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• ‘What is a Bayesian model’ is not a
completely well formed question.

• Bayesian modeling is a matter of
probabilistic induction, but most research
in cognitive science is aimed at induction
of the processes of cognition.

• In this sense, almost any probabilistic
model – a model that assigns a probability
to data, or to statistics based on data– is
Bayesian, because we typically use those
assigned probabilities to judge model
fitness, and to make inferences about
models and hypotheses.

• Although induction by assigning
probabilities to observed data is one
hallmark of Bayesian induction, it is not the
only hallmark.

• From where do we get the models that are
to be assessed in this framework?

• Creative thinking about the data-- One intuits a
model (or hypothesis) to explain or predict the
data or the data pattern.

• From introspection-- We have access to some
degree to our own mental processes (we think),

• From history-- Previous hypotheses and models
based on other data sets, sometimes from other
fields.

• From considerations of elegance, simplicity,
consistency, and coherence.
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• Charles Kemp (and Josh Tenenbaum and others
in their group) have used a hierarchical
Bayesian approach in which the highest level
involves a specification of model classes
– using the data (and priors associated with the

models), probabilities are assigned to the
various classes as well as the particular
model within each class.

• This approach still requires a careful delineation
of the model types that are to be assessed, and
in any given application the model types are a
very small subset of those that are conceivable.

• Mark Steyvers and I developed our REM
model for memory with a different sort of
Bayesian induction.

• We first made some general assumptions
about representation of memories and the
processes and memory storage and
retrieval.

• We then used Bayesian induction to
specify the class of models that would
optimize performance.

• That is, we did not specify a model class
and then use the data to assign beliefs.

• Instead, we used Bayesian induction to
choose a model class that would optimize
performance on a given trial in a particular
paradigm (recognition memory).

• Only after the class was so specified did
we try to use the model to fit data.

•  We started with some constraining assumptions about memory
storage and retrieval:

STUDY:
A) Functionally separate traces are vectors of feature values
B) Episodic traces are incomplete. Each feature position in the
     vector is filled with a specified probability (u) each time unit
C) Episodic traces are stored with error: A given vector position is
     filled with the correct value with probability (c), or if not, with a
     random choice according to the environmental base rates (g)
TEST:
A) The probe vector is matched to each trace, to determine
     matching and mismatching feature values.
B) These are used to the likelihood ratio that the probe and trace j

match.
C) The j likelihood ratios produce an odds that the test is OLD

• Simplified recognition memory study:
• A list of study items is stored as a group of

episodic traces.
• The tests have equal numbers of list items

and new items, the participant guessing
which is the case for each one.

• In theory, the retrieval probe vector
consists of item plus list context features.
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• However, to make the Bayesian
derivations possible, we simplified by
assuming that the context cues are used
first, and restrict the episodic memory
traces to those of the items from the
studied list. Then the content features are
used as a probe, and are compared to just
this restricted set of traces.

• We asked: What is the best recognition
performance that could be achieved on a
given test? This could be thought of as an
‘ideal retriever’.

• We answered this by using Bayes rule to
calculate the probability (the odds) that the
test item is old (on the list) vs new (not on
the list). The optimal or ideal Bayesian
retriever would respond old if the odds
favored old (i.e. if the odds were greater
than 1.0) and new otherwise.

• Here is how the induction goes:

• The odds for the test word being old (O) over
new (N) equals the likelihood ratio of observing
the data D for an old or new test times the prior
odds for an old or new test (prior odds indicated
by a subscript of o).

•

This expression holds for the feature values that mismatch. Hence:
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• So we have now written the odds favoring the test
item being old vs. new in terms of the two
parameters c and g, and the data.
The data consists of the matching feature values
and the mismatching feature values for each trace
in episodic memory.
The optimal Bayesian decision on a trial is to
respond OLD if the following odds is > 1.0:

• Putting aside the many simplifications and
constraints in this derivation, we have a
Bayesian derivation that uses the two system
parameters to link the odds favoring an ‘old’
decision to the observed data, for a given test
trial.

• If the decision uses the default optimal odds of
1.0, we can predict performance by summing
across all possible memory configurations for a
given condition, weighted by the probability of
that configuration.

• We do this by simulation

• (But note that Max Montenegro in Jay
Myung’s lab recently derived analytic
predictions with a Fourier transform
approach).
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• SIMULATION:  For a given condition:
1) Specify values for c and g.
2) Simulate the traces that get stored in memory

for the study list, producing a set of incomplete
and error prone vectors.

3) For TEST, choose a random study item for an
OLD test, and a random vector produced from
base rates for a NEW test.

4) Give an OLD decision if the formula gives odds
> 1.0, NEW otherwise.

• Do this simulation N times: The proportion of old
decisions is the probability of an old response for
that condition, for those values of c and g.

• In the original REM article we produced
qualitative patterns of predictions for
plausible parameter values for standard
findings (see next).

• In many other articles we carried out
quantitative fitting by searching the space
of c, g values, obtaining the probability of
the observed number of OLD responses in
each condition of interest, for each c, g
combination

• In most applications we did not use REM
to carry out a full Bayesian analysis,
instead finding  the parameters producing
the maximum likelihood of the data, and
using the fit for inference.

• Before turning to REM’s performance, a
few remarks about its characteristics are
useful. First, note that the expected value
of the likelihood ratio (old/new) for a match
of a new item to a random list trace is 1.0,
and the expected value of the likelihood
ratio (new/old) for the match of an old item
to its own list trace is also 1.0, with both
distributions being highly skewed.

The odds used for decision is for a NEW item an average of N samples
   from the d-image distribution; for an OLD item, an average of one sample
   from the s-image distribution and N-1 samples from the d-image distribution.

Note that the overlap of these distributions is unchanged on the original
   non-log plots– i.e. sensitivity is unchanged by the change of scale.

• Among other things these properties of the
likelihood ratios imply that recognition is
generally ‘centered’ with respect to hits
and false alarms.

• Thus REM using the default decision
criterion of odds of 1.0 automatically
produces mirror effects (as we shall see
next).
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• What we have so far is a vastly simplified
model for episodic recognition memory.
Although it makes a few nice predictions, it
would be of little interest if it could not be
generalized considerably, in two ways:
– By making more reasonable assumptions

about the boundary conditions
– By proving applicable to many other types of

tasks.

We have done this, both in the original article,
and in many subsequent articles.

• One of the critical issues is the treatment of
context (in particular list context). In the original
REM, we bypassed the problem by restricting
consideration to memory traces of items studied
on the recent list (assuming that context
somehow performed this restriction).

• We did look at ways to use a joint probe with
both context and item cues, although exact
Bayesian solutions were no longer possible.

• We also asked what would happen if we used
the model as originally stated, but expanded the
set of memory traces to which the probe is
matched to include those due to pre-list
experience (possibly including pre-list
occurrences of the test item).
– The system seemed robust to such manipulations.

• The REM model in its simplest form
attributed performance decreases as list
length increased to confusions with the
greater number of memory traces in the
longer lists.

• Simon Dennis and Mike Humphreys have
argued that such interference due to
similarity between list words has no effect,
that true list-length effects do not exist,
and that all memory interference in
recognition studies with words are due to
confusions with pre-list occurrences of the
test word.

• The more general REM approach
incorporates both kinds of interference.
Amy Criss and I carried out a study to
assess the relative strength of these
factors: Our design placed many test
words in lists before the current test list. In
these circumstances the interference from
the test word traces due to pre-list
presentations proved even stronger than
the interference due to within list similarity
due to other words, but we found strong
evidence for both factors.

• One nice feature of the REM model was
the natural way that it connected to the
earlier models for recall that I developed
with Raaijmakers (SAM).

• In SAM, recall was conceived as a search
process in which each cycle consisted of
sampling a memory trace (in proportion to
its strength), recovering information from
the sampled trace, and then making
decisions on the basis of that information
(including a decision whether to respond,
continue sampling, or give up).
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• The REM model could use this recall system
almost in its entirety, substituting the trace
likelihood ratio for the ‘strength’ value of SAM.

• However, the SAM assumption of proportional
sampling required modification in REM–

• I showed earlier how strongly skewed are the
likelihood ratios. Proportional sampling would
almost always select the strongest trace, which
would in turn strongly distort the very successful
predictions of SAM. However, an assumption
that traces are sampled in proportion to
something like a log of the likelihood ratios
would reproduce essentially all the SAM recall
predictions.

• Another key feature of the REM approach
is the process it provided for knowledge
development and retrieval of knowledge.

– and the way the system predicts the relation
of, and the interactions between, episodic
storage and retrieval to knowledge
development and retrieval.

• The linkage began with the list strength
effect and differentiation.
– The list strength effect is the finding that

strengthening some list items benefits the
recognition of other, non-strengthened, list
items.

– Using SAM, we proposed a process of
differentiation to explain this: The more we
know about an item the less noise in its
representation, and the less similar it will be to
a probe with a different item.

– In REM this occurs naturally, as features are
added to the strengthened item.

• However, to impose differentiation, it is
necessary to assume that items
strengthened by repetitions are
represented by one trace that accumulates
features at each repetition.

• We must assume that when an item re-
occurs we often retrieve the previous trace
(because it is sufficiently similar), and add
some of the information in the new
presentation to that already in the
retrieved trace.

• This addition process can be used to explain the
development of knowledge: As repetitions occur,
a trace continues to accumulate information until
it becomes knowledge, or in the case of words,
part of our lexicon.

• We usually think of knowledge as independent
of particular contexts. The process of
accumulation just described causes the
accumulation of many different context features,
until the point is reached where a trace has
features of so many different contexts that none
emerges from the mixture, and the trace is
effectively decontextualized.
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• This process also explains long-term
priming of knowledge retrieval:

• Presentation of, say, a word, causes
current context to be added to the lexical
trace. A later test in a similar context will
use a probe cue with similar context
features, producing better matching to the
lexical trace.

• We have used this idea with considerably
success to explain long term priming in a
number of studies and settings.

• Of course priming must be appended to a
model of knowledge retrieval.

• Retrieval of knowledge traces also fits
nicely into the REM framework:

• The probe cue is compared to the lexical
traces in parallel, each trace contributing a
likelihood ratio for matching the probe, in a
process that evolves over time.

• We have used variants of this idea to form
models of lexical decision, naming,
animacy judgment, forced choice
perceptual identification, and other
knowledge retrieval tasks, and have
modeled priming effects in these various
tasks.

• These applications of variants and
extensions of REM to a variety of episodic
and knowledge retrieval tasks, and a host
of interesting theoretical questions that
arise during the applications, are potential
subjects for addresses in their own right.

• Today, however, I wish to discuss an
theoretical elaboration of REM, developed
first with Shane Mueller, and more recently
with Angela Nelson.

• It is rather remarkable how such a simple
model as REM, containing almost no
structure, and few parameters and
assumptions, proved useful in predicting
data from so many episodic and
knowledge retrieval tasks.

• However, REM is far too simple, and is
especially deficient if one tries to use it to
explain the formation of real knowledge:

• Vectors of feature values, each encoded
only as a base rate, are not rich enough a
substrate on which to build knowledge.

• We therefore changed the representation:
• Each event, episodic or knowledge is

represented as a matrix of feature (value)
co-occurences.

• Episodic traces generally have one count
per cell, but as knowledge develops the
trace accumulates counts in each cell of
the matrix.

• The co-occurrence counts are based on
the features that are together at one time
in short term memory, and especially on
attention to features of those items.
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• Thus each item representation picks up
features of ‘nearby’ items, and items that
co-occur a lot tend to have knowledge
traces that grow more similar.

• These assumptions also imply that events
and knowledge co-evolve in the following
way:  We encode and interpret new events
in terms of our continuing evolving
knowledge, and we use the features of
new events to modify and add to our
knowledge.

• We term this model REM-M (M for matrix)

• In the rest of this talk I will flesh out the
ideas underlying REM-M, and discuss one
simplified version applied to the study
discussed next.

• The study is by Angela Nelson (in the
audience) on perceptual learning and the
effects of differential experience.

Chinese Characters

Design

• Our study uses Chinese characters as the
novel stimuli.

• Subjects are trained using a visual search
task modeled after that of Shiffrin and
Lightfoot (1997)

• Search displays of 2 or 4 characters for a
character presented just prior to the
display; respond present or absent

Design
• Frequency of occurrence (as both target and foil)

of characters was varied in a ratio of 2::6::18::54
• For each subject, a set of 32 characters was

taken from the pool of characters (which
included approximately 200 characters, all with 7
strokes or less)

• From these 32 characters, 8 were assigned to
each frequency category
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Subject learning over training

• Response times measured, rate of search
used to assess learning
– Previous research (Shiffrin and

Lightfoot,1997) showed a gradual but
substantial decrease of search rate over
training

Subject learning over training

Post-training tests

• Pseudo-lexical Decision – subjects
identified whether a character was present
in study sessions

• Episodic Recognition Memory – subjects
viewed study list and test list

• Forced Choice Perceptual Identification –
subjects viewed briefly flashed character
and picked matching character from
choice of two

Previous Models

• REM (Shiffrin & Steyvers, 1997)
– Items in memory represented as vectors of

feature values
– Assumes high frequency items are composed

of high frequency features
– As a result of this assumption, the high

frequency items share more features with
each other

– This does not hold for our study!

Current Model – Contextual
Diversity

• Simplification of the REM-M model
proposed by Mueller and Shiffrin (e.g.
2006)

• Because the higher frequency items are
seen in a larger variety of contexts than
lower frequency items, the higher
frequency items develop a more diverse
representation in the lexicon

Item Representation

• Items are represented as a vector with a fixed
number of features and a fixed number of
possible values for each feature

Feature #4

Value = 5
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Training

• The lexicon is built through exposure to
the items during training

• Each time an item is presented as a target
in visual search, features are added to that
item’s lexical representation from three
possible sources:

• Actual target item features
• Distractor features
• Previous target features

Surrounding
Context

Training

• The lexicon builds up counts over training

Actual Item

Lexical Representation of item

HF

LF

Training

• HF items are presented more often and
therefore are more likely to store features
in their lexical entry from the surrounding
context – they will have a more diverse
lexical entry

• Because the surrounding context is also
more likely to be HF items, HF items tend
to overlap more with each other than LF
items

Training

• Since HF items have a larger “cloud” of features in the
lexicon, they are more likely to overlap with other items

Training
• After training, HF

items are more
similar to each
other than LF
items

• Similarity between
items measured
by taking a dot
product of the two
item’s normalized
lexical entries

Frequency

Post-training tasks

• The lexicon that has been established
over training is used in the simulation of
the post-training tasks
– Episodic Recognition
– Lexical Decision
– Forced Choice Perceptual Identification
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Episodic Recognition

• Results of empirical
study: LF trained
items produced
better performance
than HF items in an
episodic
recognition task

• Showed mirror
pattern

Episodic Recognition: Study Phase

Episodic Recognition: Study Phase Episodic Recognition: Study Phase

Episodic Recognition: Study Phase

Chosen according
to base rate

Episodic Recognition: Test Phase
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Episodic Recognition: Test Phase Episodic Recognition

Diversity of Items

• LF items are
more likely to
match their own
traces, and less
likely to match
different traces

Lexical Decision

• Next, the model was
used to fit the
experimental data
from the pseudo-
lexical decision task

Modeling Process: Lexical
Decision

• When presented with a test item, the
percept accumulates item features as time
passes

• At each time-step, each feature is
encoded with probability u, and if encoded
is copied correctly with probability c,
otherwise is stored randomly according to
lexical base rate

Lexical Decision: Create Percept

Chosen randomly
according to base rate
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Lexical Decision: Compare Percept Lexical Decision: Compare Percept

• If odds > old criterion, respond “old”
• If odds < new criterion, respond “new”

• If neither, then repeat the procedure,
adding new features to the existing
percept without replacing those already
stored

• Re-calculate evidence

Modeling Process: Lexical
Decision Lexical Decision

Summary

• Differences in contextual diversity that
develop over the training of novel items
produce frequency effects in the model
like those shown in the experimental
results
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• Now I’d like to return to the more general
form of REM-M developed and simulated
by Shane Mueller.

What Are the Features for
General (Semantic) Knowledge?
• All the physical features

– For treehouse: color, shape, size, etc.

– For words: letter shapes, sound

• Inferred Properties
– Physical features in percept enable access to

vast amount of inferred information.
– made of wood, in a tree, doors, windows

• Associated Properties
– Dangerous, children, “Stand By Me”

What Are Properties of
Features?

• Features Differ in importance
– height from ground versus roofing

material

• Features can have different
conflicting values
– Not all tree-houses are the same
– yellow versus brown

• Features co-occur differentially
– stilt-houses versus tree-houses

Co-occurrence representations
• The richness of the world and of concepts

cannot possibly be captured as a list of simple,
separate primitive, features, unless we extend
the notion of feature to include large and
integrative concepts such as word associations,
paragraphs, books, etc., which would be
effectively useless for modeling.

• As a first and critical step, therefore, we try to
capture much of what is needed by encoding
and storing which features are co-occurring with
which other features.

Capturing Co-occurrence
Information Knowledge and
Episodic Representations

• Accumulate co-occurrence of
features corresponding to a
concept.

• Knowledge Matrix:
– Set of multiple conditional

representations

   [  <5 3 | 3 4 | 1 0 0>
 <3 6 | 0 1 | 1 3 0>
 <3 0 | 4 3 | 0 0 3>
 <4 1 | 3 5 | 4 2 1>
 <1 1 | 0 4 | 6 0 1>
 <0 3 | 0 2 | 0 4 1>
 <0 0 | 3 1 | 1 1 4>]

Forming LTM Co-
occurrence matrix  from

Episodes
• Any episodic trace can

produce a co-occurrence
matrix.

• 110011 and 001100 form co-
occurrence matrices at right

• Knowledge accrues by
incorporating co-occurrence
matrix from individual episodes
into current knowledge
structure.

• 1 1 0 0 1 1

• 0 0 0 0 0 0

• 0 0 0 0 0 0

• 1 1 0 0 1 1

• 1 1 0 0 1 1

• 0 0 0 0 0 0

• 0 0 0 0 0 0

• 0 0 1 1 0 0

• 0 0 1 1 0 0

• 0 0 0 0 0 0

• 0 0 0 0 0 0

110011:

001100:
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LTM Co-occurrence matrix

• Over time, complex matrix
representation will form.

• Word has two primary
concepts: 1-2-5-6 and 3-4.

• 1256 is stronger than 34

• Primary meanings could be
extracted using factor
analysis)

Encoding Episodes
from Knowledge Matrix

• Generic Encoding: pick
row, pick feature, pick
new row based on what
has been sampled,
repeat.

• Biased Encoding: pick
row from another trace,
pick feature from that
row of current matrix,
repeat.

Biased Encoding
• 1-2 are features of

months.
• Features 3-4 are

properties of brass bands.

“Late in winter, March
blizzards are not
uncommon”

• Nearby words create local
semantic context of
season and date.

• Sampling from rows 1-2.

• Biased sampling
will produce
episodic trace for
the month MARCH,
rather than the
parade MARCH.

MARCH

How does knowledge form?
• We need to describe the process by which

knowledge bootstraps itself into existence.

• E.g A word starts as a collection of physical
features, without meaning.

• The idea is that the ‘context’ of the event
provides features co-occurring with the word,
and these tend to join the knowledge trace. Over
many event occurrences in varying contexts,
knowledge including meaning emerges.

Formation of Model Mental
Lexicon

• We will produce a toy lexicon with such a bootstrapping
process.

• Start off each word with a 'unique' representation

• During encoding, keep track of local feature context, and
store co-occurrence counts in the lexical trace

• Words encoded in a way biased by context.

• Knowledge re-stored along with some features from local
context.

• One result: Concepts that often appear together grow more
similar (Hebbian-like principle).

Semantic Spaces
Demonstration: Bank

• Create lexicon for model by “reading” text.
• In text, BANK appears with MONEY words,

RIVER words, or BALL words.
– I deposit check in bank
– money is withdrawn from bank

– the river bank was dry
– there was water on river bank

• In demo:
– Form matrix representation for each word
– Compute similarity between each obtained matrix
– Perform 2-D MDS to visualize space.
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Results: Bank Demonstration

• After
lexicon
formed from
text,
perform
MDS on
feature
representati
ons

Biased Encodings of “Bank”

Biased Encodings of “December”
Model for Episodic Memory

Tasks
• Previous simulation shows that semantic spaces

can emerge within the matrix representation

• System must be extended to form model of
episodic memory tasks (primarily list memory)

• Three main steps:
– ‘Grow’ a Model Lexicon
– Encode Episodes with the Lexicon, and Store
       Episodic Traces
– Compute Likelihood Ratios = Trace Activations

Step 1: Form Model Mental
Lexicon

• Real words occur in different
frequencies.

• Typically, the few most common
words happen a lot, and there are a
lot of rare words that happen a little.
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Step 1: Form Model Lexicon
• Each word initialized with a unique representation.
• Half of the features are “Physical”describing physical

properties of word
• Half are relational, forming local semantic context.
• During lexicon formation:

– observed tokens are encoded by consulting knowledge
– features from local semantic context are added to relational

features of trace.
– New augmented trace is added to current semantic matrix for

word.
• In this process, things that co-occur will gradually begin

to share relational features.
• High-frequency words will grow more similar to one

another than will low frequency words.

Step 2: Encode Episodic Traces
TASK: Suppose study of a list followed by

single-item recognition for list items (targets)
and non-list items (foils).

During study, episodic traces of each item are
encoded from knowledge network (for now,
independent of nearby items on the list). These
are stored incompletely and with error.

• At test, a probe is encoded as another episodic
trace.

• Response depends on likelihood calculation:
probability trace being produced by that probe.

Recognition Memory Demo

• Task: present 40-item list for study
comprised of high and low-frequency
words.  Later, present 20 old words and
20 new words; participant says “Old” or
“New” for each.

• Typical finding: LF words remembered
better; higher hits and lower false alarms.

• In the model, lexicon formation makes HF
words more similar to one another.

Mirror Frequency Effect

Encoding Biases from Nearby List
Words

• The previous demo treated all words as
independent units, unaffected by local
study list context. This does not utilize
the power of the new approach, that
stores co-occurrences.

• We therefore provide a second
demonstration that encodes list items in
terms of other list items currently in
rehearsal.

• This system is used to provide an
account for the fact that in free recall the
next word recalled tends to be one
studied in proximity to the last word
recalled (e.g. Kahana et al., 2002)

Biases of Encoding
Demonstration

• Free Recall CRP
– A list of words is

presented
– Participant recalls as

many words as possible
from the list, in any order

– Words tend to be
recalled from nearby
input positions

– Forward Bias: recall
tends to go forward
rather than backward.

– Kahana et al., 2002
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Encoding Bias Account
• Encoding of words is biased by the

meaning of previous words.
• Produces “Biased” episodic traces.

Presented: A B C D E
Encoded:  A aB bC cD dE

• During recall, new memory traces
are identified by matching currently
recalled word:
– bC -> cD  or   bC->aB
– But simplest model produces equal

forward and backward biases

Encoding Asymmetry
• If traces are reconstructed (which

they must be for recall to happen), a
more ‘generic’ trace may be
generated during recovery, one less
biased by nearby words.

• Presented: A B C D E
Encoded:  A aB bC cD dE

• During recall, new memory traces
are identified by matching currently
recalled word:

– bC ->C-> cD;  not   bC->C->aB

Encoding Asymmetry
Predictions

• If encoding biases are happening, then we
can bias encoding just by placing a word
nearby another word.

• Borne out in new experiment:
– List containing words like “BANK” presented
– Bank preceded by either “Money” or “River”
– At recall, subject given a hint: “Check” versus

“Water”
– Cues consistent with prior word produced

more recalls of the word “Bank”

Encoding Asymmetry
Predictions

Model Summary
• Knowledge representation as a feature-based co-

occurrence matrix.
• Episodes cause added counts to accumulate in lexicon
• Allows knowledge and new conceptual relations to

develop from experience
• Concepts that co-occur grow more similar by sharing

features.
• This approach:

– Explains the development of semantic spaces
– Captures multiple senses and meanings of a concept
– Accounts for frequency effect in recognition memory
– Allow encoding biases to be explored and explained.

• Unites previously independent approaches toward
memory and knowledge, bringing new insights to both.

Applications
• Semantic Spaces
• Frequency Effects in Episodic Memory
• Biases in encoding

• Priming
• Implicit Association Test

– Consistent correlations in environment embed
multiple connotations in concepts.

• Text comprehension/disambiguation
• Whorfian Hypothesis
• Corpus Analysis
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Future Directions

• Similarity ratings
– Have subjects rate similarity of characters

before and after training
– Will the HF items grow more similar to each

other?
• New training schemes

– Contextual recency may play a role in
memory performance

– Train subjects with differing recency for HF
and LF items, keeping total exposure constant


