The development of structured representations

Charles Kemp

July 25, IPAM Summer School

Acknowledgements Josh Tenenbaum Pooja Jotwani

Logical theories		rarchies
Euclidean spaces	Semantic ne	etworks
Causal networks		Context-free Grammars
Feature vectors		ambda alculus
Hidden Markov Models	Markov Decision Processes	Relational schemata

Hypotheses about representations

- 1. There is one kind of representation that will handle every domain.
- 2. Children begin with innate, domainspecific representational constraints.

Hypotheses about representations

- 1. There is one kind of representation that will handle every domain.
- 2. Children begin with innate, domainspecific representational constraints.
- Children discover which kind of representation is best for each domain.

Children discover structural form

- Children may discover that
 - Social networks are often organized into cliques
 - The months form a cycle
 - "Heavier than" is transitive
 - Category labels can be organized into hierarchies

 $-\sigma$ specifies a prior on the variance of each feature value

p(D|S): Generating feature data

· Generating a weighted graph

 $w_{ij}|S, \beta \sim \mathsf{Exponential}(\beta)$ if $s_{ij} = 1$

• We integrate out W and σ using the Laplace approximation

$$p(D|S,\beta) = \int p(D|W,\sigma) p(W|S,\beta) p(\sigma) dW d\sigma$$

Issues and questions

- How can we work with richer collections of structure grammars?
- Where do these structure grammars come from?
- What about representations other than graphs?

