evaluations.

• Memoize stochastically lazy unfold.



Fragment Grammars

(define delay-or-unfold
(PYMem a b (lambda (symbol)
(if (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol)))))

(define stochastic-lazy-unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))
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1. Always possible to use base grammar.
2. Fully recursive.
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Five Models

• 4 approaches to productivity and reuse.

• Capture historical proposals from the 
literature.

• State-of-the-art probabilistic models.

• Allow for variability and learning.
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MDPCFG
Multinomial-Dirichlet Context-Free Grammars

(Full-Parsing)

- All generalizations are productive

- Formalization: Multinomial-Dirichlet Probabilistic Context-free 
Grammar (MDPCFG; Johnson, et al. 2007a)
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MAG
MAP Adaptor Grammars

(Full-entry)

- Store whole form after first use.

- Formalization:  Adaptor Grammars (AG; Johnson, et al. 2007).

- Always possible to compute productively with small 
probability; Fully recursive.

- Formalizes classic lexicalist theories (e.g., Jackendoff, 1975).
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DOP1/GDMN
Data-Oriented Parsing

(Exemplar-based)

- Store all generalizations consistent with input

- Formalization: Data-Oriented Parsing 1 (DOP1; Bod, 1998),  Data-
Oriented Parsing: Goodman Estimator (GDMN; Goodman, 2003)

- Recently proposed as models of syntax (e.g., Snider, 2009; Bod, 
2009)
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FG
Fragment Grammars

(Inference-based)

- Store best set of subcomputations for explaining the data. 

- Formalization:  Fragment Grammars (FG; O’Donnell, et al. 2009)

- Generalization of Adaptor Grammars
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English Derivational 
Morphology

Productive +ness (goodness), 
+ly (quickly)

Semi-productive

Unproductive

+ity (ability), 
+or (operator)

+th (width)
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Simulations

• Words from CELEX.

• Extensive heuristic parsing/hand correction.

• Input format.

• No phonology or semantics.
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Derivational Inputs
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English Derivational 
Morphology

1. Individual suffix 
productivity differences 
(-ness/-ity/-th).

2. Suffix sequences.
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English Derivational 
Morphology

1. Individual suffix 
productivity differences 
(-ness/-ity/-th).

2. Suffix combinations.
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Productivity 

• No gold-standard dataset or measure.

• E.g., Large databases of wug-tests or 
naturalness judgments.

• Analyses.

1. Convergence with other theoretical 
measures.
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How is Productivity 
Represented?

• Relative probability of fragments with or 
without variables. 

V.

wide
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Baayen’s Corpus-Based 
Measures

• Baayen’s    /       (e.g., Baayen, 1992)

•    :   Prob(NOVEL | SUFFIX) i.e. rate of 
growth of forms with suffix

•    : Prob(SUFFIX | NOVEL) i.e. rate of 
growth of vocabulary due to suffix

P

P P∗

P∗

102



Productivity Correlations
(         values from Hay & Baayen, 2002)

MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

P/P∗
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English Derivational 
Morphology

1. Individual suffix 
productivity differences 
(-ness/-ity/-th).

2. Suffix combinations.
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Generalizable Combinations

Frozen Combinations
Generalizable 
Combinations
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Generalizable Combinations

Frozen Combinations
Generalizable 
Combinations
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-ity v. -ness

• -ness more productive than -ity.

• -ity more productive than -ness after:           
-ile, -able, -(i)an, -ic.                                 
(Anshen & Aronoff, 1981; Aronoff & Schvaneveldt, 1978; Cutler, 1980)
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Two Frequent Combinations:

-ivity v. -bility

• -ive + -ity: -ivity (e.g., selectivity).

• Speaker prefer to use -ness with novel words       
(Aronoff & Schvaneveldt, 1978).

• depulsiveness > depulsivity.

• -ble + -ity: -bility (e.g., sensibility).

• Speakers prefer to use -ity with novel words         
(Anshen & Aronoff, 1981).

• remortibility > remortibleness.
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Discussion

• Inference-based approach able to correctly ignore 
high token frequency of -ivity because it balances a 
tradeoff.

• Other models use type or token frequencies.
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Conclusion

• View productivity and reuse as an inference.

• Link between theory of programming languages 
and Bayesian models.

• Able to capture dominant patterns without 
semantic and phonological structure.

• Future work...
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Thanks!


