

Learning Schemata

- We have a probabilistic generative model giving:
 - the probability of contingency data given a schema,
 - the prior probability of a schema.
- We can invert this model, using Bayes rule, to get the posterior probability of a schema:

$$P(\text{Schema}|\text{Data}) = \frac{P(\text{Schema})P(\text{Data}|\text{Schema})}{P(\text{Data})}$$

One-shot Learning: Design

- Learning phase:
 - Tl_{0.5} & T2_{0.0} condition: e⁻: 1
- Transfer phase: new object o_+ activates machine on one observed trial.
- Causal strength judgment.

One-shot Learning: Results

e⁺: 0 5 4 6 1 0 0 0 0 e⁺: 0 9 8 9 1 1 2 1 0 9 8 9 1 e⁻: 10 10 10 10 10 10 10 10 10

One-shot Learning: Results

One-shot Learning: Results

One-shot Learning: Results

Characteristic Features

- Features of a feral cat (eyesores, scars, anger, etc) give us a hint about its causal type, before we attempt to pet it.
- How can we include knowledge about the characteristic features of members of a causal type?

- Features of a feral cat (eyesores, scars, anger, etc) give us a hint about its causal type, before we attempt to pet it.
- How can we include knowledge about the characteristic features of members of a causal type?

Related work, see: Lien & Cheng (2000), Waldmann & Hagmayer (2006)

Zero-shot Learning: Design

- Objects now had features which were diagnostic of their type.
 - Family-resemblance category structure.
- No trials were shown for test objects.
- Added a free-sort phase.

Zero-shot Learning: Results

Zero-shot Learning: Results

Learned schema

Zero-shot Learning: Results

ochema -0.5

Discussion

- Causal schemata (object types, their causal powers and characteristic features) represent abstract causal knowledge.
 - They are rapidly learned, and used to constrain further inference.
- Preliminary evidence that children learn causal schemata quickly and robustly (Schulz, Goodman, Tenenbaum, Jenkins).

Discussion

- Some important directions:
 - More empirical work.
 - Interactions and functional form.
 - Forces, substances, etc.
 - Richer (logical?) representation.
- Where do the variables come from?

- A Grounded Causal Model consists of:
 - a set of (abstract) variables,
 - an observation function for each variable mapping percepts to states of the variable,
 - a causal Bayesian* network structure relating the variables.

*Or other relational structure.

Learning GrCMs

Some options:

Acquisition model:

- Variables are innate.
- Bottom-up: 'clusters-then-causes'.
- Learn variables and structure together.

Learning GrCMs

Some options:

Acquisition model:

• Variables are innate.

Causal contingency learning.

- Bottom-up: 'clusters-then-causes'.
- Learn variables and structure together.

Learning GrCMs

Some options:

Acquisition model:

Variables are innate.

Causal contingency learning.

 Bottom-up: 'clusters-then-causes'. Cluster percepts into variables, then causal contingency learning.

 Learn variables and structure together.

Learning GrCMs

Some options:

Acquisition model:

• Variables are innate.

Causal contingency learning.

Bottom-up: 'clusters-then-causes'. Cluster percepts into variables, then causal contingency learning.

 Learn variables and structure together.

???

Learning GrCMs

- The petting/pounding example suggests that causal information is crucial for variable formation....
- But causal structure between variables can't be known before the variables....
- This is a chicken-and-egg problem!

Learning GrCMs

- We want the joint posterior probability of number of variables, their observation functions, and causal structure.
- Assume (for simplicity) uniform prior probabilities.
- The posterior probability of a GrCM is proportional to the likelihood of a sequence of percepts given that GrCM:

 $\begin{array}{lll} N: & \text{Number of Vars.} & I: & \text{Interventions} \\ C: & \text{Causal Str.} & & \mathbf{w}: & \text{Percepts} \end{array}$

 $f : ext{Obs. Fns.} \qquad P(N,C,f|\mathbf{w};I) \propto P(\mathbf{w}|N,C,f;I)$

Learning GrCMs

- To build a likelihood, assume:
 - The observation function of each (binary) variable is given by a *consequential region* in perceptual space.
 - Percepts occur uniformly in the region of perceptual space cut out by active variables.
 - The causal structure is given by a directed graph: a variable is *active* at time *t* if any of its parents was active at time *t-1* (and there's a small chance that any variable flips state).

Learning GrCMs

- Formal details:
 - Each state depends only on previous, add power-law decay: $T = P(f, C|\mathbf{w}, I) \propto \prod P(w_t|s_{t-1}, C, f, I)^{(T-t)^{-\gamma}}$
 - State is determined by percept (through observation function), probability of percept is inversely proportional to the size of the consequential region of this observed state:

observed state: $P(w_t|s_{t-1}^{\text{ob}},C,f,I) = \frac{1}{|R_{s_t^{\text{ob}}}|} \prod_{i=1}^{N} P(s_{i,t}^{\text{ob}}|s_{t-1}^{\text{ob}},C,I)$

• Nearly-deterministic-or causal structure for $P(s_{i,t}^{\rm ob}|s_{t-1}^{\rm ob},C,I)$.

Experiment

- Goals:
 - See if people can learn GrCMs from the results of their own interventions, in a simple setting,
 - See if people succeed in conditions where a purely bottom-up learner should fail,
 - Test the Bayesian model.

Design

• 'Alien panels': perceptual space of dots in a rectangle, variables are 'invisible buttons'.

Design

 'Alien panels': perceptual space of dots in a rectangle, variables are 'invisible buttons'.

• There were errors -- predicted by model?

Results: Mean Responses

- Yes, model predicts group means qualitatively,
- and quantitatively: r = 0.95

Results: Predicting Errors

- The model posterior probability of the correct structure was significantly higher when participants made correct responses than incorrect (Mann-Whitney U, p<0.0001).
- This indicates that many human errors were 'rational errors': reasonable responses to the available evidence.

Discussion

- Where do observable variables come from?
- They are learned.
 - The two factors of the 'meaning' of a variable, observational grounding and causal relations, are learned together and are mutually constraining.
- Still many open questions about this idea....

Discussion

- Some directions:
 - More detailed experiments.
 - Scaling up (computationally and empirically).
 - Grounding interventions in action.
 - Prior knowledge about observation functions: causal affordances.
 - Integrating with abstract knowledge and object concepts.

Conclusion

- Causal structure is a primary tool used by the mind to tame the river of experience.
- Causal knowledge grounds in perception and exists at multiple levels of abstraction, with a rich ontology:
 - Observable variables, causal relations, causaltypes of objects, etc.
- This knowledge can be learned from experience. In learning, each component/ level constrains the others.