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Maps onto modeling choices

Learnability

• Complexity of the space

• Nature of the input

• What constitutes “having learned”

… as well as the capabilities of the learner

Not just about the search algorithm

Finite cardinality

Finite state

Context-free

Context-sensitive

Recursive (decidable)

Recursively 
enumerable

Natural 
Languages???

ExpressivityGold’s Theorem
Based on positive evidence only, it is impossible to learn a
class of languages other than those of finite cardinality

Gold (1967)
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1.  Listener “hears” a string

2.  Listener decides whether that string is consistent with the
grammar they currently think is being used (if it’s the
first trial, they just pick one randomly).

3. If not, generate a new grammar and go to #2.  If so, stay
with current grammar and go to #2.

Gold (1967)

You have learned the language once you never change
grammars

Gold’s Theorem
Based on positive evidence only, it is impossible to learn a
class of languages other than those of finite cardinality

Gold (1967)

Gold’s Theorem
Based on positive evidence only, it is impossible to learn a
class of languages other than those of finite cardinality

You will eventually
converge: the negative
evidence will rule out
incorrect grammars

Gold (1967)

Gold’s Theorem
Based on positive evidence only, it is impossible to learn a
class of languages other than those of finite cardinality

If you guessed a
grammar that is too

large, you’ll never realize
it and never change

You will eventually
converge: the negative
evidence will rule out
incorrect grammars

Source: McNeil

Does this lead to problems?

Kids don’t seem to receive (or notice) negative evidence!

Adults tend to only correct the truth of a child’s utterance, not the syntax:

Child: Mama isn’t boy, he a girl.
Adult: That’s right.

When adults (rarely) try to correct a child’s syntax, the kid doesn’t get it

Child: Nobody don't like me.
Mother: No, say "Nobody likes me.”
Child: Nobody don't like me.

[dialogue repeated 8 times]
Mother: Now listen carefully, say "NOBODY LIKES ME.”
Child: Oh! Nobody don't likeS me.

 Many ways to address this

• Change learning criterion

• Add some sort of inductive bias

– Universal Grammar (what does this mean?)

• Change learning algorithm

– Probabilistic learner: guaranteed in the limit (Horning, 1969)

(for both kids and computers)

Horning (1969), Solomonoff (1978)

 But how about not in the limit?

Grammar induction in the
real world
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Grammar induction

Grammar type

Specific grammar
structure

Parameters of
specific grammar

Parsing,
prediction of the

dataset

Computational question at multiple levels
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Computational question at multiple levels

Plan

Finite-state grammars
– N-gram models (Goldwater, Griffiths, & Johnson, 2006)

• Word segmentation and morphology

– HMMs: Bayesian model merging (Stolcke & Omohundro, 1994)

• Phonetic learning

– HMMs: Dirichlet prior (Goldwater & Griffiths, 2007)

• Syntactic categories

Structured grammars
– Bayesian model merging: PCFGs (Stolcke & Omohundro, 1994)

– Constituent-context model (Klein & Manning, 2002)

– Dependency grammars (Carroll & Charniak, 1992)

– Combined CCM & Dependency grammars (Klein & Manning,
2004)

Unsupervised learning of grammars, by complexity

Bayesian model merging: HMMs

Stolcke & Omohundro, 1994

• Constructed from subcomponents
– With only a little data, the

subcomponents are the datapoints
themselves (plus slight generalization)

– Construct more complex models by
merging pairs of simple components

• Merging…
– Try to do efficiently by sacrificing as

little likelihood as possible each time

– Put prior so know when to stop

Basic idea
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Bayesian model merging: HMMs

Stolcke & Omohundro, 1994

• Constructed from subcomponents
– With only a little data, the submodels

are the datapoints themselves (plus
slight generalization)

– Construct more complex models by
merging pairs of simple components

• Merging…
– Try to do efficiently by sacrificing as

little likelihood as possible each time

– Put prior so know when to stop
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Bayesian model merging: HMMs

Stolcke & Omohundro, 1994

Set of states Q

Initial state qI, Final state qF

Set of probability parameters:

Transition probabilities p(q q’): the
probability that state q’ follows q

Emission probabilities p(q| ): the
probability that symbol  is emitted when
in state q

Notation

Bayesian model merging: HMMs

Stolcke & Omohundro, 1994

Model details

Likelihood:  probability of a string x is the sum of the probabilities
of all paths that generate x

Prior: structural vs. parameter

Parameters: Dirichlet distribution over each set of multinomial
parameters (transition and emission probabilities)

Structural: Favor smaller number of states Q

Bayesian model merging: HMMs

Stolcke & Omohundro, 1994

Algorithm

1) Construct an HMM M0 that produces exactly the
input strings

2) Loop:

- Compute set of candidate merges K among the
states of current HMM, Mi

- For each candidate k, compute the merged
model k(Mi), and its posterior probability
p(k(Mi)|X)

- Let k* be the merge that maximizes p(k|Mi)|X).
Then let Mi+1 = k*(Mi)

- If P(Mi+1|X) < P(Mi|X), return Mi as the
induced model

Merges combine
pairs of states:
combined emission
and transition
probabilities are
weighted averages
of the
corresponding
distributions for the
states that have
been merged

Bayesian model merging: HMMs

Stolcke & Omohundro, 1994

Example

Language:  {ab}+

Sentences:  ab, abab

Bayesian model merging: HMMs

Stolcke & Omohundro, 1994

Example

Language:  {ab}+

Sentences:  ab, abab
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Example

Language:  {ab}+

Sentences:  ab, abab

Bayesian model merging: HMMs

Stolcke & Omohundro, 1994

Why are simpler models favored?

Occam factor: Models with fewer states have
fewer parameters, and therefore they make
tighter predictions.

More effective data: When two states are merged,
their probabilities are combined – so each state
gets to effectively “see” more data

Bayesian model merging: HMMs

Stolcke & Omohundro, 1994

Application: Phonetic data

TIMIT: Collection of hand-labeled speech
samples compiled for the purpose of training
speaker-independent phonetic recognition
systems

Contains acoustic data segmented by words
and aligned with discrete labels from an
alphabet of 62 phones

Goal is to construct a probabilistic model for
each word in the database, representing its
phonetic structure as accurately as possible

Bayesian model merging: HMMs

Stolcke & Omohundro, 1994

Application: Phonetic data

Realizations of
the word
“often”

Initial
HMM
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Bayesian model merging: HMMs

Stolcke & Omohundro, 1994

Application: Phonetic data

Realizations of
the word
“often”

Learned
HMM

More recent models of HMM
learning

Application: Part-of-speech (POS) tagging

More recent models of HMM learning

Goldwater & Griffiths, 2007

Application: Part-of-speech (POS) tagging

Identifies a distribution over latent variables directly, without
ever fixing particular values for the model parameters:

w = the linguistic input;  = parameters; t = the hidden structure

Symmetric Dirichlet prior over the transition and output
distributions

More recent models of HMM learning

Goldwater & Griffiths, 2007

POS tagging: Results

Variation of information (VI): The VI between two clusterings C (the gold
standard) and C  (the found clustering) of a set of data points is a sum
of the amount of information lost in moving from C to C

VI(C,C’) = H(C) + H(C’) – 2I(C,C’)
(High VI indicates different clustering relative to C)

Vary the tag information given to the model:  Contains tag information
only for words that appear at least d times in the training corpus (the first
24K words of the WSJ corpus)

More recent models of HMM learning

Goldwater & Griffiths, 2007

POS tagging: Results

Plan

Finite-state grammars
– N-gram models (Goldwater, Griffiths, & Johnson, 2006)

• Word segmentation and morphology

– HMMs: Bayesian model merging (Stolcke & Omohundro, 1994)

• Phonetic learning

– HMMs: Dirichlet prior (Goldwater & Griffiths, 2007)

• Syntactic categories

Structured grammars
– Bayesian model merging: PCFGs (Stolcke & Omohundro, 1994)

– Constituent-context model (Klein & Manning, 2002)

– Dependency grammars (Carroll & Charniak, 1992)

– Combined CCM & Dependency grammars (Klein & Manning,
2004)

Unsupervised learning of grammars, by complexity
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Bayesian model merging: PCFGs

Stolcke & Omohundro, 1994

Set of nonterminal symbols N

Set of terminal symbols

Start nonterminal S
Set of productions or rules R

Production probabilities p(r) for all rules r

Notation

Bayesian model merging: PCFGs

Stolcke & Omohundro, 1994

Merging operator

Replaces two existing nonterminals X1 and X2 with a single new
nonterminal Y.

Has a twofold effect on grammars:

1) RHS occurrences of X1 and X2 replaced by Y

2) The union of LHSs X1 and X2 replaced by Y

Bayesian model merging: PCFGs

Stolcke & Omohundro, 1994

Nonterminal chunking

Merging alone cannot create CFG productions with the usual
embedding structure, so we add a chunking operator as well

Given an ordered sequence of nonterminals X1X2…Xk, create a new
nonterminal Y that expands to X1X2…Xk, and replace occurrences of
X1X2…Xk on the RHS with Y

Bayesian model merging: PCFGs

Stolcke & Omohundro, 1994

More model details

Likelihood:  probability of a string x is the sum of the probabilities
of all paths that generate x

Prior:

Parameters on productions: Dirichlet distribution over the
multinomial describing each nonterminal 

Structural: Description length (e.g., length of each production
assumed to have been drawn from a Poisson distribution)

Bayesian model merging: PCFGs

Stolcke & Omohundro, 1994

Performance: Induction is very difficult

Can try to improve the greedy search in a number of ways:

It still isn’t very good – the size of the space is enormous,
and has many local minima

Horning (1969) – suggested an algorithm, but it was an
enumeration algorithm

Structure induction for PCFGs is a very difficult problem

One possible solution: induce
constituency more directly
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Constituent-Context Model (CCM)

Explicitly models constituent yields and
contexts

System exploits the fact that long
constituents often have short,
common equivalents (proforms) that
appear in similar context and whose
constituency is similar (or
guaranteed)

Model transfers the constituency of a
sequence directly to its containing
context, which is intended to then
pressure new sequences that occur in
that context into being parsed as
constituents in the next round

Klein & Manning (2002)

Pronoun aux adj

Det n aux adj

Det n prep det n aux adj

CCM: Representation

Klein & Manning (2002)

Model captures all spans (contiguous subsequences)
of a sentence, and each span’s context (the
terminals preceding and following it

CCM: Representation

Klein & Manning (2002)

The bracketing B of a sentence indicates which spans
are constituents

CCM: Representation

Klein & Manning (2002)

Different kinds of bracketings:

Non-crossing, Tree-equivalent

Binary

CCM: Generative Model

Klein & Manning (2002)

Choose a bracketing B according to
some distribution P(B) and then
generate the sentence S given B

The context and yield (content)
of each span are independent
of each other, and generated
conditionally on the
constituency of that span

x

B

CCM: Generative Model

Klein & Manning (2002)

Choose a bracketing B according to
some distribution P(B) and then
generate the sentence S given B

x

B

P(B) = uniform

Soft clustering with two equal-prior
classes (constituents & distituents)
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CCM: Generative Model

Klein & Manning (2002)

Choose a bracketing B according to
some distribution P(B) and then
generate the sentence S given B

x

B

P(B) = uniform over binary tree-
equivalent bracketings

This turns distributional clustering into
tree induction

CCM: Inducing structure

Klein & Manning (2002)

EM: Sentences S are observed, bracketings B are unobserved.
Parameters of the model are the constituency-conditional yield and
context distributions (P( |b) and P(x|b), respectively)

CCM: Results

Klein & Manning (2002)

Corpus: 7422 sentences, Penn treebank Wall Street Journal that
contains no more than 10 words

Evaluation: F1 (harmonic mean of precision and recall)

CCM: Extension

Klein & Manning (2002)

What if the model isn’t given the POS tags?

Used the baseline method of word-type
clustering (similar to Finch et. Al. (1993))

Performance is worse, but still better than next
best (right-branching)

CCM: Generative Model with multiple classes

Klein & Manning (2002)

Choose a bracketing B according to
some distribution P(B) and then
generate the sentence S given B

The context and yield (content)
of each span are independent
of each other, and generated
conditionally on the
constituency of that span

x

B

Labeling is generated from that
bracketing

CCM: Generative Model with multiple classes

Klein & Manning (2002)

Choose a bracketing B according to
some distribution P(B) and then
generate the sentence S given B

The context and yield (content)
of each span are independent
of each other, and generated
conditionally on the
constituency of that span

x

B

Labeling is generated from that
bracketing

This doesn’t actually work
that well: F1 = 70.9

(compared to 71.1)
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Another solution: use a different
representation

Dependency grammars

A dependency d is an arc: pair <h,a> of a head and argument, each of which
is a word in a sentence s

A dependency structure D over a sentence is a set of dependencies that form
a planar, acyclic graph rooted at ROOT

Every D has an associated graph G:

Dependency grammars

Isomorphic (in terms of strong generative capacity) to a
restricted form of phrase structure grammar (Miller, 1999)

Unsupervised Dependency Parsing

Klein & Manning (2004)

1) Most state-of-the-art supervised parsers make use of
specific lexical information in addition to word-class
level information: perhaps lexical information could be a
useful source of information for unsupervised models

2) A central motivation for using tree structures is to
enable the extraction of dependencies, and it might be
more advantageous to do so directly

3) For languages like Chinese, which have few function
words, and for which the definition of lexical categories
is much less clear, dependency structures may be easier
to detect

Why use dependency grammars?

Inducing dependency grammars (DEP-PCFG)

Carroll & Charniak (1992)

0) Divide the corpus into two parts, the rule corpus and
the training corpus

1) For all sentences in the rule corpus, generate all rules
which might be used to generate (and/or parse) the
sentence

2) Estimate the probabilities for the rules
3) Using the training corpus, improve our estimate of the

probabilities
4) Delete all rules with small enough probability.  What

remains is the grammar

Algorithm

Carroll & Charniak (1992)

1) There are way too many possible (CFG) rules that could lead
to a sentence: a potentially infinite set of nonterminals
• That’s why we use a dependency grammar: it limits it to

n(2n-1+1), where n is length of sentence, if all terminals are
distinct

2) Even with a dependency grammar, this is a LOT of sentences.
For instance, a sentence with 41 terminal symbols would
have

3) Deal with this by ordering sentences by length (since children
see simpler language before more complex language).  Once
a rule has been eliminated, don’t consider it again

Inducing dependency grammars (DEP-PCFG)

Difficulties
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DEP-PCFG: Experiment

Carroll & Charniak (1992)

Corpus generated by artificial grammar

DEP-PCFG: Results

Carroll & Charniak (1992)

With 300 different random starting points, ended up with 300
different local minima

One segment of one grammar:

“Uniformly awful”

DEP-PCFG: Results

Carroll & Charniak (1992)

Tried to make it better by giving the grammar a chart limiting what
possible nonterminals could appear on the right-hand side of
certain rules

“Uniformly awful”

It helped, but they didn’t really quantify how much

Why didn’t this work well?

1) Random initialization is not good because the parameter
space is riddled with local minima; try it with a uniform
initialization

2) Dependency grammars are structurally unable to
distinguish order information (e.g., whether subject or
object should be attached to the verb first) – and therefore
they are not that great at constituency

3) It did not encode valence: for instance, can learn that
nouns to the left of a verb attach to it… but if given a
NOUN NOUN VERB sequence, will think that both nouns
attach to the verb.  Cannot encode that verbs have exactly
one subject.

Carroll & Charniak (1992)

DEP-PCFG: Results

Why didn’t this work well?

Klein & Manning (2004)

DMV: The generative model

Recursive generation process, beginning at the head h, defined
according to the following rules:

For each direction L and R from h
     - With P(STOP|h,dir,adj) stop generating additional arguments
      -  If don’t stop, generate a new argument a with P(a|h,dir)P(D(a))
    These probability factors are the model’s parameters

Includes a model of valence

Klein & Manning (2004)
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according to the following rules:

For each direction L and R from h
     - With P(STOP|h,dir,adj) stop generating additional arguments
      -  If don’t stop, generate a new argument a with P(a|h,dir)P(D(a))
    These probability factors are the model’s parameters

STOP
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Klein & Manning (2004)

DMV: The generative model

Use inside-outside algorithm for reestimation of the parameters (the
probability factors for STOP and CHOOSE)

STOP

Klein & Manning (2004)

DMV: Experiment

Klein & Manning (2004)

Why not combine models?

Their strengths are complementary

Both CCM and DMV can be seen as models over
lexicalized trees

Combine them by scoring each tree with the
product of all the probabilities from the
individual models

Klein & Manning (2004)

DMV-CCM: Results

Conclusion

• Expressivity/learnability tradeoff
• Finite-state grammars are easier, and there are

some useful linguistic domains that they are
reasonable models for
– Word segmentation
– Phonetics
– Syntactic categories

• More structured grammars are difficult
– As we saw in Mark Johnson’s talk, PCFGs aren’t great

models for language, but even they are quite hard
– Constituent-context model
– Dependency grammars

Grammar induction (of structure) is difficult
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Two
successful word segmentation systems based on
explicit probabilistic models are those of Brent
(1999) and Venkataraman (2001). Brent’s Model-
Based Dynamic Programming (MBDP) system assumes
a unigram word distribution. Venkataraman
uses standard unigram, bigram, and trigram
language models in three versions of his system,
which we refer to as n-gram Segmentation (NGS). Intuitively, the NGS model considers the unsegmented

solution to be optimal because it ranks all
hypotheses equally probable a priori. We know,
however, that hypotheses that memorize the input
data are unlikely to generalize to unseen data, and
are therefore poor solutions. To prevent memorization,
we could restrict our hypothesis space to
models with fewer parameters than the number of
utterances in the data. A more general and mathematically
satisfactory solution is to assume a nonuniform
prior, assigning higher probability to hypotheses
with fewer parameters. This is in fact the
route taken by Brent in his MBDP model, as we
shall see in the following section.
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MBDP assumes a corpus of utterances is generated
as a single probabilistic event with four steps:
1. Generate L, the number of lexical types.
2. Generate a phonemic representation for each
type (except the utterance boundary type, $).
3. Generate a token frequency for each type.

4. Generate an ordering for the set of tokens.
In a final deterministic step, the ordered tokens
are concatenated to create an unsegmented corpus.
This means that certain segmented corpora
will produce the observed data with probability 1,
and all others will produce it with probability 0.
The posterior probability of a segmentation given
the data is thus proportional to its prior probability

under the generative model, and the best segmentation
is that with the highest prior probability.
There are two important points to note about
the MBDP model. First, the distribution over L
assigns higher probability to models with fewer
lexical items. We have argued that this is necessary
to avoid memorization, and indeed the unsegmented

corpus is not the optimal solution under
this model, as we will show in Section 3. Second,
the factorization into four separate steps makes
it theoretically possible to modify each step independently
in order to investigate the effects of
the various modeling assumptions. However, the
mathematical statement of the model and the approximations

necessary for the search procedure
make it unclear how to modify the model in any
interesting way. In particular, the fourth step uses
a uniform distribution, which creates a unigram
constraint that cannot easily be changed.

Second, the parameter allpha0 can be
used to control how sparse the solutions found by
the model are. This parameter determines the total
probability of generating any novel word, a probability
that decreases as more data is observed, but
never disappears. Finally, the parameter P0 can
be used to encode expectations about the nature
of the lexicon, since it defines a probability distribution
across different novel words. The fact that
this distribution is defined separately from the distribution
on word frequencies gives the model additional
flexibility, since either distribution can be
modified independently of the other.

In Table 1(a), we compare the results of our system
to those of MBDP and NGS.4 Although our
system has higher lexicon accuracy than the others,
its token accuracy is much worse. This result
occurs because our system often mis-analyzes frequently
occurring words. In particular, many of
these words occur in common collocations such
as what’s that and do you, which the system interprets
as a single words. It turns out that a full 31%
of the proposed lexicon and nearly 30% of tokens
consist of these kinds of errors.
Upon reflection, it is not surprising that a unigram
language model would segment words in this
way. Collocations violate the unigram assumption
in the model, since they exhibit strong word-toword
dependencies. The only way the model can
capture these dependencies is by assuming that
these collocations are in fact words themselves.
Why don’t the MBDP and NGS unigram models
exhibit these problems? We have already
shown that NGS’s results are due to its search procedure
rather than its model. The same turns out
to be true for MBDP. Table 2 shows the probabili-
ties under each model of various segmentations of
the corpus. From these figures, we can see that
the MBDP model assigns higher probability to the
solution found by our Gibbs sampler than to the
solution found by Brent’s own incremental search
algorithm. In other words, Brent’s model does prefer
the lower-accuracy collocation solution, but his
search algorithm instead finds a higher-accuracy
but lower probability solution
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