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Expressivity vs. learnability

A fundamental tradeoff

Expressivity vs. learnability

Maps onto modeling choices

Low expressivity:
easy to learn

High expressivity:
hard to learn
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Choice of
representation

Low expressivity:
easy to learn

High expressivity:
hard to learn
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Expressivity vs. learnability

Maps onto modeling choices

Learnability

Not just about the search algorithm

* Complexity of the space
* Nature of the input
* What constitutes “having learned”
... as well as the capabilities of the learner

Low expressivity:
easy to learn

High expressivity:
hard to learn

Choice of learning
algorithm

Gold’s Theorem

Based on positive evidence only, it is impossible to learn a
class of languages other than those of finite cardinality

Gold (1967)
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Based on positive evidence only, it is impossible to learn a Based on positive evidence only, it is impossible to learn a
class of languages other than those of finite cardinality class of languages other than those of finite cardinality
1. Listener “hears” a string 7N\
( e
2. Listener decides whether that string is consistent with the \ Y,

grammar they currently think is being used (if it’s the

first trial, they just pick one randomly). You will eventually

3.1f not, generate a new grammar and go to #2. If so, stay converge: the negative
with current grammar and go to #2. evidence will rule out
incorrect grammars

You have learned the language once you never change
grammars

Gold’s Theorem

Based on positive evidence only, it is impossible to learn a
class of languages other than those of finite cardinality

Does this lead to problems?

Kids don’t seem to receive (or notice) negative evidence!

7\ e N Adults tend to only correct the truth of a child’s utterance, not the syntax:
( e + ]
\ y Child: Mama isn’t boy, he a girl.
NS \\ e Adult: That's right.
You will eventually If you guessed a When adults (rarely) try to correct a child’s syntax, the kid doesn’t get it
converge: the negative grammar that is too
evidence will rule out large, you'll never realize Child: Nobody don't like me.
. t it and h Mother: No, say "Nobody likes me.”
incorrect grammars it and never change Child: Nobody don't like me.

[dialogue repeated 8 times]
Mother: Now listen carefully, say "NOBODY LIKES ME.”
Child: Oh! Nobody don't likeS me.

Gold (1967) Source: McNeil

Many ways to address this

(for both kids and computers)

But how about not in the limit?
¢ Change learning criterion
e Add some sort of inductive bias
— Universal Grammar (what does this mean?)
¢ Change learning algorithm Grammar induction in the
- Probabilistic learner: guaranteed in the limit (Horning, 1969) re al WOI‘ld

Z

Horning (1969), Solomonoff (1978)




Grammar induction

Grammar induction

Computational question at multiple levels

¥ Grammar type

we s :! Specific grammar

structure

Parameters of -2
N\»J\‘ " specific grammar CHE
ot
Parsing,
prediction of the
dataset - S

Unsupervised learning of grammars, by complexity

Finite-state grammars
— N-gram models (Goldwater, Griffiths, & Johnson, 2006)
¢ Word segmentation and morphology
— HMMs: Bayesian model merging (Stolcke & Omohundro, 1994)
* Phonetic learning
— HMMs: Dirichlet prior (Goldwater & Griffiths, 2007)
 Syntactic categories
Structured grammars
— Bayesian model merging: PCFGs (Stolcke & Omohundro, 1994)
— Constituent-context model (Klein & Manning, 2002)
— Dependency grammars (Carroll & Charniak, 1992)

- Cor)nbined CCM & Dependency grammars (Klein & Manning,
2004)

Bayesian model merging: HMMs

Computational question at multiple levels

Grammar type

Thes v Specific grammar "
,\’r\ structure
Parameters of iTEE
Sobe S0t specific grammar L
~ \;‘\\Q‘
Parsing,
prediction of the
dataset - o

Basic idea

¢ Constructed from subcomponents

- With only a little data, the
subcomponents are the datapoints
themselves (plus slight generalization)

Submodels
z
b

— Construct more complex models by 3
merging pairs of simple components

* Merging...
— Try to do efficiently by sacrificing as
little likelihood as possible each time

Inferred solution

— Put prior so know when to stop

Stolcke & Omohundro, 1994
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Basic idea

¢ Constructed from subcomponents . M

— With only a little data, the submodels
are the datapoints themselves (plus
slight generalization)

Submodels
z
N

— Construct more complex models by “
merging pairs of simple components
* Merging...
— Try to do efficiently by sacrificing as
little likelihood as possible each time
— Put prior so know when to stop

Inferred solution
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Bayesian model merging: HMMs

Bayesian model merging: HMMs

Notation

Set of states Q
Initial state g, Final state g

Set of probability parameters:
Transition probabilities p(g2q"): the
probability that state ” follows g
Emission probabilities p(q | 0): the
probability that symbol ois emitted when
in state g

Stolcke & Omohundro, 1994

Bayesian model merging: HMMs

Model details

Likelihood: probability of a string x is the sum of the probabilities
of all paths that generate x
Pt e 3 sar = gt | odon = o) | 2 = 0

Prior: structural vs. parameter

Parameters: Dirichlet distribution over each set of multinomial
parameters (transition and emission probabilities)

1 2 1 b
e W)y gou=1 o=l
PO M6 MST) = Bla, a,) rll"' Bio, a.) Hl”"

Structural: Favor smaller number of states Q

P(Ms) x 191

Stolcke & Omohundro, 1994

Bayesian model merging: HMMs

Algorithm

1) Construct an HMM M, that produces exactly the
input strings
Merges combine
2) Loop: Ppairs of states:
. combined emission
- Compute set of candidate merges K among the 14 ransition
states of current HMM, M; probabilities are
weighted averages

- For each candidate k, compute the merged of the
model k(M,), and its posterior probability corresponding
p(k(M,) 1 X) distributions for the

states that have
Let k* be the merge that maximizes p(k | M;) | X). ~beenmerged
Then let M, = k*(M,)

- IfP(M,,; | X) < P(M;| X), return M, as the
induced model

Stolcke & Omohundro, 1994

Bayesian model merging: HMMs

Example
Language: {ab}*
Sentences: ab, abab
Mot a b
(1)} ——{2)
0.5 -
Yy
T b a b
) (5) (6) ()

Stolcke & Omohundro, 1994

Example
Language: {ab}+
Sentences: ab, abab
Ve b
N et .
I—{17] '
TS
=)

Stolcke & Omohundro, 1994
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Bayesian model merging: HMMs

Why are simpler models favored?

Occam factor: Models with fewer states have
fewer parameters, and therefore they make
tighter predictions.

More effective data: When two states are merged,
their probabilities are combined - so each state
gets to effectively “see” more data

Stolcke & Omohundro, 1994

Bayesian model merging: HMMs

Application: Phonetic data

TIMIT: Collection of hand-labeled speech
samples compiled for the purpose of training

speaker-independent phonetic recognition m
systems Y
7
Contains acoustic data segmented by words W
and aligned with discrete labels from an
alphabet of 62 phones

Goal is to construct a probabilistic model for
each word in the database, representing its
phonetic structure as accurately as possible

Stolcke & Omohundro, 1994

Bayesian model merging: HMMs

Application: Phonetic data

Initial
HMM

Realizations of
the word
“often”

Stolcke & Omohundro, 1994



Bayesian model merging: HMMs

Application: Phonetic data

Learned
HMM

Realizations of
the word
“often”

Stolcke & Omohundro, 1994

More recent models of HMM learning

Application: Part-of-speech (POS) tagging

Identifies a distribution over latent variables directly, without
ever fixing particular values for the model parameters:

P(tlw) = / P(t|w,0)P(0|w)do
w = the ingustic input; t; = parameters; t = the hidden structure
Symmetric Dirichlet prior over the transition and output
distributions

g =071 ~ Mult(+'""))
< Mult(wA")

N ~ Dmnchlet(a)
w3 ~ Dirichlet(9)

Goldwater & Griffiths, 2007

More recent models of HMM learning

POS tagging: Results
infocmekion
Yog i
Value o@) 2
Accuracy 1 2 3 3 10 x
random 696 567 510 452 386
— MLHMM 832 706 655 S90 S09
{IHL\I.\H 8§60 764 N0 643 580
BHMM2 873 76 650 592 497
T < 2 8 6 3 14
VI
random 765 398 438 173 313 1D
MLHMM 113 251 300 341 389 650
BHMMI1 109 244 282 319 347 410‘%
BHMM2 104 L78 231 249 297 404
a < 02 03 04 03 07 17
C s stals
% :Iminy 90 613 663 109 758 100
tags/token 19 44 55 68 83 17

Goldwater & Griffiths, 2007

More recent models of HMM

learning

Application: Part-of-speech (POS) tagging

More recent models of HMM learning

POS tagging: Results

Variation of information (VI): The VI between two clusterings C (the gold
standard) and C’ (the found clustering) of a set of data points is a sum
of the amount of information lost in moving from C to C”
VI(C,C) = H(O) + H(C) - 2I(C,C")
(High VI indicates different clustering relative to C)

Vary the tag information given to the model: Contains tag information
only for words that appear at least d times in the training corpus (the first
24K words of the WS]J corpus)

Goldwater & Griffiths, 2007

Unsupervised learning of grammars, by complexity

Finite-state grammars
— N-gram models (Goldwater, Griffiths, & Johnson, 2006)
¢ Word segmentation and morphology
— HMMs: Bayesian model merging (Stolcke & Omohundro, 1994)
* Phonetic learning
— HMMs: Dirichlet prior (Goldwater & Griffiths, 2007)
 Syntactic categories
Structured grammars
— Bayesian model merging: PCFGs (Stolcke & Omohundro, 1994)
— Constituent-context model (Klein & Manning, 2002)
— Dependency grammars (Carroll & Charniak, 1992)

- Cor)nbined CCM & Dependency grammars (Klein & Manning,
2004)




Bayesian model merging: PCFGs

Notation

Set of nonterminal symbols N
Set of terminal symbols

06 S NPVP

Start nonterminal S 04 S->NPI
. 03 NP N
Set of productions or rules R 04 NP >DN
03 NP Pro

Production probabilities p(r) for all rules r

Stolcke & Omohundro, 1994

Bayesian model merging: PCFGs

Nonterminal chunking

Merging alone cannot create CFG productions with the usual
embedding structure, so we add a chunking operator as well

Given an ordered sequence of nonterminals X;X,...X,, create a new
nonterminal Y that expands to X;X,...X;, and replace occurrences of
X,X,... X, on the RHS with Y

Z = AX1Xa... Xep (0)
|| ehunk(xyxs X =y
Z — A (o)

Y o — NN XN ()

Stolcke & Omohundro, 1994

Bayesian model merging: PCFGs

Performance: Induction is very difficult

Can try to improve the greedy search in a number of ways:

It still isn’t very good — the size of the space is enormous,
and has many local minima

Horning (1969) — suggested an algorithm, but it was an
enumeration algorithm

Structure induction for PCFGs is a very difficult problem

Stolcke & Omohundro, 1994

Bayesian model merging: PCFGs

Merging operator

Replaces two existing nonterminals X; and X, with a single new
nonterminal Y.

Has a twofold effect on grammars: - M (e

N o— MXun (e

1) RHS occurrences of X; and X, replaced by Y | meme(Xi\z) =)

# MY (o)

- MY (e

2) The union of LHSs X, and X, replaced by Y

Stolcke & Omohundro, 1994

Bayesian model merging: PCFGs

More model details

Likelihood: probability of a string x is the sum of the probabilities
of all paths that generate x

Prior:

Parameters on productions: Dirichlet distribution over the
multinomial describing each nonterminal

Structural: Description length (e.g., length of each production
assumed to have been drawn from a Poisson distribution)

Stolcke & Omohundro, 1994

One possible solution: induce

constituency more directly




Constituent-Context Model (CCM)

CCM: Representation

Explicitly models constituent yields and
contexts

System exploits the fact that long
constituents often have short,
common equivalents (proforms) that
appear in similar context and whose
constituency is similar (or Det n aux adj
guaranteed{

Pronoun aux adj

Det n prep det n aux adj

Model transfers the constituency of a
sequence directly to its containing
context, which is intended to then
pressure new sequences that occur in
that context into being parsed as
constituents in the next round

Klein & Manning (2002)

CCM: Representation

The bracketing B of a sentence indicates which spans
are constituents

End
s
012345
(:E) VP

- N 0
NN NNS VBD L 1
| 1 73

Factory s 3 fell 3 in remer
o Foctory y payrolls 3 fell 3 in 4 September 5 4
5

Klein & Manning (2002)

CCM: Generative Model

Model captures all spans (contiguous subsequences)
of a sentence, and each span’s confext (the
terminals preceding and following it

Span_Label Coastiment Context
©035) & NNNNSVBDINNN  o-o
S 02~ NN NNS veD
T @5 w NNS -0
@ ,‘—P 3.5 VBD=o
NN NNS  VBD PP 01 N 0~ NN§
12} WNs NN - VED
| | N W @3 vsp vBD NNS = IN
" . B4 o ™ VBD - NN
o Factory | payrolisC D) foll 3 in 4 Seprember @5 N oo S

Klein & Manning (2002)

CCM: Representation

Different kinds of bracketings:

Binary

Non-crossing, Tree-equivalent

Klein & Manning (2002)

CCM: Generative Model

Choose a bracketing B according to
some distribution P(B) and then
generate the sentence S given B

The context and yield (content)
of each span are independent
of each other, and generated
conditionally on the
constituency of that span

P(s]B) = l—[(i,j)espnn:(S)P(aU‘xileij)

l_[(w_) P(ay; | By )P (x| Byy)

Klein & Manning (2002)

Choose a bracketing B according to
some distribution P(B) and then
generate the sentence S given B

P(B) = uniform

Soft clustering with two equal-prior
classes (constituents & distituents)

Klein & Manning (2002)



CCM: Generative Model

CCM: Inducing structure

Choose a bracketing B according to
some distribution P(B) and then
generate the sentence S given B

EM: Sentences S are observed, bracketings B are unobserved.
Parameters of the model are the constituency-conditional yield and
context distributions (P(ez|b) and P(x 1), respectively)

P(B) = uniform over binary tree-

E-Step: Find the conditional completion likeli-
equivalent bracketings

hoods P(B|S, ®) according to the current ©.
M-Step: Fix P(B|S, ©) and find the ®' which max-
imizes )~ ; P(B|S, ©)logP(S, B|®").

This turns distributional clustering into
tree induction

Klein & Manning (2002)

Klein & Manning (2002)

CCM: Results CCM: Extension

Corpus: 7422 sentences, Penn treebank Wall Street Journal that What if the model isn’t given the POS tags?
contains no more than 10 words K
Evaluation: F1 (harmonic mean of precision and recall) Used the baseline method of WOl“d-tYPe
clustering (similar to Finch et. Al (1993))
100 87
82 . .
80 e I Performance is worse, but still better than next
§ 60 best (right-branching)
=40 30
@
20113 Tags Precision  Recall Fy | NPRacall PP Recall VP Recall S Recall
0 | Tresbuk | 638 $02 7L1| 834 785 76 07
Induced 568 711 632| 528 562 90.0 60.5
—y o o 0 0
Figure 4: F, for various models on WSJ-10.

CCM: Generative Model with multiple classes

CCM: Generative Model with multiple classes

Choose a bracketing B according to
some distribution P(B) and then

Choose a bracketing B according to
generate the sentence S given B

some distribution P(B) and then
generate the sentence S given B

Labeling is generated from that
bracketing

- This doesn’t actually work
Labeling s generaty. ™ et well: FI =709
(compared to 71.1)

The context and yield (content)
of each span are independent
of each other, and generated
conditionally on the
constituency of that span

The context and yield (content)
of each span are independent
of each other, and generated
conditionally on the
constituency of that span

Klein & Manning (2002)

Klein & Manning (2002)



Dependency grammars

Another solution: use a different

representation T
TN N b N ™~
NN NNS VBD N NN ROOT
I | J 1 I
Facrory pavrolls Sfell n September

A dependency d is an arc: pair <h,a> of a head and argument, each of which
is a word in a sentence s

A dependency structure D over a sentence is a set of dependencies that form
a planar, acyclic graph rooted at ROOT
Every D has an associated graph G:

l/ o
i~~~ ~TN\
ST

. ROOT

Dependency grammars Unsupervised Dependency Parsing

Why use dependency grammars?

Isomorphic (in terms of strong generative capacity) to a

restricted form of phrase structure grammar (Miler, 1999) 1) Most state-of-the-art supervised arsers make use of
specific lexical information in addition to word-class
level information: perhaps lexical information could be a
w as” e T e woor useful source of information for unsupervised models

M m S 2) A central motivation for using tree structures is to
enable the extraction of dependencies, and it might be
more advantageous to do so directly

VED s 3) For languages like Chinese, which have few function
—— v ~o words, and for which the definition of lexical categories
- is much less clear, dependency structures may be easier
W ®s vio
R to detect
1 1 1 —_~ Focvry payrolls Sl IN NN
Factory payrolls foll TN NN RPN

| 1
™ Seprember

Klein & Manning (2004)

Inducing dependency grammars (DEP-PCFG) Inducing dependency grammars (DEP-PCFG)

Algorithm Difficulties
0) Divide the corpus into two parts, the rule corpus and 1) There are way too many possible (CFG) rules that could lead
the training corpus to a sentence: a potentially infinite set of nonterminals
1) For all sentences in the rule corpus, generate all rules . That'ls why Ke usea depeﬁdenc}’ grammar: it limits it to
-
which might be used to generate (and/or parse) the ggﬁnztl), where 7 is length of sentence, if all terminals are
sentence
2) Estimate the probabilities for the rules 2) Even with a dependency grammar, this is a LOT of sentences.
3) Using the training corpus, improve our estimate of the For instance, a sentence with 41 terminal symbols would
probabilities have
. s o ~ Nty o o 1
4) Delete all rules with small enough probability. What {IET4 1) 41(@5) )~ 40(10) ) e 4-20
remains is the grammar 3) Deal with this by ordering sentences by length (since children
see simpler language before more complex language). Once
a rule has been eliminated, don’t consider it again

Carroll & Charniak (1992) Carroll & Charniak (1992)



DEP-PCFG: Experiment

Corpus generated by artificial grammar “Uniformly awful”

With 300 different random starting points, ended up with 300
different local minima

Tohi noun

1

[ &t ad]
wan FITH 2 o det moun wh One segment of one grammar:
woun PITH noun wh
det

prop Toan

et

220 FFem - pron corb AT @Fem - del verb pron

214 prom — PFOp pron 038 Prom —  pron cerb moum

130 prom —  pron verbdel | 023 prom —  WOWH verb pron

AR TFom —  verh pron 013 From  —  pron cerb del del

\ TR pEp

verb prep

pram verb prep

Carroll & Charniak (1992) Carroll & Charniak (1992)

“Uniformly awful” Why didn’t this work well?

Tried to make it better by giving the grammar a chart limiting what
possible nonterminals could appear on the right-hand side of
certain rules

1) Random initialization is not good because the parameter
space is riddled with local minima; try it with a uniform
initialization

2) Dependency grammars are structurally unable to

R e e o W e o distinguish order information (e.g., whether subject or

poa ¢ x T o 1o 1o 1]e object should be attached to the verb first) — and therefore

" X 1 o 1ol o I x]c they are not that great at constituency

e 3) It did not encode valence: for instance, can learn that
nouns to the left of a verb attach to it... but if given a
NOUN NOUN VERB sequence, will think that both nouns
attach to the verb. Cannot encode that verbs have exactly
one subject.

s || noun | verb | pron | det | prep | adj | wh

Figure 9: For each left-hand side, non-terminals allowed on right

It helped, but they didn’t really quantify how much

Carroll & Charniak (1992) Carroll & Charniak (1992)

DMV: The generative model

Includes a model of valence

DMV: The generative model

Recursive generation process, beginning at the head 1, defined
Recursive generation process, beginning at the head 1, defined according to the following rules:

according to the following rules:
For each direction L and R from &

For each direction L and R from & - With P(sTOP | hdir,adj) stop generating additional arguments

- With P(stop | 1 dir,adj) stop generating additional arguments - If don’t stop, generate a new argument a with P(a | h,dir)P(D(a))
- If don’t stop, generate a new argument a with P(a | i,dir)P(D(a)) - These probability factors are the model’s parameters
- These probability factors are the model’s parameters
: ' T ‘ ™~
\ VBD ROOT

TN N v TN
NN NNS VBD N NN ROOT |
| | | | | Jell

Facrory pavrolls Sell n September

Klein & Manning (2004) Klein & Manning (2004)
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Klein & Manning (2004)
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DMV: The generative model

Recursive generation process, beginning at the head 1, defined
according to the following rules:

For each direction L and R from &
- With P(stop | ,dir,adj) stop generating additional arguments
- If don’t stop, generate a new argument a with P(a | i,dir)P(D(a))
- These probability factors are the model’s parameters
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DMV: The generative model

Recursive generation process, beginning at the head 1, defined
according to the following rules:

For each direction L and R from &
- With P(stop | 1, dir,adj) stop generating additional arguments
- If don’t stop, generate a new argument a with P(a | 1,dir)P(D(a))
- These probability factors are the model’s parameters

PN S \
NN NNS VBD IN NN ROOT
STOP | | | | |
Facrory payrolls fell m Seprember

Klein & Manning (2004)
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DMV: The generative model

Use inside-outside algorithm for reestimation of the parameters (the
probability factors for STOP and CHOOSE)

TN N '/ RN \
NN NNS VBD IN NN ROOT
STOP | | | | |
Facrory payrolls fell m Seprember

Klein & Manning (2004)

Why not combine models?

Their strengths are complementary

Both CCM and DMV can be seen as models over
lexicalized trees

Combine them by scoring each tree with the
roduct of aﬁ,the probabilities from the
individual models

Klein & Manning (2004)

Grammar induction (of structure) is difficult

. Expressivity/ learnability tradeoff

¢ Finite-state grammars are easier, and there are
some useful linguistic domains that they are
reasonable models for
— Word segmentation
— Phonetics
— Syntactic categories

® More structured grammars are difficult

— As we saw in Mark Johnson's talk, PCFGs aren’t freat
models for language, but even they are quite har

— Constituent-context model
— Dependency grammars

DMV: Experiment

English (WSJ10

| LRRANCH RHEAD |
RANDOM
RBRANCH'LHEAD

238 433

[4a1] 2
1000 1000

UBOUND
German (NEGRAL0 - 2175 Sentences)
LBRANCH RHEAD | 274 488 351 326 S12

RANDOM 279 496 357 | 218 415
RBRANCH/LHEAD | 338 601 433 | 210 499
@ 84 05 495 400 GIE
com 481 855 616| 255 339
UBOUND 563 1000 7211000 1000

| Chinese (CTBI0 - 3437 Sentences)
LBRANCH RHEAD 263 488 342 302 4319
273 507 355 359 473
200 3539 378 142 415
59 667 467 425 CGiD
346 643 W50 238 405
539 1000 701 | 1000 1000

Klein & Manning (2004)

DMV-CCM: Results

[ Model [UF URUF, [ Dr_ Undir
English (WSJ10 - 7423 Seatences)

LBRANCH RHEAD 36 326 37
RANDOM 310 394
RBEANCH LNIAD 51 w00
pMy 466 92
cem 642 816 7
—| DMveces (ros) 693 880
oM (pisTR) [ 652 828 129
D
(NEGRAI
TRANCH RHIAD £ 3]
RANDOM 96
REZANCH LHEAD 601
oMV @S
855
§9.7
5631000
“Eese (CTBI0 - 3437 Sentemces)
LBRANCH RMEAD 263 458 342 302 439
RANDOM 23 w7 88| 380 413
RBFANCH LMIAD 290 539 318 142 s
oMV 359 667 467 | 425 542
oM 346 643 450 238 s
DMV+CCM 333 620 433 582 603
UBOUND 539 1000 7011000 1000

Klein & Manning (2004)
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Two

successful word segmentation systems based on
explicit probabilistic models are those of Brent

(1999) and Venkataraman (2001). Brent's Model-
Based Dynamic Programming (MBDP) system assumes
a unigram word distribution. Venkataraman

uses standard unigram, bigram, and trigram

language models in three versions of his system,

which we refer to as n-gram Segmentation (NGS).

Intuitively, the NGS model considers the unsegmented
Solution to be optimal because it ranks all

hypotheses equally probable a priori. We know,
however, that hypotheses that memorize the input
data are unlikely to generalize to unseen data, and

are therefore poor solutions. To prevent memorization,
we could restrict our hypothesis space to

models with fewer parameters than the number of
utterances in the data. A more general and mathematically
satisfactory solution is to assume a nonuniform

prior, assigning higher probability to hypotheses

with fewer parameters. This is in fact the

route taken by Brent in his MBDP model, as we

shall see in the following section.
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In Table 1(a), we compare the resuits of our system
to those of MBDP and NGS.4 Although our

system has higher lexicon accuracy than the others,

its token accuracy is much worse. This result

oceurs because our system often mis-analyzes frequently
oceurting words. In particular, many of

these words occur in common collocations such

as what's that and do you, which the system interprets.
as asingle words. It turns out that a full 31%

of the proposed lexicon and nearly 30% of tokens
consist of these kinds of errors.

Upon reflection, it is not surprising that a unigram
language model would segment words in this

way. Collocations violate the unigram assumption

in the model, since they exhibit strong word-toword
dependencies. The only way the model can

capture these dependencies is by assuming that

these collocations are in fact words themselves.

Why don't the MBDP and NGS unigram models
exhibit these problems? We have already

shown that NGS's results are due to its search procedure
rather than its model. The same turns out

to be true for MBDP. Table 2 shows the probabili-

ties under each model of various segmentations of

the corpus. From these figures, we can see that

the MBDP model assigns higher probabilty to the
solution found by our Gibbs sampler than to the
solution found by Brent's own incremental search
algorithm. In other words, Brent's model does prefer
the lower-accuracy collocation solution, but his

search algorithm instead finds a higher-accuracy
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