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Causal Musings

Causal Musings

Causal Models

Ef Pet Fluffy +0.7

e Causal models represent causal

structure between variables
(e.g.-Waldmann and Holyoak, 1992; Cheng, 1997; Pearl,
2000; Gopnik, et al, 2004; Griffiths and Tenenbaum, 2005),

e which are learned from contingency
data (and interventions, etc.).

Petting: | yes yes no yes

Purring:| yes no no yes

Causal Musings

¢ A child learns that petting the cat leads to
purring, while pounding leads to growling.
What are the origins of the event concepts
(variables) over which causal links are defined?
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¢ A child learns that petting house cats leads
to purring, while petting feral cats leads to
biting. What is the form of this abstract
causal knowledge? How can it be learned?
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Causal Musings

Abstract Causal
Knowledge:

Pet a house cat

Causal Model:

ety

Perceptual
Grounding:

Variables:

Perceptual space:
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Causal Schemata

Noah D. Goodman
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with Charles Kemp and Josh Tenenbaum

Schemata
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e Organize objects into causal types,
e Specify the causal powers of each type,

e Specify characteristic features of each type.

Related work, see: Kelley (1973); Griffiths (2005); Mansingkha, et al (2006)
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e Organize objects into causal types,
e Specify the causal powers of each type,

e Specify characteristic features of each type.
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Other Examp|es Partition of objects into types: z ~ CRP

For each type t:
e Pills:
Painkillers:

The probability of an edge: a; ~ Beta
Antidepressants: The probability an edge is generative: §; ~ Beta
The mean and variance of causal stgength: .
Background rate:b ~ Beta ¢ ~ Gamma

+07 ur ~ Gaussian

For each object:
Headache Headache C(O) ]

| ) . e
. a ~ Binomial(a
Causal | (oo Is there an edge (@)

| Is it gen/prev: g ~ Binomial(ge)
e Its strength: logit(s) ~ Gaussian(p, ot)

® Peppers:

Models:
Chilis:

Jalapefio

Aii
! Tabasco

M P(effect)
+0.9

P(e|c) ~ noisy-or,
Contingency

1-(1-b)(1-s) noisy-and-not
b network.

Burning Mouth

Data:
Burning Mouth =

Learning Schemata

Painkillers:
® We have a probabilistic generative

model giving:

e the probability of contingency data given a 08
schema,

| |
Headache Headache
e the prior probability of a schema.

® We can invert this model, using Bayes
rule, to get the posterior probability of
a schema:
P(SchemalData) — P(Schema) P(DatalSchema)
P(Data)




Using Schemata

Painkillers: ~Asprin Antidepressants: Prozac
PanadoIAdvII Paxil Zoloft
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}
Headache Headache

Drug X: 2 trials, no headache (b=0.5).

Using Schemata

Painkillers: Antidepressants: Prozac
. Paxil Zoloft
+0.7
{

-0.8

Headache Headache

trials, no headache (b=0.5).

e A schema, once learned, constrains
inferences about new objects, especially
when data about the new objects is
sparse.

One-shot Learning: Stimuli

Using Schemata

Painkillers: Antidepressants: Prozac
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One-shot Learning: Stimuli

One-shot Learning: Stimuli




One-shot Learning: Design One-shot Learning: Results

0 o o o035 o4 05 o
00 o0

® Learning phase: ‘ i , - el 00000

e Tlos &T200 condition:

10 10 10 10 10 10 10
¢ Transfer phase: new object o, activates
machine on one observed trial.

¢ Causal strength judgment.

One-shot Learning: Results One-shot Learning: Results
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One-shot Learning: R Characteristic Features

e Features of a feral cat (eyesores, scars,
anger, etc) give us a hint about its causal
type, before we attempt to pet it.

® How can we include knowledge about
the characteristic features of members
of a causal type?

O+ Judgement | 9+ Prediction
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Strength Strength Strength




T2

Characteristic Features

T2 P(i=1|T2) =

" PER=ITY) =0

Purring

e Features of a feral cat (eyesores, scars, ool

. . . ausa

anger, etc) give us a hint about its causal Modols:
type, before we attempt to pet it.

Object

® How can we include knowledge about
features:

the characteristic features of members .
Contingency

of a causal type? Data:
Related work, see: Lien & Cheng (2000), Waldmann & Hagmayer (2006)

Zero-shot Learning: Design

e Objects now had features which were i’ 18 R fs 1‘9 fs ‘f P
diagnostic of their type. '

]

1

e Family-resemblance category structure.
® No trials were shown for test objects.

¢ Added a free-sort phase.
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Stimuli adapted from:
Sakamoto and Love (2004)
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Judgement Prediction

Zero-shot Learning: Results
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Discussion

e Causal schemata (object types, their
causal powers and characteristic
features) represent abstract causal
knowledge.

e They are rapidly learned, and used to
constrain further inference.

® Preliminary evidence that children learn

causal schemata quickly and robustly
(Schulz, Goodman, Tenenbaum, Jenkins).

Part Il:
Grounded Causal Models

Noah D. Goodman
Computational Cognitive Science Group,
MIT

with Vikash Mansinghka and Josh Tenenbaum

Judgement Prediction

Zero-shot Learning: Results

0_ 01 03 03 04 05 05 O7 O3 O4
3 2 1 2 18 18 17 19
177181918 2 2 3 1

1
0
1
1
1

Model sorts

=

Human sorts

N s o ®

frequency

Family resemblance sort.
0.1 05 09 0.1 05 09
Strength

Discussion

¢ Some important directions:
e More empirical work.
¢ [nteractions and functional form.
e Forces, substances, etc.
e Richer (logical?) representation.

® Where do the variables come from?

Causal Variables

e

® What are the origins of the variables (like
petting) over which causal links are defined?
How are they formed from, and related to,
perceptual experience?

C.f. Medin, Wattenmaker, &Hampson (1987)



Causal

Observation functions
Structure: )
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Perceptual Space
e A Grounded Causal Model consists of:
® a set of (abstract) variables,

® an observation function for each variable mapping

Learning GrCMs

Some options: Acquisition model:

® Variables are innate.

¢ Bottom-up:
‘clusters-then-causes’.

percepts to states of the variable,

e a causal Bayesian* network structure relating the

variables.

*Or other relational structure.

Learning GrCMs

Some options:

® Variables are innate.

¢ Bottom-up:
‘clusters-then-causes’.

e Learn variables and
structure together.

Acquisition model:

Causal contingency
learning.

Learning GrCMs

Some options:

® Variables are innate.

® Bottom-up:
‘clusters-then-causes’.

® Learn variables and
structure together.

Acquisition model:

Causal contingency
learning.

Cluster percepts into
variables, then causal
contingency learning.
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® Learn variables and
structure together.

Learning GrCMs

Some options:

® Variables are innate.

¢ Bottom-up:
‘clusters-then-causes’.

e Learn variables and
structure together.

Acquisition model:

Causal contingency
learning.

Cluster percepts into
variables, then causal
contingency learning.

Learning GrCMs

Causal ©—OD
Structure: O
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Observation functions
)

5;‘\ Consequential regions

Perceptual Space

¢ The petting/pounding example suggests
that causal information is crucial for
variable formation....

® But causal structure between variables
can’t be known before the variables....

e This is a chicken-and-egg problem!




Learning GrCMs

® We want the joint posterior probability
of number of variables, their observation
functions, and causal structure.

e Assume (for simplicity) uniform prior
probabilities.

® The posterior probability of a GrCM is
proportional to the likelihood of a
sequence of percepts given that GrCM:

Number of Vars. [ : Interventions
Causal Str. w: Percepts
Obs. Fns.

Learning GrCMs

® Formal details:

e Each state depends only on previous, add

power-law decay: r )
P(f,Clw, 1) o [[ P(wilsi-1, C, £, D)0

=
State is determined by percept (through
observation function), probability of
percept is inversely proportional to the
size of the consequential region of this
observed state: LN
Plwy|s®,,C, f, 1) = ] [ PGsslsety. €. 1)
St li=1

Nearly-deterministic-or causal structure
for P(sb|s,C 1) .

Design

e ‘Alien panels’: perceptual space of dots in a
rectangle, variables are ‘invisible buttons’.

P(N,C, flw;I) x P(w|N,C, f;I)

Learning GrCMs

e To build a likelihood, assume:

® The observation function of each (binary)
variable is given by a consequential region in
perceptual space.

® Percepts occur uniformly in the region of
perceptual space cut out by active variables.

e The causal structure is given by a directed
graph: a variable is active at time t if any of its
parents was active at time t-/ (and there’s a
small chance that any variable flips state).

Experiment

e Goals:

e See if people can learn GrCMs from the
results of their own interventions, in a
simple setting,

e See if people succeed in conditions where
a purely bottom-up learner should fail,

e Test the Bayesian model.

Design

e ‘Alien panels’: perceptual space of dots in a
rectangle, variables are ‘invisible buttons’.




Structure a:

Design

Results: Typical Responses

) (i) (iii)

e Three conditions (within subjects):
structures a, b, c.

Each participant was stopped every
~30 clicks (five times in each
condition) and asked to “describe
what’s going on” using a simple
drawing tool.

(vi)

~ Data analysis Results: Typical Responses

(i) (ii) (iii)

To enable group analyses,
participants’ responses were
coded as structure a, b, c, or
‘other’.

Model posterior probability for
each response, conditioned on
the specific evidence available
for that response, was calculated

over a set of ‘reasonable’
structures, including a, b, and c.
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Black bars: human proportion of responses for each structure. Participants distinguished the three conditions,

White bars: model posterior. ® Participants learned the correct GCM overall,
® There were errors -- predicted by model?




Results: Predicting Errors

Results: Mean Responses

Block 1 Block 2 Block 3 Block 4 Block 5
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I ﬂ ® The model posterior probability of the
S N PR AN ' 1 correct structure was significantly
higher when participants made correct

responses than incorrect
(Mann-Whitney U, p<0.0001).
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® This indicates that many human errors
were ‘rational errors’: reasonable
responses to the available evidence.
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¢ Yes, model predicts group means qualitatively,
¢ and quantitatively: r=20.95

(two free parameters)

Discussion Discussion

® Where do observable variables come e Some directions:

from? _ _
More detailed experiments.

[ J
They are learned. Scaling up (computationally and empirically).

® The two factors of the ‘meaning’ of a
variable, observational grounding and
causal relations, are learned together and Prior knowledge about observation
are mutually constraining. functions: causal affordances.

Grounding interventions in action.

e Still many open questions about this Integrating with abstract knowledge and
idea.... object concepts.

Conclusion

e Causal structure is a primary tool used by
the mind to tame the river of experience.

¢ Causal knowledge grounds in perception
and exists at multiple levels of
abstraction, with a rich ontology:

e Observable variables, causal relations, causal-
types of objects, etc.

¢ This knowledge can be learned from
experience. In learning, each component/
level constrains the others.



