
Fragment Grammars:
Productivity and Reuse

in Language

Timothy J. O’Donnell
MIT

1

-ness

2

-ness

• circuitousness, grandness, orderliness,
pretentiousness, cheapness, coolness,
warmness, ...

2

-ness

• circuitousness, grandness, orderliness,
pretentiousness, cheapness, coolness,
warmness, ...

• Adj>N

2

-ness

• circuitousness, grandness, orderliness,
pretentiousness, cheapness, coolness,
warmness, ...

• Adj>N

• grand + -ness

2

-ness

• circuitousness, grandness, orderliness,
pretentiousness, cheapness, coolness,
warmness, ...

• Adj>N

• grand + -ness

• pine-scentedness

2

-ity

3

-ity

• verticality, tractability, severity, seniority, inanity,
electricity, ...

3

-ity

• verticality, tractability, severity, seniority, inanity,
electricity, ...

• Adj>N

3

-ity

• verticality, tractability, severity, seniority, inanity,
electricity, ...

• Adj>N

• Stress change (e.g., normalness v. normality),
vowel laxing (e.g., inane v. inanity)

3

-ity

• verticality, tractability, severity, seniority, inanity,
electricity, ...

• Adj>N

• Stress change (e.g., normalness v. normality),
vowel laxing (e.g., inane v. inanity)

• The red lantern indicated the ethnicity/
ethnicness of the restaurant

3

-ity

• verticality, tractability, severity, seniority, inanity,
electricity, ...

• Adj>N

• Stress change (e.g., normalness v. normality),
vowel laxing (e.g., inane v. inanity)

• The red lantern indicated the ethnicity/
ethnicness of the restaurant

• *pine-scentedity
3

-ity

4

-ity

• But ...

4

-ity

• But ...

• -ile/-al/-able/-ic/-(i)an

4

-ity

• But ...

• -ile/-al/-able/-ic/-(i)an

• Bayesable

4

-ity

• But ...

• -ile/-al/-able/-ic/-(i)an

• Bayesable

• Bayesability

4

-ity

• But ...

• -ile/-al/-able/-ic/-(i)an

• Bayesable

• Bayesability

• Coolity is not trying (from Huffington Post)

4

-th

5

-th

• warmth, width, truth, depth, ...

5

-th

• warmth, width, truth, depth, ...

• Adj>N

5

-th

• warmth, width, truth, depth, ...

• Adj>N

• heal/health, dead/death, young/youth, vile/filth,
slow/sloth

5

-th

• warmth, width, truth, depth, ...

• Adj>N

• heal/health, dead/death, young/youth, vile/filth,
slow/sloth

• weal?/wealth, ?wroth/wrath, ?merry/mirth

5

-th

• warmth, width, truth, depth, ...

• Adj>N

• heal/health, dead/death, young/youth, vile/filth,
slow/sloth

• weal?/wealth, ?wroth/wrath, ?merry/mirth

• roomth, greenth

5

-th

• warmth, width, truth, depth, ...

• Adj>N

• heal/health, dead/death, young/youth, vile/filth,
slow/sloth

• weal?/wealth, ?wroth/wrath, ?merry/mirth

• roomth, greenth

Many enjoy the warmth, Vikings prefer the coolth

5

Problem of Productivity

6

Problem of Productivity

• Which processes can be used to construct
novel forms (e.g., -ness), which can only be
reused in existing forms (e.g., -th)?

6

Problem of Productivity

• Which processes can be used to construct
novel forms (e.g., -ness), which can only be
reused in existing forms (e.g., -th)?

• How are such differences in productivity
represented by the adult language user?

6

Problem of Productivity

• Which processes can be used to construct
novel forms (e.g., -ness), which can only be
reused in existing forms (e.g., -th)?

• How are such differences in productivity
represented by the adult language user?

• How are such differences learned by the
child?

6

Outline

7

Outline

7

1. The Proposal.

Outline

7

1. The Proposal.

2. Five Models of Productivity and Reuse.

Outline

7

1. The Proposal.

2. Five Models of Productivity and Reuse.

3. English Derivational Morphology

Outline

7

1. The Proposal.

2. Five Models of Productivity and Reuse.

3. English Derivational Morphology

4. Conclusion

Outline

8

1. The Proposal.

2. Five Models of Productivity and Reuse.

3. English Derivational Morphology

4. Conclusion

The Proposal

9

The Proposal
1. Formalization of what can be reused.

9

The Proposal
1. Formalization of what can be reused.

• Subcomputations.

9

The Proposal
1. Formalization of what can be reused.

• Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

9

The Proposal
1. Formalization of what can be reused.

• Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

• Optimal Bayesian inference.

9

The Proposal
1. Formalization of what can be reused.

• Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

• Optimal Bayesian inference.

3. The model from a probabilistic
programming perspective.

9

The Proposal
1. Formalization of what can be reused.

• Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

• Optimal Bayesian inference.

3. The model from a probabilistic
programming perspective.

9

Starting Computational System

N

Adj

V

agree

-able

-ity

10

Subcomputations
N

Adj

V

agree

-able

-ity

11

Subcomputations
N

Adj

V

agree

-able

-ity

12

Subcomputations
N

Adj

V

agree

-able

-ity

13

The Proposal
1. Formalization of what can be reused.

• Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

• Optimal Bayesian inference.

3. The model from a probabilistic
programming perspective.

14

The Proposal
1. Formalization of what can be reused.

• Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

• Optimal Bayesian inference.

3. The model from a probabilistic
programming perspective.

14

Bayesian Rational
Analysis (Anderson, 1992)

• Find subcomputations which provide best
explanation for the data.

• What evidence is available to the learner?

• Which patterns give rise to productivity, which patterns imply reuse?

15

N

Adj

V

agree

-able

-ity

16

Subcomputations as Predictions

N

Adj

V

agree

-able

-ity

�

Prediction of future reusability
across computations

17

Subcomputations as Predictions

N

Adj

V

agree

-able

-ity

�

Prediction of future
reusability of
combination

18

Subcomputations as Predictions

N

Adj

V

agree

-able

-ity

Prediction of
future

novelty/
variability

19

Subcomputations as Predictions

N

Adj

V

agree

-able

-ity

Tradeoff
between

productivity
and reuse

20

Subcomputations as Predictions

The Proposal
1. Formalization of what can be reused.

• Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

• Optimal Bayesian inference.

3. The model from a probabilistic
programming perspective.

21

The Proposal
1. Formalization of what can be reused.

• Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

• Optimal Bayesian inference.

3. The model from a probabilistic
programming perspective.

21

The Formal Model:
Fragment Grammars

22

The Formal Model:
Fragment Grammars

• Generalization of Adaptor Grammars (Johnson et al., 2007).

22

The Formal Model:
Fragment Grammars

• Generalization of Adaptor Grammars (Johnson et al., 2007).

• Bayesian non-parametric distributions (Pitman-Yor).

22

The Formal Model:
Fragment Grammars

• Generalization of Adaptor Grammars (Johnson et al., 2007).

• Bayesian non-parametric distributions (Pitman-Yor).

• Notion of compiling subcomputations via tools
from probabilistic programming (Church language; Goodman
et al., 2008).

22

The Formal Model:
Fragment Grammars

• Generalization of Adaptor Grammars (Johnson et al., 2007).

• Bayesian non-parametric distributions (Pitman-Yor).

• Notion of compiling subcomputations via tools
from probabilistic programming (Church language; Goodman
et al., 2008).

• Stochastic memoization (Johnson et al., 2007) of stochastically lazy/
eager programs.

22

Fragment Grammars via
Probabilistic Programming

(Church)

Fragment Grammars via
Probabilistic Programming

(Church)

• Alternative to more standard mathematical
formalization (see, O’Donnell, 2011).

Fragment Grammars via
Probabilistic Programming

(Church)

• Alternative to more standard mathematical
formalization (see, O’Donnell, 2011).

• Highlights relationship between formalisms
(PCFGs, Adaptor Grammars, Fragment
Grammars).

Fragment Grammars via
Probabilistic Programming

(Church)

• Alternative to more standard mathematical
formalization (see, O’Donnell, 2011).

• Highlights relationship between formalisms
(PCFGs, Adaptor Grammars, Fragment
Grammars).

• Cross fertilization of ideas from the theory
of programming languages.

Fragment Grammars via
Probabilistic Programming

(Church)

• Alternative to more standard mathematical
formalization (see, O’Donnell, 2011).

• Highlights relationship between formalisms
(PCFGs, Adaptor Grammars, Fragment
Grammars).

• Cross fertilization of ideas from the theory
of programming languages.

• Caveat: Church inference algorithms do not
work well for these models.

Fragment Grammars via
Probabilistic Programming

Fragment Grammars via
Probabilistic Programming

1. Stochastic computation via unfold

Fragment Grammars via
Probabilistic Programming

1. Stochastic computation via unfold

2. Stochastic reuse via memoization

Fragment Grammars via
Probabilistic Programming

1. Stochastic computation via unfold

2. Stochastic reuse via memoization

3. Partial computations via stochastic laziness

Fragment Grammars via
Probabilistic Programming

1. Stochastic computation via unfold

2. Stochastic reuse via memoization

3. Partial computations via stochastic laziness

Context Free Grammars

N

Adj

V

agree

-able

-ity

Declarative Knowledge
of Constituent Structure

Declarative Knowledge
of Constituent Structure

Fundamental Recursive
Computation: unfold

(define unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))

Fundamental Recursive
Computation: unfold

Choose a right-hand side for a
symbol:

N ➞ Adj -ity

(define unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))

Fundamental Recursive
Computation: unfold

(define unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))

Fundamental Recursive
Computation: unfold

Recursively apply unfold to
each symbol on right-hand side

(define unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))

Computation Trace

(unfold ‘N)

Computation Trace

(unfold ‘N)
(define unfold

(lambda (symbol)
(if (terminal? symbol)

symbol
(map unfold (sample-rhs symbol)))))

Computation Trace

(unfold ‘N)

(sample-rhs ‘N)

(define unfold
(lambda (symbol)

(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))

Computation Trace

(unfold ‘N)

(sample-rhs ‘N)

N ➞ Adj -ity

Computation Trace

(unfold ‘N)

(sample-rhs ‘N)

Computation Trace

(unfold ‘N)

(sample-rhs ‘N)

(unfold ‘Adj) (unfold ‘ity)

Computation Trace

(unfold ‘N)

(sample-rhs ‘N)

Computation Trace

Trace as Tree
N

Adj

V

agree

-able

-ity

Reusability for PCFGs

34

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

Fragment Grammars via
Probabilistic Programming

1. Stochastic computation via unfold

2. Stochastic reuse via memoization

3. Partial computations via stochastic laziness

Memoization

Memoization

• Store outputs of earlier computations in a
table

Memoization

• Store outputs of earlier computations in a
table

• When function is called with particular
arguments then grab from table if stored

Memoization

• Store outputs of earlier computations in a
table

• When function is called with particular
arguments then grab from table if stored

• When function is called with new
arguments, then compute and store in table

Memoization

• Store outputs of earlier computations in a
table

• When function is called with particular
arguments then grab from table if stored

• When function is called with new
arguments, then compute and store in table

• Higher-order function: mem

Reuse through
Memoization

(define eye-color
(lambda (person)
(if (flip 0.5) ‘blue ‘brown)))

Reuse through
Memoization

(define eye-color
(lambda (person)
(if (flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob) => ‘blue

Reuse through
Memoization

(define eye-color
(lambda (person)
(if (flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘brown

Reuse through
Memoization

(define eye-color
(lambda (person)
(if (flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘brown
(eye-color ‘bob) => ‘blue

Reuse through
Memoization

(define eye-color
(lambda (person)
(if (flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘brown
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘brown

Reuse through
Memoization

(define eye-color
(lambda (person)
(if (flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘brown
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘brown
 ...

Reuse through
Memoization

(define eye-color
 (mem (lambda (person)
 (if (flip 0.5) ‘blue brown))))

Reuse through
Memoization

(define eye-color
 (mem (lambda (person)
 (if (flip 0.5) ‘blue brown))))

Anywhere in the program
where (eye-color ‘bob)
is used, we will reuse same
value.

Reuse through
Memoization

(define eye-color
 (mem (lambda (person)
 (if (flip 0.5) ‘blue brown))))

Anywhere in the program
where (eye-color ‘bob)
is used, we will reuse same
value.

(eye-color ‘bob) => ‘blue

Reuse through
Memoization

(define eye-color
 (mem (lambda (person)
 (if (flip 0.5) ‘blue brown))))

Anywhere in the program
where (eye-color ‘bob)
is used, we will reuse same
value.

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue

Reuse through
Memoization

(define eye-color
 (mem (lambda (person)
 (if (flip 0.5) ‘blue brown))))

Anywhere in the program
where (eye-color ‘bob)
is used, we will reuse same
value.

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue

Reuse through
Memoization

(define eye-color
 (mem (lambda (person)
 (if (flip 0.5) ‘blue brown))))

Anywhere in the program
where (eye-color ‘bob)
is used, we will reuse same
value.

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue

Reuse through
Memoization

(define eye-color
 (mem (lambda (person)
 (if (flip 0.5) ‘blue brown))))

Anywhere in the program
where (eye-color ‘bob)
is used, we will reuse same
value.

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue
 ...

Stochastic Reusability

• Deterministic memoization always returns
same value after first call, but sometimes
we want to probabilistically favor
reuse.

Stochastic Reusability
(define location
 (lambda (person)
 (sample-location-in-world)))

Stochastic Reusability
(define location
 (lambda (person)
 (sample-location-in-world)))

(location ‘bob) => ‘UCLA

Stochastic Reusability
(define location
 (lambda (person)
 (sample-location-in-world)))

(location ‘bob) => ‘UCLA
(location ‘bob) => ‘Antarctica

Stochastic Reusability
(define location
 (lambda (person)
 (sample-location-in-world)))

(location ‘bob) => ‘UCLA
(location ‘bob) => ‘Antarctica
(location ‘bob) => ‘London

Stochastic Reusability
(define location
 (lambda (person)
 (sample-location-in-world)))

(location ‘bob) => ‘UCLA
(location ‘bob) => ‘Antarctica
(location ‘bob) => ‘London
(location ‘bob) => ‘Thailand

Stochastic Reusability
(define location
 (lambda (person)
 (sample-location-in-world)))

(location ‘bob) => ‘UCLA
(location ‘bob) => ‘Antarctica
(location ‘bob) => ‘London
(location ‘bob) => ‘Thailand
 ...

Stochastic Reusability

(define location
 (stochastic-mem (lambda (person)
 (sample-location-in-world))))

Stochastic Reusability

(define location
 (stochastic-mem (lambda (person)
 (sample-location-in-world))))

(location ‘bob) => ‘home

Stochastic Reusability

(define location
 (stochastic-mem (lambda (person)
 (sample-location-in-world))))

(location ‘bob) => ‘home
(location ‘bob) => ‘office

Stochastic Reusability

(define location
 (stochastic-mem (lambda (person)
 (sample-location-in-world))))

(location ‘bob) => ‘home
(location ‘bob) => ‘office
(location ‘bob) => ‘home

Stochastic Reusability

(define location
 (stochastic-mem (lambda (person)
 (sample-location-in-world))))

(location ‘bob) => ‘home
(location ‘bob) => ‘office
(location ‘bob) => ‘home
(location ‘bob) => ‘home

Stochastic Reusability

(define location
 (stochastic-mem (lambda (person)
 (sample-location-in-world))))

(location ‘bob) => ‘home
(location ‘bob) => ‘office
(location ‘bob) => ‘home
(location ‘bob) => ‘home
 ...

Stochastic Memoization
(Goodman et al., 2008; Johnson et al., 2007)

42

Stochastic Memoization
(Goodman et al., 2008; Johnson et al., 2007)

• Adaptor Grammars: Anything that can be
computed can be stored and reused
probabilistically.

42

Stochastic Memoization
(Goodman et al., 2008; Johnson et al., 2007)

• Adaptor Grammars: Anything that can be
computed can be stored and reused
probabilistically.

• Memoization distribution: Pitman-Yor
Processes (Pitman & Yor, 1995).

42

Stochastic Memoization
(Goodman et al., 2008; Johnson et al., 2007)

• Adaptor Grammars: Anything that can be
computed can be stored and reused
probabilistically.

• Memoization distribution: Pitman-Yor
Processes (Pitman & Yor, 1995).

• Stochastic memoization + PCFGs =
Adaptor Grammars.

42

Pitman-Yor Process

Pitman-Yor Process
• Generalization of the Chinese Restaurant

Process

Pitman-Yor Process
• Generalization of the Chinese Restaurant

Process

• Two parameters:

Pitman-Yor Process
• Generalization of the Chinese Restaurant

Process

• Two parameters:

• a ∈ [0,1]

Pitman-Yor Process
• Generalization of the Chinese Restaurant

Process

• Two parameters:

• a ∈ [0,1]

• b > -a

Pitman-Yor Process
• Generalization of the Chinese Restaurant

Process

• Two parameters:

• a ∈ [0,1]

• b > -a

yi − a

N + b

Probability of Reuse

Pitman-Yor Process
• Generalization of the Chinese Restaurant

Process

• Two parameters:

• a ∈ [0,1]

• b > -a

yi − a

N + b

Probability of Reuse

yi: Total number of
 observations of value i

Pitman-Yor Process
• Generalization of the Chinese Restaurant

Process

• Two parameters:

• a ∈ [0,1]

• b > -a

yi − a

N + b

Probability of Reuse

N: Total number of observations

yi: Total number of
 observations of value i

Pitman-Yor Process
• Generalization of the Chinese Restaurant

Process

• Two parameters:

• a ∈ [0,1]

• b > -a

yi − a

N + b

Probability of Reuse
a ·K + b

N + b

Probability of Novelty

N: Total number of observations

yi: Total number of
 observations of value i

Pitman-Yor Process
• Generalization of the Chinese Restaurant

Process

• Two parameters:

• a ∈ [0,1]

• b > -a

yi − a

N + b

Probability of Reuse
a ·K + b

N + b

Probability of Novelty

N: Total number of observations

K: Total number of values

yi: Total number of
 observations of value i

Properties of PYPs

Properties of PYPs

• Rich get richer, concentrates distribution
on a few values.

Properties of PYPs

• Rich get richer, concentrates distribution
on a few values.

• Prefers fewer customers/tables/tables-per-
customer.

Properties of PYPs

• Rich get richer, concentrates distribution
on a few values.

• Prefers fewer customers/tables/tables-per-
customer.

• Prefers to generate novel values
proportional to how often novelty has
been generated in the past.

Adaptor Grammars
(Johnson et al., 2007)

(define adapted-unfold
(PYMem a b
(lambda (symbol)

(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol))))))

Properties of Adaptor
Grammars

Properties of Adaptor
Grammars

• Reuse previous computations (subtrees).

Properties of Adaptor
Grammars

• Reuse previous computations (subtrees).

• Can compute novel items productively using base
system.

Properties of Adaptor
Grammars

• Reuse previous computations (subtrees).

• Can compute novel items productively using base
system.

• Build new stored trees recursively.

Properties of Adaptor
Grammars

• Reuse previous computations (subtrees).

• Can compute novel items productively using base
system.

• Build new stored trees recursively.

• Only reuse complete subtrees (on adapted nonterminals).

Properties of Adaptor
Grammars

• Reuse previous computations (subtrees).

• Can compute novel items productively using base
system.

• Build new stored trees recursively.

• Only reuse complete subtrees (on adapted nonterminals).
N

Adj

V

agree

-able

-ity

Properties of Adaptor
Grammars

• Reuse previous computations (subtrees).

• Can compute novel items productively using base
system.

• Build new stored trees recursively.

• Only reuse complete subtrees (on adapted nonterminals).
N

Adj

V

agree

-able

-ity

Reusability for Adaptor
Grammars

47

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

Reusability for Adaptor
Grammars

47

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

1. Always possible to use base grammar.

Reusability for Adaptor
Grammars

47

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

1. Always possible to use base grammar.
2. Fully recursive.

Fragment Grammars via
Probabilistic Programming

1. Stochastic computation via unfold

2. Stochastic reuse via memoization

3. Partial computations via stochastic laziness

Goal: Represent Partial
Computations

Goal: Represent Partial
Computations

Variables represent
“delayed” instructions
for later computation

Lazy and Eager
Evaluation

Lazy and Eager
Evaluation

• Eager Evaluation: Do as much work as early
as possible.

Lazy and Eager
Evaluation

• Eager Evaluation: Do as much work as early
as possible.

• Lazy Evaluation: Delay work until it is
absolutely necessary to continue
computation.

Example

(define add3
(lambda (x y z)
(+ x y z)))

Eager Evaluation

(add3 (+ 1 2 3) (* 2 4) (- 3 1))

Eager Evaluation

(add3 (+ 1 2 3) (* 2 4) (- 3 1))

Eager Evaluation

(add3 6 (* 2 4) (- 3 1))

Eager Evaluation

(add3 6 (* 2 4) (- 3 1))

Eager Evaluation

(add3 6 8 (- 3 1))

Eager Evaluation

(add3 6 8 (- 3 1))

Eager Evaluation

(add3 6 8 2)

Eager Evaluation

(add3 6 8 2)

Eager Evaluation

(+ 6 8 2)
x y z

Eager Evaluation

16

Lazy Evaluation

(add3 (+ 1 2 3) (* 2 4) (- 3 1))

Lazy Evaluation

(add3 (+ 1 2 3) (* 2 4) (- 3 1))

Lazy Evaluation

(+ (+ 1 2 3) (* 2 4) (- 3 1))

x y z

} } }

Lazy Evaluation

(+ (+ 1 2 3) (* 2 4) (- 3 1))

x y z

} } }
Argument expressions are delayed
until their values are needed by
another computation.

Lazy Evaluation

(+ (+ 1 2 3) (* 2 4) (- 3 1))

Primitive +
procedure forces

evaluation of
arguments.

Lazy Evaluation

(+ (+ 1 2 3) (* 2 4) (- 3 1))

Lazy Evaluation

(+ 16 (* 2 4) (- 3 1))

Lazy Evaluation

(+ 16 (* 2 4) (- 3 1))

Lazy Evaluation

(+ 16 8 (- 3 1))

Lazy Evaluation

(+ 16 8 (- 3 1))

Lazy Evaluation

(+ 16 8 2)

Lazy Evaluation

16

λ-calculus: Order of
Evaluation

λ-calculus: Order of
Evaluation

• Applicative order (eager evaluation): evaluate
arguments first, then apply function.

λ-calculus: Order of
Evaluation

• Applicative order (eager evaluation): evaluate
arguments first, then apply function.

• Normal order (lazy evaluation): copy
arguments into procedure, only evaluate
when needed.

λ-calculus: Order of
Evaluation

• Applicative order (eager evaluation): evaluate
arguments first, then apply function.

• Normal order (lazy evaluation): copy
arguments into procedure, only evaluate
when needed.

• Church-Rosser theorem: Order doesn’t
matter for deterministic λ-calculus.

λ-calculus: Order of
Evaluation

• Applicative order (eager evaluation): evaluate
arguments first, then apply function.

• Normal order (lazy evaluation): copy
arguments into procedure, only evaluate
when needed.

• Church-Rosser theorem: Order doesn’t
matter for deterministic λ-calculus.

• Does matter for Ψλ-calculus!

Ψλ-calculus: Order of
Evaluation

(define same?
(lambda (x)
(equal? x x)))

Ψλ-calculus: Order of
Evaluation

(define same?
(lambda (x)
(equal? x x)))

Ψλ-calculus: Order of
Evaluation

(define same?
(lambda (x)
(equal? x x)))

(same? (flip))

Ψλ-calculus: Order of
Evaluation

(define same?
(lambda (x)
(equal? x x)))

(same? (flip))

P(true) = 1eager

Ψλ-calculus: Order of
Evaluation

(define same?
(lambda (x)
(equal? x x)))

(same? (flip))
P(true) = 1/2lazy

P(true) = 1eager

Tradeoff

• Laziness allows you to delay computation
and, thus, preserve randomness and
variability until the last possible moment.

• Eagerness allows you to determine random
choices early in computation and, thus,
share choices across different parts of a
program.

Random Evaluation
Order

Random Evaluation
Order

• Idea: Stochastically mix lazy and eager
evaluation in Ψλ-calculus.

Random Evaluation
Order

• Idea: Stochastically mix lazy and eager
evaluation in Ψλ-calculus.

• Ultimately allow learning of which
computations should be performed in
advance and which should be delayed.

Random Evaluation
Order

• Idea: Stochastically mix lazy and eager
evaluation in Ψλ-calculus.

• Ultimately allow learning of which
computations should be performed in
advance and which should be delayed.

• Assume eager evaluation strategy and add
delay primitive.

Random Evaluation
Order

• Idea: Stochastically mix lazy and eager
evaluation in Ψλ-calculus.

• Ultimately allow learning of which
computations should be performed in
advance and which should be delayed.

• Assume eager evaluation strategy and add
delay primitive.

• Apply to unfold (can be applied fully
generally).

Stochastic Lazy
unfold

(define stochastic-lazy-unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))

Stochastic Lazy
unfold

(define stochastic-lazy-unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))

Stochastic Lazy
unfold

(define delay-or-unfold
(lambda (symbol)
(if (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol))))

Stochastic Lazy
unfold

(define delay-or-unfold
(lambda (symbol)
(if (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol))))

(define stochastic-lazy-unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))

Computation Trace with Delay

Computation Trace with Delay

Reusing Delayed
Computations

Reusing Delayed
Computations

• Need to be able to reuse partial
evaluations.

Reusing Delayed
Computations

• Need to be able to reuse partial
evaluations.

• Memoize stochastically lazy unfold.

Fragment Grammars

(define delay-or-unfold
(PYMem a b (lambda (symbol)
(if (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol)))))

(define stochastic-lazy-unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))

Fragment Grammar
Reusable Computations

87

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

Fragment Grammar
Reusable Computations

87

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

1. Always possible to use base grammar.

Fragment Grammar
Reusable Computations

87

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

1. Always possible to use base grammar.
2. Fully recursive.

Outline

88

1. The Proposal.

2. Five Models of Productivity and Reuse.

3. English Derivational Morphology

4. Conclusion

Five Models

89

Five Models

• 4 approaches to productivity and reuse.

89

Five Models

• 4 approaches to productivity and reuse.

• Capture historical proposals from the
literature.

89

Five Models

• 4 approaches to productivity and reuse.

• Capture historical proposals from the
literature.

• State-of-the-art probabilistic models.

89

Five Models

• 4 approaches to productivity and reuse.

• Capture historical proposals from the
literature.

• State-of-the-art probabilistic models.

• Allow for variability and learning.

89

MDPCFG
Multinomial-Dirichlet Context-Free Grammars

(Full-Parsing)

- All generalizations are productive

- Formalization: Multinomial-Dirichlet Probabilistic Context-free
Grammar (MDPCFG; Johnson, et al. 2007a)

90

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

MAG
MAP Adaptor Grammars

(Full-entry)

- Store whole form after first use.

- Formalization: Adaptor Grammars (AG; Johnson, et al. 2007).

- Always possible to compute productively with small
probability; Fully recursive.

- Formalizes classic lexicalist theories (e.g., Jackendoff, 1975).

91

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

DOP1/GDMN
Data-Oriented Parsing

(Exemplar-based)

- Store all generalizations consistent with input

- Formalization: Data-Oriented Parsing 1 (DOP1; Bod, 1998), Data-
Oriented Parsing: Goodman Estimator (GDMN; Goodman, 2003)

- Recently proposed as models of syntax (e.g., Snider, 2009; Bod,
2009)

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

92

FG
Fragment Grammars

(Inference-based)

- Store best set of subcomputations for explaining the data.

- Formalization: Fragment Grammars (FG; O’Donnell, et al. 2009)

- Generalization of Adaptor Grammars

93

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

Outline

94

1. The Proposal.

2. Five Models of Productivity and Reuse.

3. English Derivational Morphology

4. Conclusion

English Derivational
Morphology

Productive +ness (goodness),
+ly (quickly)

Semi-productive

Unproductive

+ity (ability),
+or (operator)

+th (width)

95

Simulations

• Words from CELEX.

• Extensive heuristic parsing/hand correction.

• Input format.

• No phonology or semantics.

96

Derivational Inputs

97

English Derivational
Morphology

1. Individual suffix
productivity differences
(-ness/-ity/-th).

2. Suffix sequences.

98

Productive
+ness (goodness),

+ly (quickly)

Semi-productive

Unproductive

+ity (ability),
+or (operator)

+th (width)

English Derivational
Morphology

1. Individual suffix
productivity differences
(-ness/-ity/-th).

2. Suffix combinations.

99

Productive
+ness (goodness),

+ly (quickly)

Semi-productive

Unproductive

+ity (ability),
+or (operator)

+th (width)

Productivity

• No gold-standard dataset or measure.

• E.g., Large databases of wug-tests or
naturalness judgments.

• Analyses.

1. Convergence with other theoretical
measures.

100

How is Productivity
Represented?

• Relative probability of fragments with or
without variables.

V.

wide

101

Baayen’s Corpus-Based
Measures

• Baayen’s / (e.g., Baayen, 1992)

• : Prob(NOVEL | SUFFIX) i.e. rate of
growth of forms with suffix

• : Prob(SUFFIX | NOVEL) i.e. rate of
growth of vocabulary due to suffix

P

P P∗

P∗

102

Productivity Correlations
(values from Hay & Baayen, 2002)

MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

P/P∗

103

English Derivational
Morphology

1. Individual suffix
productivity differences
(-ness/-ity/-th).

2. Suffix combinations.

104

Productive
+ness (goodness),

+ly (quickly)

Semi-productive

Unproductive

+ity (ability),
+or (operator)

+th (width)

Generalizable Combinations

Frozen Combinations
Generalizable
Combinations

105

Generalizable Combinations

Frozen Combinations
Generalizable
Combinations

106

-ity v. -ness

• -ness more productive than -ity.

• -ity more productive than -ness after:
-ile, -able, -(i)an, -ic.
(Anshen & Aronoff, 1981; Aronoff & Schvaneveldt, 1978; Cutler, 1980)

107

Two Frequent Combinations:

-ivity v. -bility

• -ive + -ity: -ivity (e.g., selectivity).

• Speaker prefer to use -ness with novel words
(Aronoff & Schvaneveldt, 1978).

• depulsiveness > depulsivity.

• -ble + -ity: -bility (e.g., sensibility).

• Speakers prefer to use -ity with novel words
(Anshen & Aronoff, 1981).

• remortibility > remortibleness.

108

Predicted MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

-ivity v. -bility

109

−5
0

5{
{

-ness

-ity

ive ive ive ive ive iveble ble ble ble ble ble

-ive
-ble Full-Parsing

(MDPCFG)
Full-Listing
(Adaptor Grammars)

Exemplar
(DOP1)

Exemplar
(GDMN)

Inference
(Fragment Grammars)

Predicted MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

-ivity v. -bility

110

−5
0

5{
{

-ness

-ity

ive ive ive ive ive iveble ble ble ble ble ble

-ive
-ble Full-Parsing

(MDPCFG)
Full-Listing
(Adaptor Grammars)

Exemplar
(DOP1)

Exemplar
(GDMN)

Inference
(Fragment Grammars)

Preference for -ness

Predicted MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

-ivity v. -bility

111

−5
0

5{
{

-ness

-ity

ive ive ive ive ive iveble ble ble ble ble ble

-ive
-ble Full-Parsing

(MDPCFG)
Full-Listing
(Adaptor Grammars)

Exemplar
(DOP1)

Exemplar
(GDMN)

Inference
(Fragment Grammars)

Preference for -ity

Predicted MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

-ivity v. -bility

112

−5
0

5{
{

-ness

-ity

ive ive ive ive ive iveble ble ble ble ble ble

-ive
-ble Full-Parsing

(MDPCFG)
Full-Listing
(Adaptor Grammars)

Exemplar
(DOP1)

Exemplar
(GDMN)

Inference
(Fragment Grammars)

Preceding suffix -ive

Predicted MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

-ivity v. -bility

113

−5
0

5{
{

-ness

-ity

ive ive ive ive ive iveble ble ble ble ble ble

-ive
-ble Full-Parsing

(MDPCFG)
Full-Listing
(Adaptor Grammars)

Exemplar
(DOP1)

Exemplar
(GDMN)

Inference
(Fragment Grammars)

Preceding suffix -ble

Predicted MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

MDPCFG
(Full-parsing)

114

−5
0

5{
{

-ness

-ity

ive ive ive ive ive iveble ble ble ble ble ble

-ive
-ble Full-Listing

(Adaptor Grammars)
Exemplar

(DOP1)
Exemplar

(GDMN)
Inference

(Fragment Grammars)

Predicted MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

115

−5
0

5{
{

-ness

-ity

ive ive ive ive ive iveble ble ble ble ble ble

-ive
-ble Exemplar

(DOP1)
Exemplar

(GDMN)
Inference

(Fragment Grammars)

MAG
(Full-listing)

Predicted MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

116

−5
0

5{
{

-ness

-ity

ive ive ive ive ive iveble ble ble ble ble ble

-ive
-ble

DOP1
(Exemplar-based)

FG
(Inference-based)

117

−5
0

5{
{

-ness

-ity

ive ive ive ive ive iveble ble ble ble ble ble

-ive
-ble

GDMN
(Exemplar-based)

Predicted MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

118

−5
0

5{
{

-ness

-ity

ive ive ive ive ive iveble ble ble ble ble ble

-ive
-ble

FG
(Inference-based)

Predicted MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

Discussion

• Inference-based approach able to correctly ignore
high token frequency of -ivity because it balances a
tradeoff.

• Other models use type or token frequencies.

119

1. The Proposal.

2. Five Models of Productivity and Reuse.

3. Empirical Evaluation

The English Past Tense

English Derivational Morphology

4. Conclusion

Outline

120

Conclusion

121

Conclusion

• View productivity and reuse as an inference.

121

Conclusion

• View productivity and reuse as an inference.

• Link between theory of programming languages
and Bayesian models.

121

Conclusion

• View productivity and reuse as an inference.

• Link between theory of programming languages
and Bayesian models.

• Able to capture dominant patterns without
semantic and phonological structure.

121

Conclusion

• View productivity and reuse as an inference.

• Link between theory of programming languages
and Bayesian models.

• Able to capture dominant patterns without
semantic and phonological structure.

• Future work...

121

122

Thanks!

