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Limitations of the Multivariate Gaussian

Gaussians are fundamental and widespread, but not
every distribution of interest is Gaussian.
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• Some processes produce outliers.

• Some data has higher-order or non-linear structure.

• Not all random processes fit the central limit theorem.

• Even if data are Gaussian, if D is large the full multivariate Gaussian model
may be difficult to handle. There are D(D + 1)/2 parameters in the covariance
matrix.



What about this data?
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Outline

• Clustering, K-means, and Mixture models

• Dimensionality reduction, Factor analysis

• Latent Variable Models

• The EM algorithm



Clustering

Given some data, the goal is to discover “clusters” of points.

Roughly speaking, two points belonging to the same cluster are generally more
similar to each other or closer to each other than two points belonging to different
clusters.

Examples:

• cluster news stories into topics

• cluster genes by similar function

• cluster movies into categories

• cluster astronomical objects



The K-Means Algorithm

Input: Data Set D = {x1, . . . ,xN} where xn ∈ <D

Initialize Centers: mk ∈ <D for k = 1 . . .K.

repeat:

for n = 1 . . . N:

let sn = arg mink ‖xn − mk‖ % assign data points to nearest
center

end for

for k = 1 . . .K:

let mk = mean{xn : sn = k} % re-compute means

end for

until convergence (s has not changed)
kmeansdemo



Oranges and Lemons
Thanks to Iain Murray



A two-dimensional space
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Supervised learning
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A Cost Function for K-means

Let snk = 1 if data point n is assigned to cluster k and zero otherwise.

Note:
∑

k snk = 1.

Cost

C =
∑
nk

snk‖xn −mk‖2

The K-means algorithm tries to minimize the cost function C with respect to {snk}
and {mk}, subject to

∑
k snk = 1 and snk ∈ {0, 1}.

K-means:

• minimize C with respect to {snk}, holding {mk} fixed.

• minimize C with respect to {mk}, holding {snk} fixed.

Finding the global optimum of C is a hard problem.



A probabilistic interpretation of K-means

Multivariate Gaussian density (x ∈ <D):

p(x|µ,Σ) = |2πΣ|−1
2 exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
Multivariate Gaussian density with mean mk and identity covariance matrix I.

p(x|mk) = |2πI|−1
2 exp

{
−1

2
(x−mk)>(x−mk)

}
p(x|mk) =

1
(2π)D/2

exp
{
−1

2
‖x−mk‖2

}
A mixture model:

p(xn|{mk}) =
∑

k

wk p(xn|mk)

where wk is the mixing proportion (e.g. set wk = 1/K).



A probabilistic interpretation of K-means

Multivariate Gaussian density with mean mk and identity covariance matrix I.

p(x|mk) =
1

(2π)D/2
exp

{
−1

2
‖x−mk‖2

}
A mixture model:

p(xn|{mk}) =
∑

k

wk p(xn|mk)

where wk is the mixing proportion (e.g. set wk = 1/K).

Imagine we observed which data points came from which Gaussians (i.e. we knew
{snk}), then:

p(xn, sn|{mk}) =
∏
k

[wk p(xn|mk)]
snk

Likelihood:

p(X,S|{mk}) =
∏
n

p(xn, sn|{mk}) =
∏
nk

[wk p(xn|mk)]
snk



A probabilistic interpretation of K-means

Multivariate Gaussian density with mean mk and identity covariance matrix I.

p(x|mk) =
1

(2π)D/2
exp

{
−1

2
‖x−mk‖2

}
Likelihood:

p(X,S|{mk}) =
∏
n

p(xn, sn|{mk}) =
∏
nk

[wk p(xn|mk)]
snk

Log Likelihood if we set wk = 1/K:

ln p(X,S|{mk}) =
∑
nk

snk [log wk + log p(xn|mk)]

=
∑
nk

snk log p(xn|mk)−N log K

= −1
2

[∑
nk

snk‖xn −mk‖2

]
− ND

2
log(2π)−N log K

Maximizing ln p(X,S|{mk}) with respect to {snk} and {mk} is equivalent to
minimizing the K-means cost function.



Mixtures Models and Latent Variables

The general distribution for a mixture model is

P (xn|θ) =
K∑

k=1

P (sn = k|w) P (xn|sn = k, θk)

where sn = k means that data point n was generated by mixture component k.

The prior probability that data point n was generated from component k is wk

P (sn = k|w) = wk

These mixing proportions satisfy
∑

wk = 1.

The component can have any distribution P (xn|sn = k, θk).

What is the posterior probability that data point xn came from component k? By
Bayes rule:

rnk =
wk P (xn|sn = k, θk)∑

k′ wk′ P (xn|sn = k′,θk′)
This is a soft version of the hard assignments in K-means.



From K-means to EM...

Consider the following K-means like algorithm:

• Fix {w, {θk}} and compute {rnk}

• Fix {rnk} and recompute {w, {θk}} from data weighted by {rnk}.

For mixtures of Gaussians:

wk =
∑

n rnk∑
nk′ rnk′

=
∑

n rnk

N

µk =
∑

n rnkxn∑
n rnk

Σk =
∑

n rnk(xn − µk)(xn − µk)>∑
n rnk

This is the Expectation-Maxization (EM) algorithm. We will give a theoretical
justification soon...



Factor Analysis

Factor analysis models high dimensional data y in terms of a linear transformation
of some smaller number of latent factors, x.

YDY1 Y2
�

X1 KX

Λ
Linear generative model: yd =

K∑
k=1

Λdk xk + εd

• xk are independent N (0, 1) Gaussian factors
• εd are independent N (0,Ψdd) Gaussian noise
• K <D

Properties:• p(x) = N (0, I) and y = Λx + ε
• Since p(ε) = N (0,Ψ), we get that p(y|x) = N (Λx,Ψ)

• p(y) =
∫

p(x)p(y|x)dx = N (0,ΛΛ>+ Ψ) where Λ is a D ×K matrix, and Ψ is
diagonal.

latent = hidden = unobserved = missing



Ways of thinking about Factor Analysis (FA)

• FA models high dimensional data in terms of a linear transformation of some
smaller number of latent factors.

• FA is a method for parameterizing a D × D covariance matrix Σ in terms of
D × K + D parameters, ΛΛ> + Ψ. Since K can be chosen by the user, this
means that factor analysis can be applied to very high dimensional datasets.

• FA is a method for modelling correlations among the observed variables.

• FA is a linear regression model, where the inputs are assumed to be hidden.

• FA is a method for doing dimensionality reduction. Given y we can represent
it by the mean of x. FA finds a low-dimensional projection of high dimensional
data that captures the correlation structure of the data.

p(x|y) =
p(x)p(y|x)

p(y)
= N (βy, I − βΛ) where β = Λ>(ΛΛ> + Ψ)−1



Factor Analysis

YDY1 Y2
�

X1 KX

Λ
µ = 0

Σ ≈ ΛΛ> + Ψ

• ML learning for FA aims to fit Λ and Ψ given data. There is no closed form
solution for ML parameters.

• Number of free parameters (corrected for symmetries):

DK + D − K(K − 1)
2

<
D(D + 1)

2

• A Bayesian treatment would start with priors over Λ and Ψ and infer their
posterior given the data.

p(Λ,Ψ|D) =
p(D|Λ,Ψ)p(Λ,Ψ)

p(D)



Latent Variable Models

Explain correlations in y by assuming some latent variables x

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

(e.g. edges)

(retinal image, i.e. pixels)

x ∼ p(x|θx)

y|x ∼ p(y|x,θy)

p(x,y|θx,θy) = p(y|x,θy)p(x|θx)

p(y|θx,θy) =
∫

dx p(y|x,θy)p(x|θx)



The EM Algorithm

• Latent variable models:1 model data yn in terms of latent variables xn.

• Data set D = {y1, . . . ,yN}, likelihood: p(D|θ) =
N∏

n=1

p(yn|θ) =∏
n

∫
p(yn,xn|θ)dxn

• Goal: learn maximum likelihood (ML) parameter values

• The maximum likelihood procedure finds parameters θ such that:

θML = argmaxθ p(D|θ)

• Because of the integral (or sum) over latent variables, the likelihood can be a
very complicated, and hard to optimize function of θ.

• The Expectation–Maximization (EM) algorithm is a method for ML learning of
parameters in latent varible models.

• Basic intuition of EM: iterate between inferring latent variables and fitting
parameters.

1Examples of latent variable models: factor analysis, probabilistic PCA, ICA, mixture models, hidden Markov models,
linear-Gaussian state-space models...



The Expectation Maximisation (EM) algorithm

The EM algorithm finds a (local) maximum of a latent variable model likelihood. It
starts from arbitrary values of the parameters, and iterates two steps:

E step: Fill in values of latent variables according to posterior given data.

M step: Maximise likelihood as if latent variables were not hidden.

• Useful in models where learning would be easy if hidden variables were, in fact,
observed (e.g. FA turns into linear regression).

• Decomposes difficult problems into series of tractable steps.

• No learning rate.

• Framework lends itself to principled approximations.



Jensen’s Inequality

log(x) 

 x
1

 α x
1
 + (1−α)x

2
 x

2

 α log(x
1
) + (1−α) log(x

2
)

 log(α x
1
 + (1−α) x

2
)

For αi ≥ 0,
∑

αi = 1 and any {xi > 0}

log

(∑
i

αixi

)
≥
∑

i

αi log(xi)

Equality if and only if αi = 1 for some i (and therefore all others are 0).



Lower Bounding the Log Likelihood

Observed data D = {yn}; Latent variables X = {xn}; Parameters θ.

Goal: Maximize the log likelihood (i.e. ML learning) wrt θ:

L(θ) = log P (D|θ) = log
∫

P (X ,D|θ)dX ,

Any distribution, q(X ), over the hidden variables can be used to obtain a lower
bound on the log likelihood using Jensen’s inequality:

L(θ) = log
∫

q(X )
P (X ,D|θ)

q(X )
dX ≥

∫
q(X ) log

P (X ,D|θ)
q(X )

dX def= F(q, θ).

F(q, θ) =
∫

q(X ) log P (X ,D|θ) dX −
∫

q(X ) log q(X ) dX

=
∫

q(X ) log P (X ,D|θ) dX + H[q],

where H[q] is the entropy of q(X ).
So: F(q, θ) = 〈log P (X ,D|θ)〉q(X ) + H[q] ≤ L(θ)



Notation and Terminology

〈f(x)〉p(x)
def=
∫

f(x)p(x)dx

H[p] = −
∫

p(x) log p(x)dx

Links between statistical physics and machine learning:

• negative log probabilities correspond to the “energy” of a system

• − 〈log P (X ,D|θ)〉q(X ) is the average energy

• F(q, θ) is the negative free energy

Physical systems tend to converge to
a distribution of states with low free
energy

≈
Learning systems should find a
distribution of parameters and hidden
variables with low free energy



The E and M steps of EM

The lower bound on the log likelihood is given by:

F(q, θ) = 〈log P (X ,D|θ)〉q(X ) + H[q],

EM alternates between:

E step: optimize F(q, θ) wrt distribution over hidden variables holding params
fixed:

q(k)(X ) := argmax
q(X )

F
(
q(X ),θ(k−1)

)
.

M step: maximize F(q, θ) wrt parameters holding hidden distribution fixed:

θ(k) := argmax
θ

F
(
q(k)(X ),θ

)
= argmax

θ
〈log P (X ,D|θ)〉q(k)(X )

The second equality comes from fact that entropy of q(X ) does not depend directly
on θ.



EM as Coordinate Ascent in F



The E Step

The free energy can be re-written

F(q, θ) =
∫

q(X ) log
P (X ,D|θ)

q(X )
dX

=
∫

q(X ) log
P (X|D,θ)P (D|θ)

q(X )
dX

=
∫

q(X ) log P (D|θ) dX +
∫

q(X ) log
P (X|D,θ)

q(X )
dX

= L(θ)−KL[q(X )‖P (X|D,θ)]

The second term is the Kullback-Leibler divergence.

This means that, for fixed θ, F is bounded above by L, and achieves that bound
when KL[q(X )‖P (X|D,θ)] = 0.

But KL[q‖p] is zero if and only if q = p.

So, the E step simply sets

q(k)(X ) = P (X|D,θ(k−1))

and, after an E step, the free energy equals the likelihood.



The M Step

F(q, θ) =
∫

q(X ) log
P (X ,D|θ)

q(X )
dX

M step: maximize F(q, θ) wrt parameters holding hidden distribution fixed:

θ(k) := argmax
θ

F
(
q(k)(X ),θ

)
(1)

= argmax
θ

∫
q(k)(X ) log P (X ,D|θ) dX (2)

The second equality comes from fact that entropy of q(X ) does not depend directly
on θ.

The specific form of the M step depends on the model.

Often the maximum wrt θ can be found analytically.
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