The development of structured
representations

Charles Kemp

July 25, IPAM Summer School

Acknowledgements

Josh Tenenbaum
Pooja Jotwani

. . Hierarchies
Logical theories

Semantic networks

Logical theories Hierarchies

o
5

Context-free

Causal networks
Grammars

o
5

‘ Hidden Markov
Markov Decision
Models Processes

o
55

Euclidean
spaces
Context-free
Causal networks Grammars
Feature vectors Lambda
calculus
Hidden
Mark Markov _
Ma:j c;v Decision Relational
odels
Processes schemata
Logical theories Hierarchies

Causal networks Context-free

Grammars
Hidden Markov
Markov Decision
Models Processes

)

Hypotheses about representations

1. There is one kind of representation that
will handle every domain.
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Hypotheses about representations

1. There is one kind of representation that
will handle every domain.

2. Children begin with innate, domain-
specific representational constraints.

3. Children discover which kind of
representation is best for each domain.
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Scientists discover structural form

Mendeleev's Periodic Table of 1569
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Children discover structural form

 Children may discover that
— Social networks are often organized into cliques
— The months form a cycle
— “Heavier than” is transitive
— Category labels can be organized into hierarchies

Why form discovery matters

« Structural forms provide inductive
constraints

Why form discovery matters

« Structural forms provide inductive
constraints

This talk: graph structures
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Outline

« Discovery of structural form
— Feature data
— Similarity
— Relational data

» Form discovery in the lab

A hierarchical Bayesian framework
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A hierarchical Bayesian framework
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P(S. F|D.n) x P(D|S)P(S|F.n)P(F)

p(D|S): Generating feature data

* Intuition: features should be smooth over
graph S
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p(fl|W o): Generating a single feature

(zhu, Lafferty, Ghahramani 03)




p(D|S,W,0): Generating feature data

» The log likelihood for the feature model is

n
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where
— D is a matrix of objects (n) by features (m)
— W is a weighted graph

— o specifies a prior on the variance of each
feature value
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p(D|S): Generating feature data
» Generating a weighted graph
w;j|S, 3 ~ Exponential(7) if s;; = 1

» We integrate out W and & using the
Laplace approximation
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P(S|F,n): Generating structures
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« Each structure is weighted by the number of nodes
it contains:
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N
P(S|F) { A(1 — )1 otherwise

where |5| is the number of nodes in S

P(S|F,n): Generating structures

» Simpler forms generate fewer structures,
and are therefore preferred by the prior

P(F): Structural forms
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A hierarchical Bayesian framework

F: form -0 = A<g
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The complete space of grammars
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P(S. F|D.n) < P(D|S)P(S|F.n)P(F)

Model fitting

* Run greedy, grammar-based searches for
each form in parallel

Synthetic data: Grid

Clusters  Chain Ring Tree Grid
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Model selection results:

log posterior
probabilities
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Similarity data

¢ The log likelihood for the feature model is
log(p(DIW, 7)) = ~ 2 log(27) — Zlog 5] - 2tr(S ' DDT)

where D is a matrix of objects (n) by
features (m)

» The kernel trick: replacing DD" with a
similarity matrix lets us learn structural
forms from similarity data
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P(D|S): Relational data
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¢ The hyperparameters are drawn from a 4D
grid where
— ag + J and a1 + 51 belong to
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Similarity data: results
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A hierarchical Bayesian framework
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 Discovery of structural form
— Feature data
— Similarity
— Relational data

¢ Form discovery in the lab

Why form discovery matters

¢ Structural forms provide inductive
constraints

Experiment 1: Form discovery

¢ Structural forms support predictions about
new or sparsely-observed entities.
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Experiment 1: Form discovery
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Experiment 1: Form discovery
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Experiment 1: Form discovery

Experiment 2: Form discovery

Structural forms support predictions about
novel systems of entities.
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Experiment 2: Form discovery
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Developmental predictions

Issues and questions

* How can we work with richer collections of
structure grammars?

* Where do these structure grammars come
from?

» What about representations other than
graphs?

Conclusions

* Hierarchical models can help to explain:
— how people acquire mental representations

— How people learn what kind of representation
is best for a domain
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